1/*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8// Equivalent to SkTwoPointConicalGradient::Type
9enum class Type {
10    kRadial, kStrip, kFocal
11};
12
13in half4x4 gradientMatrix;
14
15layout(key) in Type type;
16layout(key) in bool isRadiusIncreasing;
17
18// Focal-specific optimizations
19layout(key) in bool isFocalOnCircle;
20layout(key) in bool isWellBehaved;
21layout(key) in bool isSwapped;
22layout(key) in bool isNativelyFocal;
23
24// focalParams is interpreted differently depending on if type is focal or degenerate when
25// degenerate, focalParams = (r0, r0^2), so strips will use .y and kRadial will use .x when focal,
26// focalParams = (1/r1, focalX = r0/(r0-r1)) The correct parameters are calculated once in Make for
27// each FP
28layout(tracked) in uniform half2 focalParams;
29
30@coordTransform {
31    gradientMatrix
32}
33
34void main() {
35    // p typed as a float2 is intentional; while a half2 is adequate for most normal cases in the
36    // two point conic gradient's coordinate system, when the gradient is composed with a local
37    // perspective matrix, certain out-of-bounds regions become ill behaved on mobile devices.
38    // On desktops, they are properly clamped after the fact, but on many Adreno GPUs the
39    // calculations of t and x_t below overflow and produce an incorrect interpolant (which then
40    // renders the wrong border color sporadically). Increasing precition alleviates that issue.
41    float2 p = sk_TransformedCoords2D[0];
42    float t = -1;
43    half v = 1; // validation flag, set to negative to discard fragment later
44
45    @switch(type) {
46        case Type::kStrip: {
47            half r0_2 = focalParams.y;
48            t = r0_2 - p.y * p.y;
49            if (t >= 0) {
50                t = p.x + sqrt(t);
51            } else {
52                v = -1;
53            }
54        }
55        break;
56        case Type::kRadial: {
57            half r0 = focalParams.x;
58            @if(isRadiusIncreasing) {
59                t = length(p) - r0;
60            } else {
61                t = -length(p) - r0;
62            }
63        }
64        break;
65        case Type::kFocal: {
66            half invR1 = focalParams.x;
67            half fx = focalParams.y;
68
69            float x_t = -1;
70            @if (isFocalOnCircle) {
71                x_t = dot(p, p) / p.x;
72            } else if (isWellBehaved) {
73                x_t = length(p) - p.x * invR1;
74            } else {
75                float temp = p.x * p.x - p.y * p.y;
76
77                // Only do sqrt if temp >= 0; this is significantly slower than checking temp >= 0
78                // in the if statement that checks r(t) >= 0. But GPU may break if we sqrt a
79                // negative float. (Although I havevn't observed that on any devices so far, and the
80                // old approach also does sqrt negative value without a check.) If the performance
81                // is really critical, maybe we should just compute the area where temp and x_t are
82                // always valid and drop all these ifs.
83                if (temp >= 0) {
84                    @if(isSwapped || !isRadiusIncreasing) {
85                        x_t = -sqrt(temp) - p.x * invR1;
86                    } else {
87                        x_t = sqrt(temp) - p.x * invR1;
88                    }
89                }
90            }
91
92            // The final calculation of t from x_t has lots of static optimizations but only do them
93            // when x_t is positive (which can be assumed true if isWellBehaved is true)
94            @if (!isWellBehaved) {
95                // This will still calculate t even though it will be ignored later in the pipeline
96                // to avoid a branch
97                if (x_t <= 0.0) {
98                    v = -1;
99                }
100            }
101            @if (isRadiusIncreasing) {
102                @if (isNativelyFocal) {
103                    t = x_t;
104                } else {
105                    t = x_t + fx;
106                }
107            } else {
108                @if (isNativelyFocal) {
109                    t = -x_t;
110                } else {
111                    t = -x_t + fx;
112                }
113            }
114
115            @if(isSwapped) {
116                t = 1 - t;
117            }
118        }
119        break;
120    }
121
122    sk_OutColor = half4(half(t), v, 0, 0);
123}
124
125//////////////////////////////////////////////////////////////////////////////
126
127@header {
128    #include "SkTwoPointConicalGradient.h"
129    #include "GrGradientShader.h"
130}
131
132// The 2 point conical gradient can reject a pixel so it does change opacity
133// even if the input was opaque, so disable that optimization
134@optimizationFlags {
135    kNone_OptimizationFlags
136}
137
138@make {
139    static std::unique_ptr<GrFragmentProcessor> Make(const SkTwoPointConicalGradient& gradient,
140                                                     const GrFPArgs& args);
141}
142
143@cppEnd {
144    // .fp files do not let you reference outside enum definitions, so we have to explicitly map
145    // between the two compatible enum defs
146    GrTwoPointConicalGradientLayout::Type convert_type(
147            SkTwoPointConicalGradient::Type type) {
148        switch(type) {
149            case SkTwoPointConicalGradient::Type::kRadial:
150                return GrTwoPointConicalGradientLayout::Type::kRadial;
151            case SkTwoPointConicalGradient::Type::kStrip:
152                return GrTwoPointConicalGradientLayout::Type::kStrip;
153            case SkTwoPointConicalGradient::Type::kFocal:
154                return GrTwoPointConicalGradientLayout::Type::kFocal;
155        }
156        SkDEBUGFAIL("Should not be reachable");
157        return GrTwoPointConicalGradientLayout::Type::kRadial;
158    }
159
160    std::unique_ptr<GrFragmentProcessor> GrTwoPointConicalGradientLayout::Make(
161            const SkTwoPointConicalGradient& grad, const GrFPArgs& args) {
162        GrTwoPointConicalGradientLayout::Type grType = convert_type(grad.getType());
163
164        // The focalData struct is only valid if isFocal is true
165        const SkTwoPointConicalGradient::FocalData& focalData = grad.getFocalData();
166        bool isFocal = grType == Type::kFocal;
167
168        // Calculate optimization switches from gradient specification
169        bool isFocalOnCircle = isFocal && focalData.isFocalOnCircle();
170        bool isWellBehaved = isFocal && focalData.isWellBehaved();
171        bool isSwapped = isFocal && focalData.isSwapped();
172        bool isNativelyFocal = isFocal && focalData.isNativelyFocal();
173
174        // Type-specific calculations: isRadiusIncreasing, focalParams, and the gradient matrix.
175        // However, all types start with the total inverse local matrix calculated from the shader
176        // and args
177        bool isRadiusIncreasing;
178        SkPoint focalParams; // really just a 2D tuple
179        SkMatrix matrix;
180
181        // Initialize the base matrix
182        if (!grad.totalLocalMatrix(args.fPreLocalMatrix, args.fPostLocalMatrix)->invert(&matrix)) {
183            return nullptr;
184        }
185
186        if (isFocal) {
187            isRadiusIncreasing = (1 - focalData.fFocalX) > 0;
188
189            focalParams.set(1.0 / focalData.fR1, focalData.fFocalX);
190
191            matrix.postConcat(grad.getGradientMatrix());
192        } else if (grType == Type::kRadial) {
193            SkScalar dr = grad.getDiffRadius();
194            isRadiusIncreasing = dr >= 0;
195
196            SkScalar r0 = grad.getStartRadius() / dr;
197            focalParams.set(r0, r0 * r0);
198
199
200            // GPU radial matrix is different from the original matrix, since we map the diff radius
201            // to have |dr| = 1, so manually compute the final gradient matrix here.
202
203            // Map center to (0, 0)
204            matrix.postTranslate(-grad.getStartCenter().fX, -grad.getStartCenter().fY);
205
206            // scale |diffRadius| to 1
207            matrix.postScale(1 / dr, 1 / dr);
208        } else { // kStrip
209            isRadiusIncreasing = false; // kStrip doesn't use this flag
210
211            SkScalar r0 = grad.getStartRadius() / grad.getCenterX1();
212            focalParams.set(r0, r0 * r0);
213
214
215            matrix.postConcat(grad.getGradientMatrix());
216        }
217
218
219        return std::unique_ptr<GrFragmentProcessor>(new GrTwoPointConicalGradientLayout(
220                matrix, grType, isRadiusIncreasing, isFocalOnCircle, isWellBehaved,
221                isSwapped, isNativelyFocal, focalParams));
222    }
223}
224
225//////////////////////////////////////////////////////////////////////////////
226
227@test(d) {
228    SkScalar scale = GrGradientShader::RandomParams::kGradientScale;
229    SkScalar offset = scale / 32.0f;
230
231    SkPoint center1 = {d->fRandom->nextRangeScalar(0.0f, scale),
232                       d->fRandom->nextRangeScalar(0.0f, scale)};
233    SkPoint center2 = {d->fRandom->nextRangeScalar(0.0f, scale),
234                       d->fRandom->nextRangeScalar(0.0f, scale)};
235    SkScalar radius1 = d->fRandom->nextRangeScalar(0.0f, scale);
236    SkScalar radius2 = d->fRandom->nextRangeScalar(0.0f, scale);
237
238    constexpr int   kTestTypeMask           = (1 << 2) - 1,
239                    kTestNativelyFocalBit   = (1 << 2),
240                    kTestFocalOnCircleBit   = (1 << 3),
241                    kTestSwappedBit         = (1 << 4);
242                    // We won't treat isWellDefined and isRadiusIncreasing specially because they
243                    // should have high probability to be turned on and off as we're getting random
244                    // radii and centers.
245
246    int mask = d->fRandom->nextU();
247    int type = mask & kTestTypeMask;
248    if (type == static_cast<int>(Type::kRadial)) {
249        center2 = center1;
250        // Make sure that the radii are different
251        if (SkScalarNearlyZero(radius1 - radius2)) {
252            radius2 += offset;
253        }
254    } else if (type == static_cast<int>(Type::kStrip)) {
255        radius1 = SkTMax(radius1, .1f); // Make sure that the radius is non-zero
256        radius2 = radius1;
257        // Make sure that the centers are different
258        if (SkScalarNearlyZero(SkPoint::Distance(center1, center2))) {
259            center2.fX += offset;
260        }
261    } else { // kFocal_Type
262        // Make sure that the centers are different
263        if (SkScalarNearlyZero(SkPoint::Distance(center1, center2))) {
264            center2.fX += offset;
265        }
266
267        if (kTestNativelyFocalBit & mask) {
268            radius1 = 0;
269        }
270        if (kTestFocalOnCircleBit & mask) {
271            radius2 = radius1 + SkPoint::Distance(center1, center2);
272        }
273        if (kTestSwappedBit & mask) {
274            std::swap(radius1, radius2);
275            radius2 = 0;
276        }
277
278        // Make sure that the radii are different
279        if (SkScalarNearlyZero(radius1 - radius2)) {
280            radius2 += offset;
281        }
282    }
283
284    if (SkScalarNearlyZero(radius1 - radius2) &&
285            SkScalarNearlyZero(SkPoint::Distance(center1, center2))) {
286        radius2 += offset; // make sure that we're not degenerated
287    }
288
289    GrGradientShader::RandomParams params(d->fRandom);
290    auto shader = params.fUseColors4f ?
291        SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
292                                              params.fColors4f, params.fColorSpace, params.fStops,
293                                              params.fColorCount, params.fTileMode) :
294        SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
295                                              params.fColors, params.fStops,
296                                              params.fColorCount, params.fTileMode);
297    GrTest::TestAsFPArgs asFPArgs(d);
298    std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
299
300    GrAlwaysAssert(fp);
301    return fp;
302}
303