1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "GrMatrixConvolutionEffect.h"
8
9 #include "GrTexture.h"
10 #include "GrTextureProxy.h"
11 #include "glsl/GrGLSLFragmentProcessor.h"
12 #include "glsl/GrGLSLFragmentShaderBuilder.h"
13 #include "glsl/GrGLSLProgramDataManager.h"
14 #include "glsl/GrGLSLUniformHandler.h"
15
16 class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor {
17 public:
18 void emitCode(EmitArgs&) override;
19
20 static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*);
21
22 protected:
23 void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
24
25 private:
26 typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
27
28 UniformHandle fKernelUni;
29 UniformHandle fImageIncrementUni;
30 UniformHandle fKernelOffsetUni;
31 UniformHandle fGainUni;
32 UniformHandle fBiasUni;
33 GrTextureDomain::GLDomain fDomain;
34
35 typedef GrGLSLFragmentProcessor INHERITED;
36 };
37
emitCode(EmitArgs & args)38 void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) {
39 const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>();
40 const GrTextureDomain& domain = mce.domain();
41
42 int kWidth = mce.kernelSize().width();
43 int kHeight = mce.kernelSize().height();
44
45 int arrayCount = (kWidth * kHeight + 3) / 4;
46 SkASSERT(4 * arrayCount >= kWidth * kHeight);
47
48 GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
49 fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
50 "ImageIncrement");
51 fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType,
52 "Kernel",
53 arrayCount);
54 fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
55 "KernelOffset");
56 fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain");
57 fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias");
58
59 const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni);
60 const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni);
61 const char* kernel = uniformHandler->getUniformCStr(fKernelUni);
62 const char* gain = uniformHandler->getUniformCStr(fGainUni);
63 const char* bias = uniformHandler->getUniformCStr(fBiasUni);
64
65 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
66 SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
67 fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);");
68 fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc);
69 fragBuilder->codeAppend("half4 c;");
70
71 const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" };
72 for (int y = 0; y < kHeight; y++) {
73 for (int x = 0; x < kWidth; x++) {
74 GrGLSLShaderBuilder::ShaderBlock block(fragBuilder);
75 int offset = y*kWidth + x;
76
77 fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4,
78 kVecSuffix[offset & 0x3]);
79 SkString coord;
80 coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc);
81 fDomain.sampleTexture(fragBuilder,
82 uniformHandler,
83 args.fShaderCaps,
84 domain,
85 "c",
86 coord,
87 args.fTexSamplers[0]);
88 if (!mce.convolveAlpha()) {
89 fragBuilder->codeAppend("c.rgb /= c.a;");
90 fragBuilder->codeAppend("c.rgb = saturate(c.rgb);");
91 }
92 fragBuilder->codeAppend("sum += c * k;");
93 }
94 }
95 if (mce.convolveAlpha()) {
96 fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias);
97 fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor);
98 fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);",
99 args.fOutputColor, args.fOutputColor, args.fOutputColor);
100 } else {
101 fDomain.sampleTexture(fragBuilder,
102 uniformHandler,
103 args.fShaderCaps,
104 domain,
105 "c",
106 coords2D,
107 args.fTexSamplers[0]);
108 fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor);
109 fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias);
110 fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor);
111 }
112 fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor);
113 }
114
GenKey(const GrProcessor & processor,const GrShaderCaps &,GrProcessorKeyBuilder * b)115 void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor,
116 const GrShaderCaps&, GrProcessorKeyBuilder* b) {
117 const GrMatrixConvolutionEffect& m = processor.cast<GrMatrixConvolutionEffect>();
118 SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF);
119 uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height();
120 key |= m.convolveAlpha() ? 1U << 31 : 0;
121 b->add32(key);
122 b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain()));
123 }
124
onSetData(const GrGLSLProgramDataManager & pdman,const GrFragmentProcessor & processor)125 void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman,
126 const GrFragmentProcessor& processor) {
127 const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>();
128 GrTextureProxy* proxy = conv.textureSampler(0).proxy();
129 GrTexture* texture = proxy->peekTexture();
130
131 float imageIncrement[2];
132 float ySign = proxy->origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f;
133 imageIncrement[0] = 1.0f / texture->width();
134 imageIncrement[1] = ySign / texture->height();
135 pdman.set2fv(fImageIncrementUni, 1, imageIncrement);
136 pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset());
137 int kernelCount = conv.kernelSize().width() * conv.kernelSize().height();
138 int arrayCount = (kernelCount + 3) / 4;
139 SkASSERT(4 * arrayCount >= kernelCount);
140 pdman.set4fv(fKernelUni, arrayCount, conv.kernel());
141 pdman.set1f(fGainUni, conv.gain());
142 pdman.set1f(fBiasUni, conv.bias());
143 fDomain.setData(pdman, conv.domain(), proxy, conv.textureSampler(0).samplerState());
144 }
145
GrMatrixConvolutionEffect(sk_sp<GrTextureProxy> srcProxy,const SkIRect & srcBounds,const SkISize & kernelSize,const SkScalar * kernel,SkScalar gain,SkScalar bias,const SkIPoint & kernelOffset,GrTextureDomain::Mode tileMode,bool convolveAlpha)146 GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(sk_sp<GrTextureProxy> srcProxy,
147 const SkIRect& srcBounds,
148 const SkISize& kernelSize,
149 const SkScalar* kernel,
150 SkScalar gain,
151 SkScalar bias,
152 const SkIPoint& kernelOffset,
153 GrTextureDomain::Mode tileMode,
154 bool convolveAlpha)
155 // To advertise either the modulation or opaqueness optimizations we'd have to examine the
156 // parameters.
157 : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
158 , fCoordTransform(srcProxy.get())
159 , fDomain(srcProxy.get(), GrTextureDomain::MakeTexelDomain(srcBounds, tileMode),
160 tileMode, tileMode)
161 , fTextureSampler(std::move(srcProxy))
162 , fKernelSize(kernelSize)
163 , fGain(SkScalarToFloat(gain))
164 , fBias(SkScalarToFloat(bias) / 255.0f)
165 , fConvolveAlpha(convolveAlpha) {
166 this->addCoordTransform(&fCoordTransform);
167 this->setTextureSamplerCnt(1);
168 for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) {
169 fKernel[i] = SkScalarToFloat(kernel[i]);
170 }
171 fKernelOffset[0] = static_cast<float>(kernelOffset.x());
172 fKernelOffset[1] = static_cast<float>(kernelOffset.y());
173 }
174
GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect & that)175 GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that)
176 : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags)
177 , fCoordTransform(that.fCoordTransform)
178 , fDomain(that.fDomain)
179 , fTextureSampler(that.fTextureSampler)
180 , fKernelSize(that.fKernelSize)
181 , fGain(that.fGain)
182 , fBias(that.fBias)
183 , fConvolveAlpha(that.fConvolveAlpha) {
184 this->addCoordTransform(&fCoordTransform);
185 this->setTextureSamplerCnt(1);
186 memcpy(fKernel, that.fKernel, sizeof(float) * fKernelSize.width() * fKernelSize.height());
187 memcpy(fKernelOffset, that.fKernelOffset, sizeof(fKernelOffset));
188 }
189
clone() const190 std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const {
191 return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this));
192 }
193
onGetGLSLProcessorKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b) const194 void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps,
195 GrProcessorKeyBuilder* b) const {
196 GrGLMatrixConvolutionEffect::GenKey(*this, caps, b);
197 }
198
onCreateGLSLInstance() const199 GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const {
200 return new GrGLMatrixConvolutionEffect;
201 }
202
onIsEqual(const GrFragmentProcessor & sBase) const203 bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const {
204 const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>();
205 return fKernelSize == s.kernelSize() &&
206 !memcmp(fKernel, s.kernel(),
207 fKernelSize.width() * fKernelSize.height() * sizeof(float)) &&
208 fGain == s.gain() &&
209 fBias == s.bias() &&
210 !memcmp(fKernelOffset, s.kernelOffset(), sizeof(fKernelOffset)) &&
211 fConvolveAlpha == s.convolveAlpha() &&
212 fDomain == s.domain();
213 }
214
fill_in_1D_gaussian_kernel_with_stride(float * kernel,int size,int stride,float twoSigmaSqrd)215 static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride,
216 float twoSigmaSqrd) {
217 SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero));
218
219 const float sigmaDenom = 1.0f / twoSigmaSqrd;
220 const int radius = size / 2;
221
222 float sum = 0.0f;
223 for (int i = 0; i < size; ++i) {
224 float term = static_cast<float>(i - radius);
225 // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
226 // is dropped here, since we renormalize the kernel below.
227 kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom);
228 sum += kernel[i * stride];
229 }
230 // Normalize the kernel
231 float scale = 1.0f / sum;
232 for (int i = 0; i < size; ++i) {
233 kernel[i * stride] *= scale;
234 }
235 }
236
fill_in_2D_gaussian_kernel(float * kernel,int width,int height,SkScalar sigmaX,SkScalar sigmaY)237 static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height,
238 SkScalar sigmaX, SkScalar sigmaY) {
239 SkASSERT(width * height <= MAX_KERNEL_SIZE);
240 const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX));
241 const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY));
242
243 // TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros.
244 if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) ||
245 SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
246 // In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point
247 SkASSERT(3 == width || 3 == height);
248 memset(kernel, 0, width*height*sizeof(float));
249
250 if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) &&
251 SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) {
252 // A point
253 SkASSERT(3 == width && 3 == height);
254 kernel[4] = 1.0f;
255 } else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) {
256 // A 1D Gaussian in Y
257 SkASSERT(3 == width);
258 // Down the middle column of the kernel with a stride of width
259 fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY);
260 } else {
261 // A 1D Gaussian in X
262 SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero));
263 SkASSERT(3 == height);
264 // Down the middle row of the kernel with a stride of 1
265 fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX);
266 }
267 return;
268 }
269
270 const float sigmaXDenom = 1.0f / twoSigmaSqrdX;
271 const float sigmaYDenom = 1.0f / twoSigmaSqrdY;
272 const int xRadius = width / 2;
273 const int yRadius = height / 2;
274
275 float sum = 0.0f;
276 for (int x = 0; x < width; x++) {
277 float xTerm = static_cast<float>(x - xRadius);
278 xTerm = xTerm * xTerm * sigmaXDenom;
279 for (int y = 0; y < height; y++) {
280 float yTerm = static_cast<float>(y - yRadius);
281 float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom));
282 // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian
283 // is dropped here, since we renormalize the kernel below.
284 kernel[y * width + x] = xyTerm;
285 sum += xyTerm;
286 }
287 }
288 // Normalize the kernel
289 float scale = 1.0f / sum;
290 for (int i = 0; i < width * height; ++i) {
291 kernel[i] *= scale;
292 }
293 }
294
295 // Static function to create a 2D convolution
MakeGaussian(sk_sp<GrTextureProxy> srcProxy,const SkIRect & srcBounds,const SkISize & kernelSize,SkScalar gain,SkScalar bias,const SkIPoint & kernelOffset,GrTextureDomain::Mode tileMode,bool convolveAlpha,SkScalar sigmaX,SkScalar sigmaY)296 std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian(
297 sk_sp<GrTextureProxy> srcProxy,
298 const SkIRect& srcBounds,
299 const SkISize& kernelSize,
300 SkScalar gain,
301 SkScalar bias,
302 const SkIPoint& kernelOffset,
303 GrTextureDomain::Mode tileMode,
304 bool convolveAlpha,
305 SkScalar sigmaX,
306 SkScalar sigmaY) {
307 float kernel[MAX_KERNEL_SIZE];
308
309 fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY);
310
311 return std::unique_ptr<GrFragmentProcessor>(
312 new GrMatrixConvolutionEffect(std::move(srcProxy), srcBounds, kernelSize, kernel,
313 gain, bias, kernelOffset, tileMode, convolveAlpha));
314 }
315
316 GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect);
317
318 #if GR_TEST_UTILS
TestCreate(GrProcessorTestData * d)319 std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) {
320 int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx
321 : GrProcessorUnitTest::kAlphaTextureIdx;
322 sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx);
323
324 int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE);
325 int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width);
326 SkISize kernelSize = SkISize::Make(width, height);
327 std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]);
328 for (int i = 0; i < width * height; i++) {
329 kernel.get()[i] = d->fRandom->nextSScalar1();
330 }
331 SkScalar gain = d->fRandom->nextSScalar1();
332 SkScalar bias = d->fRandom->nextSScalar1();
333 SkIPoint kernelOffset = SkIPoint::Make(d->fRandom->nextRangeU(0, kernelSize.width()),
334 d->fRandom->nextRangeU(0, kernelSize.height()));
335 SkIRect bounds = SkIRect::MakeXYWH(d->fRandom->nextRangeU(0, proxy->width()),
336 d->fRandom->nextRangeU(0, proxy->height()),
337 d->fRandom->nextRangeU(0, proxy->width()),
338 d->fRandom->nextRangeU(0, proxy->height()));
339 GrTextureDomain::Mode tileMode =
340 static_cast<GrTextureDomain::Mode>(d->fRandom->nextRangeU(0, 2));
341 bool convolveAlpha = d->fRandom->nextBool();
342 return GrMatrixConvolutionEffect::Make(std::move(proxy),
343 bounds,
344 kernelSize,
345 kernel.get(),
346 gain,
347 bias,
348 kernelOffset,
349 tileMode,
350 convolveAlpha);
351 }
352 #endif
353