1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrCCCoverageProcessor.h"
9 
10 #include "GrMesh.h"
11 #include "glsl/GrGLSLVertexGeoBuilder.h"
12 
13 using InputType = GrGLSLGeometryBuilder::InputType;
14 using OutputType = GrGLSLGeometryBuilder::OutputType;
15 
16 /**
17  * This class and its subclasses implement the coverage processor with geometry shaders.
18  */
19 class GrCCCoverageProcessor::GSImpl : public GrGLSLGeometryProcessor {
20 protected:
GSImpl(std::unique_ptr<Shader> shader)21     GSImpl(std::unique_ptr<Shader> shader) : fShader(std::move(shader)) {}
22 
hasCoverage() const23     virtual bool hasCoverage() const { return false; }
24 
setData(const GrGLSLProgramDataManager & pdman,const GrPrimitiveProcessor &,FPCoordTransformIter && transformIter)25     void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
26                  FPCoordTransformIter&& transformIter) final {
27         this->setTransformDataHelper(SkMatrix::I(), pdman, &transformIter);
28     }
29 
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)30     void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
31         const GrCCCoverageProcessor& proc = args.fGP.cast<GrCCCoverageProcessor>();
32 
33         // The vertex shader simply forwards transposed x or y values to the geometry shader.
34         SkASSERT(1 == proc.numVertexAttributes());
35         gpArgs->fPositionVar = proc.fVertexAttribute.asShaderVar();
36 
37         // Geometry shader.
38         GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
39         this->emitGeometryShader(proc, varyingHandler, args.fGeomBuilder, args.fRTAdjustName);
40         varyingHandler->emitAttributes(proc);
41         varyingHandler->setNoPerspective();
42         SkASSERT(!args.fFPCoordTransformHandler->nextCoordTransform());
43 
44         // Fragment shader.
45         fShader->emitFragmentCode(proc, args.fFragBuilder, args.fOutputColor, args.fOutputCoverage);
46     }
47 
emitGeometryShader(const GrCCCoverageProcessor & proc,GrGLSLVaryingHandler * varyingHandler,GrGLSLGeometryBuilder * g,const char * rtAdjust) const48     void emitGeometryShader(const GrCCCoverageProcessor& proc,
49                             GrGLSLVaryingHandler* varyingHandler, GrGLSLGeometryBuilder* g,
50                             const char* rtAdjust) const {
51         int numInputPoints = proc.numInputPoints();
52         SkASSERT(3 == numInputPoints || 4 == numInputPoints);
53 
54         int inputWidth = (4 == numInputPoints || proc.hasInputWeight()) ? 4 : 3;
55         const char* posValues = (4 == inputWidth) ? "sk_Position" : "sk_Position.xyz";
56         g->codeAppendf("float%ix2 pts = transpose(float2x%i(sk_in[0].%s, sk_in[1].%s));",
57                        inputWidth, inputWidth, posValues, posValues);
58 
59         GrShaderVar wind("wind", kHalf_GrSLType);
60         g->declareGlobal(wind);
61         Shader::CalcWind(proc, g, "pts", wind.c_str());
62         if (PrimitiveType::kWeightedTriangles == proc.fPrimitiveType) {
63             SkASSERT(3 == numInputPoints);
64             SkASSERT(kFloat4_GrVertexAttribType == proc.fVertexAttribute.cpuType());
65             g->codeAppendf("%s *= half(sk_in[0].sk_Position.w);", wind.c_str());
66         }
67 
68         SkString emitVertexFn;
69         SkSTArray<2, GrShaderVar> emitArgs;
70         const char* corner = emitArgs.emplace_back("corner", kFloat2_GrSLType).c_str();
71         const char* bloatdir = emitArgs.emplace_back("bloatdir", kFloat2_GrSLType).c_str();
72         const char* coverage = nullptr;
73         if (this->hasCoverage()) {
74             coverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
75         }
76         const char* cornerCoverage = nullptr;
77         if (GSSubpass::kCorners == proc.fGSSubpass) {
78             cornerCoverage = emitArgs.emplace_back("corner_coverage", kHalf2_GrSLType).c_str();
79         }
80         g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
81             SkString fnBody;
82             if (coverage) {
83                 fnBody.appendf("%s *= %s;", coverage, wind.c_str());
84             }
85             if (cornerCoverage) {
86                 fnBody.appendf("%s.x *= %s;", cornerCoverage, wind.c_str());
87             }
88             fnBody.appendf("float2 vertexpos = fma(%s, float2(bloat), %s);", bloatdir, corner);
89             fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kGeoToFrag, &fnBody,
90                                   "vertexpos", coverage ? coverage : wind.c_str(), cornerCoverage);
91             g->emitVertex(&fnBody, "vertexpos", rtAdjust);
92             return fnBody;
93         }().c_str(), &emitVertexFn);
94 
95         float bloat = kAABloatRadius;
96 #ifdef SK_DEBUG
97         if (proc.debugBloatEnabled()) {
98             bloat *= proc.debugBloat();
99         }
100 #endif
101         g->defineConstant("bloat", bloat);
102 
103         this->onEmitGeometryShader(proc, g, wind, emitVertexFn.c_str());
104     }
105 
106     virtual void onEmitGeometryShader(const GrCCCoverageProcessor&, GrGLSLGeometryBuilder*,
107                                       const GrShaderVar& wind, const char* emitVertexFn) const = 0;
108 
~GSImpl()109     virtual ~GSImpl() {}
110 
111     const std::unique_ptr<Shader> fShader;
112 
113     typedef GrGLSLGeometryProcessor INHERITED;
114 };
115 
116 /**
117  * Generates conservative rasters around a triangle and its edges, and calculates coverage ramps.
118  *
119  * Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire
120  * triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a
121  * coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
122  * into smooth, antialiased ones.
123  *
124  * The final corners get touched up in a later step by GSTriangleCornerImpl.
125  */
126 class GrCCCoverageProcessor::GSTriangleHullImpl : public GrCCCoverageProcessor::GSImpl {
127 public:
GSTriangleHullImpl(std::unique_ptr<Shader> shader)128     GSTriangleHullImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
129 
hasCoverage() const130     bool hasCoverage() const override { return true; }
131 
onEmitGeometryShader(const GrCCCoverageProcessor &,GrGLSLGeometryBuilder * g,const GrShaderVar & wind,const char * emitVertexFn) const132     void onEmitGeometryShader(const GrCCCoverageProcessor&, GrGLSLGeometryBuilder* g,
133                               const GrShaderVar& wind, const char* emitVertexFn) const override {
134         fShader->emitSetupCode(g, "pts", wind.c_str());
135 
136         // Visualize the input triangle as upright and equilateral, with a flat base. Paying special
137         // attention to wind, we can identify the points as top, bottom-left, and bottom-right.
138         //
139         // NOTE: We generate the rasters in 5 independent invocations, so each invocation designates
140         // the corner it will begin with as the top.
141         g->codeAppendf("int i = (%s > 0 ? sk_InvocationID : 4 - sk_InvocationID) %% 3;",
142                        wind.c_str());
143         g->codeAppend ("float2 top = pts[i];");
144         g->codeAppendf("float2 right = pts[(i + (%s > 0 ? 1 : 2)) %% 3];", wind.c_str());
145         g->codeAppendf("float2 left = pts[(i + (%s > 0 ? 2 : 1)) %% 3];", wind.c_str());
146 
147         // Determine which direction to outset the conservative raster from each of the three edges.
148         g->codeAppend ("float2 leftbloat = sign(top - left);");
149         g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
150                                           "0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
151 
152         g->codeAppend ("float2 rightbloat = sign(right - top);");
153         g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
154                                            "0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
155 
156         g->codeAppend ("float2 downbloat = sign(left - right);");
157         g->codeAppend ("downbloat = float2(0 != downbloat.y ? downbloat.y : downbloat.x, "
158                                            "0 != downbloat.x ? -downbloat.x : -downbloat.y);");
159 
160         // The triangle's conservative raster has a coverage of +1 all around.
161         g->codeAppend ("half4 coverages = half4(+1);");
162 
163         // Edges have coverage ramps.
164         g->codeAppend ("if (sk_InvocationID >= 2) {"); // Are we an edge?
165         Shader::CalcEdgeCoverageAtBloatVertex(g, "top", "right",
166                                               "float2(+rightbloat.y, -rightbloat.x)",
167                                               "coverages[0]");
168         g->codeAppend (    "coverages.yzw = half3(-1, 0, -1 - coverages[0]);");
169         // Reassign bloats to characterize a conservative raster around a single edge, rather than
170         // the entire triangle.
171         g->codeAppend (    "leftbloat = downbloat = -rightbloat;");
172         g->codeAppend ("}");
173 
174         // Here we generate the conservative raster geometry. The triangle's conservative raster is
175         // the convex hull of 3 pixel-size boxes centered on the input points. This translates to a
176         // convex polygon with either one, two, or three vertices at each input point (depending on
177         // how sharp the corner is) that we split between two invocations. Edge conservative rasters
178         // are convex hulls of 2 pixel-size boxes, one at each endpoint. For more details on
179         // conservative raster, see:
180         // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
181         g->codeAppendf("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");
182         g->codeAppend ("if (all(left_right_notequal)) {");
183                            // The top corner will have three conservative raster vertices. Emit the
184                            // middle one first to the triangle strip.
185         g->codeAppendf(    "%s(top, float2(-leftbloat.y, +leftbloat.x), coverages[0]);",
186                            emitVertexFn);
187         g->codeAppend ("}");
188         g->codeAppend ("if (any(left_right_notequal)) {");
189                            // Second conservative raster vertex for the top corner.
190         g->codeAppendf(    "%s(top, rightbloat, coverages[1]);", emitVertexFn);
191         g->codeAppend ("}");
192 
193         // Main interior body.
194         g->codeAppendf("%s(top, leftbloat, coverages[2]);", emitVertexFn);
195         g->codeAppendf("%s(right, rightbloat, coverages[1]);", emitVertexFn);
196 
197         // Here the invocations diverge slightly. We can't symmetrically divide three triangle
198         // points between two invocations, so each does the following:
199         //
200         // sk_InvocationID=0: Finishes the main interior body of the triangle hull.
201         // sk_InvocationID=1: Remaining two conservative raster vertices for the third hull corner.
202         // sk_InvocationID=2..4: Finish the opposite endpoint of their corresponding edge.
203         g->codeAppendf("bool2 right_down_notequal = notEqual(rightbloat, downbloat);");
204         g->codeAppend ("if (any(right_down_notequal) || 0 == sk_InvocationID) {");
205         g->codeAppendf(    "%s((0 == sk_InvocationID) ? left : right, "
206                               "(0 == sk_InvocationID) ? leftbloat : downbloat, "
207                               "coverages[2]);", emitVertexFn);
208         g->codeAppend ("}");
209         g->codeAppend ("if (all(right_down_notequal) && 0 != sk_InvocationID) {");
210         g->codeAppendf(    "%s(right, float2(-rightbloat.y, +rightbloat.x), coverages[3]);",
211                            emitVertexFn);
212         g->codeAppend ("}");
213 
214         // 5 invocations: 2 triangle hull invocations and 3 edges.
215         g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 5);
216     }
217 };
218 
219 /**
220  * Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic.
221  */
222 class GrCCCoverageProcessor::GSCurveHullImpl : public GrCCCoverageProcessor::GSImpl {
223 public:
GSCurveHullImpl(std::unique_ptr<Shader> shader)224     GSCurveHullImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
225 
onEmitGeometryShader(const GrCCCoverageProcessor &,GrGLSLGeometryBuilder * g,const GrShaderVar & wind,const char * emitVertexFn) const226     void onEmitGeometryShader(const GrCCCoverageProcessor&, GrGLSLGeometryBuilder* g,
227                               const GrShaderVar& wind, const char* emitVertexFn) const override {
228         const char* hullPts = "pts";
229         fShader->emitSetupCode(g, "pts", wind.c_str(), &hullPts);
230 
231         // Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
232         // we can identify the points by their corresponding corner.
233         //
234         // NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
235         // the hull in two independent invocations. Each invocation designates the corner it will
236         // begin with as top-left.
237         g->codeAppend ("int i = sk_InvocationID * 2;");
238         g->codeAppendf("float2 topleft = %s[i];", hullPts);
239         g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
240         g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
241         g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
242 
243         // Determine how much to outset the conservative raster hull from the relevant edges.
244         g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +1 : -1, "
245                                                  "topleft.x > bottomleft.x ? -1 : +1);");
246         g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +1 : -1, "
247                                                "topright.x > topleft.x ? -1 : +1);");
248         g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +1 : -1, "
249                                                   "bottomright.x > topright.x ? -1 : +1);");
250 
251         // Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
252         // boxes centered on the input points, split evenly between two invocations. This translates
253         // to a polygon with either one, two, or three vertices at each input point, depending on
254         // how sharp the corner is. For more details on conservative raster, see:
255         // https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
256         g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
257         g->codeAppend ("if (all(left_up_notequal)) {");
258                            // The top-left corner will have three conservative raster vertices.
259                            // Emit the middle one first to the triangle strip.
260         g->codeAppendf(    "%s(topleft, float2(-leftbloat.y, leftbloat.x));", emitVertexFn);
261         g->codeAppend ("}");
262         g->codeAppend ("if (any(left_up_notequal)) {");
263                            // Second conservative raster vertex for the top-left corner.
264         g->codeAppendf(    "%s(topleft, leftbloat);", emitVertexFn);
265         g->codeAppend ("}");
266 
267         // Main interior body of this invocation's half of the hull.
268         g->codeAppendf("%s(topleft, upbloat);", emitVertexFn);
269         g->codeAppendf("%s(bottomleft, leftbloat);", emitVertexFn);
270         g->codeAppendf("%s(topright, upbloat);", emitVertexFn);
271 
272         // Remaining two conservative raster vertices for the top-right corner.
273         g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
274         g->codeAppend ("if (any(up_right_notequal)) {");
275         g->codeAppendf(    "%s(topright, rightbloat);", emitVertexFn);
276         g->codeAppend ("}");
277         g->codeAppend ("if (all(up_right_notequal)) {");
278         g->codeAppendf(    "%s(topright, float2(-upbloat.y, upbloat.x));", emitVertexFn);
279         g->codeAppend ("}");
280 
281         g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
282     }
283 };
284 
285 /**
286  * Generates conservative rasters around corners (aka pixel-size boxes) and calculates
287  * coverage and attenuation ramps to fix up the coverage values written by the hulls.
288  */
289 class GrCCCoverageProcessor::GSCornerImpl : public GrCCCoverageProcessor::GSImpl {
290 public:
GSCornerImpl(std::unique_ptr<Shader> shader)291     GSCornerImpl(std::unique_ptr<Shader> shader) : GSImpl(std::move(shader)) {}
292 
hasCoverage() const293     bool hasCoverage() const override { return true; }
294 
onEmitGeometryShader(const GrCCCoverageProcessor & proc,GrGLSLGeometryBuilder * g,const GrShaderVar & wind,const char * emitVertexFn) const295     void onEmitGeometryShader(const GrCCCoverageProcessor& proc, GrGLSLGeometryBuilder* g,
296                               const GrShaderVar& wind, const char* emitVertexFn) const override {
297         fShader->emitSetupCode(g, "pts", wind.c_str());
298 
299         g->codeAppendf("int corneridx = sk_InvocationID;");
300         if (!proc.isTriangles()) {
301             g->codeAppendf("corneridx *= %i;", proc.numInputPoints() - 1);
302         }
303 
304         g->codeAppendf("float2 corner = pts[corneridx];");
305         g->codeAppendf("float2 left = pts[(corneridx + (%s > 0 ? %i : 1)) %% %i];",
306                        wind.c_str(), proc.numInputPoints() - 1, proc.numInputPoints());
307         g->codeAppendf("float2 right = pts[(corneridx + (%s > 0 ? 1 : %i)) %% %i];",
308                        wind.c_str(), proc.numInputPoints() - 1, proc.numInputPoints());
309 
310         g->codeAppend ("float2 leftdir = corner - left;");
311         g->codeAppend ("leftdir = (float2(0) != leftdir) ? normalize(leftdir) : float2(1, 0);");
312 
313         g->codeAppend ("float2 rightdir = right - corner;");
314         g->codeAppend ("rightdir = (float2(0) != rightdir) ? normalize(rightdir) : float2(1, 0);");
315 
316         // Find "outbloat" and "crossbloat" at our corner. The outbloat points diagonally out of the
317         // triangle, in the direction that should ramp to zero coverage with attenuation. The
318         // crossbloat runs perpindicular to outbloat.
319         g->codeAppend ("float2 outbloat = float2(leftdir.x > rightdir.x ? +1 : -1, "
320                                                 "leftdir.y > rightdir.y ? +1 : -1);");
321         g->codeAppend ("float2 crossbloat = float2(-outbloat.y, +outbloat.x);");
322 
323         g->codeAppend ("half attenuation; {");
324         Shader::CalcCornerAttenuation(g, "leftdir", "rightdir", "attenuation");
325         g->codeAppend ("}");
326 
327         if (proc.isTriangles()) {
328             g->codeAppend ("half2 left_coverages; {");
329             Shader::CalcEdgeCoveragesAtBloatVertices(g, "left", "corner", "-outbloat",
330                                                      "-crossbloat", "left_coverages");
331             g->codeAppend ("}");
332 
333             g->codeAppend ("half2 right_coverages; {");
334             Shader::CalcEdgeCoveragesAtBloatVertices(g, "corner", "right", "-outbloat",
335                                                      "crossbloat", "right_coverages");
336             g->codeAppend ("}");
337 
338             // Emit a corner box. The first coverage argument erases the values that were written
339             // previously by the hull and edge geometry. The second pair are multiplied together by
340             // the fragment shader. They ramp to 0 with attenuation in the direction of outbloat,
341             // and linearly from left-edge coverage to right-edge coverage in the direction of
342             // crossbloat.
343             //
344             // NOTE: Since this is not a linear mapping, it is important that the box's diagonal
345             // shared edge points in the direction of outbloat.
346             g->codeAppendf("%s(corner, -crossbloat, right_coverages[1] - left_coverages[1],"
347                               "half2(1 + left_coverages[1], 1));",
348                            emitVertexFn);
349 
350             g->codeAppendf("%s(corner, outbloat, 1 + left_coverages[0] + right_coverages[0], "
351                               "half2(0, attenuation));",
352                            emitVertexFn);
353 
354             g->codeAppendf("%s(corner, -outbloat, -1 - left_coverages[0] - right_coverages[0], "
355                               "half2(1 + left_coverages[0] + right_coverages[0], 1));",
356                            emitVertexFn);
357 
358             g->codeAppendf("%s(corner, crossbloat, left_coverages[1] - right_coverages[1],"
359                               "half2(1 + right_coverages[1], 1));",
360                            emitVertexFn);
361         } else {
362             // Curves are simpler. The first coverage value of -1 means "wind = -wind", and causes
363             // the Shader to erase what it had written previously for the hull. Then, at each vertex
364             // of the corner box, the Shader will calculate the curve's local coverage value,
365             // interpolate it alongside our attenuation parameter, and multiply the two together for
366             // a final coverage value.
367             g->codeAppendf("%s(corner, -crossbloat, -1, half2(1));", emitVertexFn);
368             g->codeAppendf("%s(corner, outbloat, -1, half2(0, attenuation));",
369                            emitVertexFn);
370             g->codeAppendf("%s(corner, -outbloat, -1, half2(1));", emitVertexFn);
371             g->codeAppendf("%s(corner, crossbloat, -1, half2(1));", emitVertexFn);
372         }
373 
374         g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, proc.isTriangles() ? 3 : 2);
375     }
376 };
377 
initGS()378 void GrCCCoverageProcessor::initGS() {
379     SkASSERT(Impl::kGeometryShader == fImpl);
380     if (4 == this->numInputPoints() || this->hasInputWeight()) {
381         fVertexAttribute =
382                 {"x_or_y_values", kFloat4_GrVertexAttribType, kFloat4_GrSLType};
383         GR_STATIC_ASSERT(sizeof(QuadPointInstance) ==
384                          2 * GrVertexAttribTypeSize(kFloat4_GrVertexAttribType));
385         GR_STATIC_ASSERT(offsetof(QuadPointInstance, fY) ==
386                          GrVertexAttribTypeSize(kFloat4_GrVertexAttribType));
387     } else {
388         fVertexAttribute =
389                 {"x_or_y_values", kFloat3_GrVertexAttribType, kFloat3_GrSLType};
390         GR_STATIC_ASSERT(sizeof(TriPointInstance) ==
391                          2 * GrVertexAttribTypeSize(kFloat3_GrVertexAttribType));
392         GR_STATIC_ASSERT(offsetof(TriPointInstance, fY) ==
393                          GrVertexAttribTypeSize(kFloat3_GrVertexAttribType));
394     }
395     this->setVertexAttributes(&fVertexAttribute, 1);
396     this->setWillUseGeoShader();
397 }
398 
appendGSMesh(sk_sp<const GrGpuBuffer> instanceBuffer,int instanceCount,int baseInstance,SkTArray<GrMesh> * out) const399 void GrCCCoverageProcessor::appendGSMesh(sk_sp<const GrGpuBuffer> instanceBuffer, int instanceCount,
400                                          int baseInstance, SkTArray<GrMesh>* out) const {
401     // GSImpl doesn't actually make instanced draw calls. Instead, we feed transposed x,y point
402     // values to the GPU in a regular vertex array and draw kLines (see initGS). Then, each vertex
403     // invocation receives either the shape's x or y values as inputs, which it forwards to the
404     // geometry shader.
405     SkASSERT(Impl::kGeometryShader == fImpl);
406     GrMesh& mesh = out->emplace_back(GrPrimitiveType::kLines);
407     mesh.setNonIndexedNonInstanced(instanceCount * 2);
408     mesh.setVertexData(std::move(instanceBuffer), baseInstance * 2);
409 }
410 
createGSImpl(std::unique_ptr<Shader> shadr) const411 GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGSImpl(std::unique_ptr<Shader> shadr) const {
412     if (GSSubpass::kHulls == fGSSubpass) {
413         return this->isTriangles()
414                    ? (GSImpl*) new GSTriangleHullImpl(std::move(shadr))
415                    : (GSImpl*) new GSCurveHullImpl(std::move(shadr));
416     }
417     SkASSERT(GSSubpass::kCorners == fGSSubpass);
418     return new GSCornerImpl(std::move(shadr));
419 }
420