1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrVkCaps.h"
9 #include "GrBackendSurface.h"
10 #include "GrRenderTargetProxy.h"
11 #include "GrRenderTarget.h"
12 #include "GrShaderCaps.h"
13 #include "GrVkInterface.h"
14 #include "GrVkTexture.h"
15 #include "GrVkUtil.h"
16 #include "SkGr.h"
17 #include "vk/GrVkBackendContext.h"
18 #include "vk/GrVkExtensions.h"
19
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions)20 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
21 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
22 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
23 const GrVkExtensions& extensions)
24 : INHERITED(contextOptions) {
25
26 /**************************************************************************
27 * GrCaps fields
28 **************************************************************************/
29 fMipMapSupport = true; // always available in Vulkan
30 fSRGBSupport = true; // always available in Vulkan
31 fNPOTTextureTileSupport = true; // always available in Vulkan
32 fDiscardRenderTargetSupport = true;
33 fReuseScratchTextures = true; //TODO: figure this out
34 fGpuTracingSupport = false; //TODO: figure this out
35 fCompressedTexSubImageSupport = true;
36 fOversizedStencilSupport = false; //TODO: figure this out
37 fInstanceAttribSupport = true;
38
39 fFenceSyncSupport = true; // always available in Vulkan
40 fCrossContextTextureSupport = true;
41 fHalfFloatVertexAttributeSupport = true;
42
43 fMapBufferFlags = kNone_MapFlags; //TODO: figure this out
44 fBufferMapThreshold = SK_MaxS32; //TODO: figure this out
45
46 fMaxRenderTargetSize = 4096; // minimum required by spec
47 fMaxTextureSize = 4096; // minimum required by spec
48
49 fDynamicStateArrayGeometryProcessorTextureSupport = true;
50
51 fShaderCaps.reset(new GrShaderCaps(contextOptions));
52
53 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions);
54 }
55
initDescForDstCopy(const GrRenderTargetProxy * src,GrSurfaceDesc * desc,GrSurfaceOrigin * origin,bool * rectsMustMatch,bool * disallowSubrect) const56 bool GrVkCaps::initDescForDstCopy(const GrRenderTargetProxy* src, GrSurfaceDesc* desc,
57 GrSurfaceOrigin* origin, bool* rectsMustMatch,
58 bool* disallowSubrect) const {
59 // Vk doesn't use rectsMustMatch or disallowSubrect. Always return false.
60 *rectsMustMatch = false;
61 *disallowSubrect = false;
62
63 // We can always succeed here with either a CopyImage (none msaa src) or ResolveImage (msaa).
64 // For CopyImage we can make a simple texture, for ResolveImage we require the dst to be a
65 // render target as well.
66 *origin = src->origin();
67 desc->fConfig = src->config();
68 if (src->numColorSamples() > 1 || src->asTextureProxy()) {
69 desc->fFlags = kRenderTarget_GrSurfaceFlag;
70 } else {
71 // Just going to use CopyImage here
72 desc->fFlags = kNone_GrSurfaceFlags;
73 }
74
75 return true;
76 }
77
canCopyImage(GrPixelConfig dstConfig,int dstSampleCnt,GrSurfaceOrigin dstOrigin,bool dstHasYcbcr,GrPixelConfig srcConfig,int srcSampleCnt,GrSurfaceOrigin srcOrigin,bool srcHasYcbcr) const78 bool GrVkCaps::canCopyImage(GrPixelConfig dstConfig, int dstSampleCnt, GrSurfaceOrigin dstOrigin,
79 bool dstHasYcbcr, GrPixelConfig srcConfig, int srcSampleCnt,
80 GrSurfaceOrigin srcOrigin, bool srcHasYcbcr) const {
81 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
82 return false;
83 }
84
85 if (dstHasYcbcr || srcHasYcbcr) {
86 return false;
87 }
88
89 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
90 // as image usage flags.
91 if (srcOrigin != dstOrigin || GrBytesPerPixel(srcConfig) != GrBytesPerPixel(dstConfig)) {
92 return false;
93 }
94
95 if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
96 this->shaderCaps()->configOutputSwizzle(dstConfig)) {
97 return false;
98 }
99
100 return true;
101 }
102
canCopyAsBlit(GrPixelConfig dstConfig,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,GrPixelConfig srcConfig,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const103 bool GrVkCaps::canCopyAsBlit(GrPixelConfig dstConfig, int dstSampleCnt, bool dstIsLinear,
104 bool dstHasYcbcr, GrPixelConfig srcConfig, int srcSampleCnt,
105 bool srcIsLinear, bool srcHasYcbcr) const {
106 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
107 // as image usage flags.
108 if (!this->configCanBeDstofBlit(dstConfig, dstIsLinear) ||
109 !this->configCanBeSrcofBlit(srcConfig, srcIsLinear)) {
110 return false;
111 }
112
113 if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
114 this->shaderCaps()->configOutputSwizzle(dstConfig)) {
115 return false;
116 }
117
118 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
119 // resolved msaa though.
120 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
121 return false;
122 }
123
124 if (dstHasYcbcr || srcHasYcbcr) {
125 return false;
126 }
127
128 return true;
129 }
130
canCopyAsResolve(GrPixelConfig dstConfig,int dstSampleCnt,GrSurfaceOrigin dstOrigin,bool dstHasYcbcr,GrPixelConfig srcConfig,int srcSampleCnt,GrSurfaceOrigin srcOrigin,bool srcHasYcbcr) const131 bool GrVkCaps::canCopyAsResolve(GrPixelConfig dstConfig, int dstSampleCnt,
132 GrSurfaceOrigin dstOrigin, bool dstHasYcbcr,
133 GrPixelConfig srcConfig, int srcSampleCnt,
134 GrSurfaceOrigin srcOrigin, bool srcHasYcbcr) const {
135 // The src surface must be multisampled.
136 if (srcSampleCnt <= 1) {
137 return false;
138 }
139
140 // The dst must not be multisampled.
141 if (dstSampleCnt > 1) {
142 return false;
143 }
144
145 // Surfaces must have the same format.
146 if (dstConfig != srcConfig) {
147 return false;
148 }
149
150 // Surfaces must have the same origin.
151 if (srcOrigin != dstOrigin) {
152 return false;
153 }
154
155 if (dstHasYcbcr || srcHasYcbcr) {
156 return false;
157 }
158
159 return true;
160 }
161
canCopyAsDraw(GrPixelConfig dstConfig,bool dstIsRenderable,bool dstHasYcbcr,GrPixelConfig srcConfig,bool srcIsTextureable,bool srcHasYcbcr) const162 bool GrVkCaps::canCopyAsDraw(GrPixelConfig dstConfig, bool dstIsRenderable, bool dstHasYcbcr,
163 GrPixelConfig srcConfig, bool srcIsTextureable,
164 bool srcHasYcbcr) const {
165 // TODO: Make copySurfaceAsDraw handle the swizzle
166 if (this->shaderCaps()->configOutputSwizzle(srcConfig) !=
167 this->shaderCaps()->configOutputSwizzle(dstConfig)) {
168 return false;
169 }
170
171 // Make sure the dst is a render target and the src is a texture.
172 if (!dstIsRenderable || !srcIsTextureable) {
173 return false;
174 }
175
176 if (dstHasYcbcr) {
177 return false;
178 }
179
180 return true;
181 }
182
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const183 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
184 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
185 GrSurfaceOrigin dstOrigin = dst->origin();
186 GrSurfaceOrigin srcOrigin = src->origin();
187
188 GrPixelConfig dstConfig = dst->config();
189 GrPixelConfig srcConfig = src->config();
190
191 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
192 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
193 // tracking of external or rectangle textures in GL? For now we don't create linear textures
194 // internally, and I don't believe anyone is wrapping them.
195 bool srcIsLinear = false;
196 bool dstIsLinear = false;
197
198 int dstSampleCnt = 0;
199 int srcSampleCnt = 0;
200 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
201 // Copying to or from render targets that wrap a secondary command buffer is not allowed
202 // since they would require us to know the VkImage, which we don't have, as well as need us
203 // to stop and start the VkRenderPass which we don't have access to.
204 if (rtProxy->wrapsVkSecondaryCB()) {
205 return false;
206 }
207 dstSampleCnt = rtProxy->numColorSamples();
208 }
209 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
210 // Copying to or from render targets that wrap a secondary command buffer is not allowed
211 // since they would require us to know the VkImage, which we don't have, as well as need us
212 // to stop and start the VkRenderPass which we don't have access to.
213 if (rtProxy->wrapsVkSecondaryCB()) {
214 return false;
215 }
216 srcSampleCnt = rtProxy->numColorSamples();
217 }
218 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
219 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
220
221 bool dstHasYcbcr = false;
222 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
223 if (ycbcr->isValid()) {
224 dstHasYcbcr = true;
225 }
226 }
227
228 bool srcHasYcbcr = false;
229 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
230 if (ycbcr->isValid()) {
231 srcHasYcbcr = true;
232 }
233 }
234
235 return this->canCopyImage(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr,
236 srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr) ||
237 this->canCopyAsBlit(dstConfig, dstSampleCnt, dstIsLinear, dstHasYcbcr,
238 srcConfig, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
239 this->canCopyAsResolve(dstConfig, dstSampleCnt, dstOrigin, dstHasYcbcr,
240 srcConfig, srcSampleCnt, srcOrigin, srcHasYcbcr) ||
241 this->canCopyAsDraw(dstConfig, dstSampleCnt > 0, dstHasYcbcr,
242 srcConfig, SkToBool(src->asTextureProxy()), srcHasYcbcr);
243 }
244
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)245 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
246 VkStructureType type) {
247 // All Vulkan structs that could be part of the features chain will start with the
248 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
249 // so we can get access to the pNext for the next struct.
250 struct CommonVulkanHeader {
251 VkStructureType sType;
252 void* pNext;
253 };
254
255 void* pNext = features.pNext;
256 while (pNext) {
257 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
258 if (header->sType == type) {
259 return static_cast<T*>(pNext);
260 }
261 pNext = header->pNext;
262 }
263 return nullptr;
264 }
265
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions)266 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
267 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
268 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions) {
269 VkPhysicalDeviceProperties properties;
270 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
271
272 VkPhysicalDeviceMemoryProperties memoryProperties;
273 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
274
275 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
276
277 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
278 fSupportsSwapchain = true;
279 }
280
281 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
282 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
283 fSupportsPhysicalDeviceProperties2 = true;
284 }
285
286 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
287 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
288 fSupportsMemoryRequirements2 = true;
289 }
290
291 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
292 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
293 fSupportsBindMemory2 = true;
294 }
295
296 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
297 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
298 fSupportsMaintenance1 = true;
299 }
300
301 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
302 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
303 fSupportsMaintenance2 = true;
304 }
305
306 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
307 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
308 fSupportsMaintenance3 = true;
309 }
310
311 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
312 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
313 this->supportsMemoryRequirements2())) {
314 fSupportsDedicatedAllocation = true;
315 }
316
317 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
318 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
319 this->supportsPhysicalDeviceProperties2() &&
320 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
321 this->supportsDedicatedAllocation())) {
322 fSupportsExternalMemory = true;
323 }
324
325 #ifdef SK_BUILD_FOR_ANDROID
326 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
327 // do we don't explicitly require it here even the spec says it is required.
328 if (extensions.hasExtension(
329 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
330 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
331 this->supportsExternalMemory() &&
332 this->supportsBindMemory2()) {
333 fSupportsAndroidHWBExternalMemory = true;
334 fSupportsAHardwareBufferImages = true;
335 }
336 #endif
337
338 auto ycbcrFeatures =
339 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
340 features,
341 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
342 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
343 fSupportsAndroidHWBExternalMemory &&
344 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
345 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
346 this->supportsMaintenance1() &&
347 this->supportsBindMemory2() &&
348 this->supportsMemoryRequirements2() &&
349 this->supportsPhysicalDeviceProperties2()))) {
350 fSupportsYcbcrConversion = true;
351 }
352 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
353 // will return a key of 0.
354 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
355
356 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
357 this->initShaderCaps(properties, features);
358
359 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
360 #if defined(SK_CPU_X86)
361 // We need to do this before initing the config table since it uses fSRGBSupport
362 if (kImagination_VkVendor == properties.vendorID) {
363 fSRGBSupport = false;
364 }
365 #endif
366 }
367
368 if (kQualcomm_VkVendor == properties.vendorID) {
369 // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
370 // scissored clear.
371 // On NVIDIA and Intel, the discard load followed by clear is faster.
372 // TODO: Evaluate on ARM, Imagination, and ATI.
373 fPreferFullscreenClears = true;
374 }
375
376 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
377 // On Qualcomm mapping a gpu buffer and doing both reads and writes to it is slow. Thus for
378 // index and vertex buffers we will force to use a cpu side buffer and then copy the whole
379 // buffer up to the gpu.
380 fBufferMapThreshold = SK_MaxS32;
381 }
382
383 if (kQualcomm_VkVendor == properties.vendorID) {
384 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
385 // even for small sizes.
386 fAvoidUpdateBuffers = true;
387 }
388
389
390 this->initConfigTable(vkInterface, physDev, properties);
391 this->initStencilFormat(vkInterface, physDev);
392
393 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
394 this->applyDriverCorrectnessWorkarounds(properties);
395 }
396
397 // On nexus player we disable suballocating VkImage memory since we've seen large slow downs on
398 // bot run times.
399 if (kImagination_VkVendor == properties.vendorID) {
400 fShouldAlwaysUseDedicatedImageMemory = true;
401 }
402
403 this->applyOptionsOverrides(contextOptions);
404 fShaderCaps->applyOptionsOverrides(contextOptions);
405 }
406
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)407 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
408 if (kQualcomm_VkVendor == properties.vendorID) {
409 fMustDoCopiesFromOrigin = true;
410 }
411
412 #if defined(SK_BUILD_FOR_WIN)
413 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
414 fMustSleepOnTearDown = true;
415 }
416 #elif defined(SK_BUILD_FOR_ANDROID)
417 if (kImagination_VkVendor == properties.vendorID) {
418 fMustSleepOnTearDown = true;
419 }
420 #endif
421
422 // AMD seems to have issues binding new VkPipelines inside a secondary command buffer.
423 // Current workaround is to use a different secondary command buffer for each new VkPipeline.
424 if (kAMD_VkVendor == properties.vendorID) {
425 fNewCBOnPipelineChange = true;
426 }
427
428 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
429 if (kARM_VkVendor == properties.vendorID) {
430 fShouldAlwaysUseDedicatedImageMemory = true;
431 }
432
433 ////////////////////////////////////////////////////////////////////////////
434 // GrCaps workarounds
435 ////////////////////////////////////////////////////////////////////////////
436
437 if (kARM_VkVendor == properties.vendorID) {
438 fInstanceAttribSupport = false;
439 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
440 }
441
442 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
443 if (kAMD_VkVendor == properties.vendorID) {
444 fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32);
445 }
446
447 ////////////////////////////////////////////////////////////////////////////
448 // GrShaderCaps workarounds
449 ////////////////////////////////////////////////////////////////////////////
450
451 if (kImagination_VkVendor == properties.vendorID) {
452 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
453 }
454 }
455
get_max_sample_count(VkSampleCountFlags flags)456 int get_max_sample_count(VkSampleCountFlags flags) {
457 SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT);
458 if (!(flags & VK_SAMPLE_COUNT_2_BIT)) {
459 return 0;
460 }
461 if (!(flags & VK_SAMPLE_COUNT_4_BIT)) {
462 return 2;
463 }
464 if (!(flags & VK_SAMPLE_COUNT_8_BIT)) {
465 return 4;
466 }
467 if (!(flags & VK_SAMPLE_COUNT_16_BIT)) {
468 return 8;
469 }
470 if (!(flags & VK_SAMPLE_COUNT_32_BIT)) {
471 return 16;
472 }
473 if (!(flags & VK_SAMPLE_COUNT_64_BIT)) {
474 return 32;
475 }
476 return 64;
477 }
478
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)479 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
480 VkPhysicalDevice physDev,
481 const VkPhysicalDeviceProperties& properties,
482 const VkPhysicalDeviceMemoryProperties& memoryProperties,
483 const VkPhysicalDeviceFeatures2& features,
484 const GrVkExtensions& extensions) {
485 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
486 // need for us ever to support that amount, and it makes tests which tests all the vertex
487 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
488 // we ever find that need.
489 static const uint32_t kMaxVertexAttributes = 64;
490 fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
491
492 // We could actually query and get a max size for each config, however maxImageDimension2D will
493 // give the minimum max size across all configs. So for simplicity we will use that for now.
494 fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
495 fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
496 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
497 fMaxTextureSize = SkTMin(fMaxTextureSize, 4096);
498 }
499 // Our render targets are always created with textures as the color
500 // attachment, hence this min:
501 fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize);
502
503 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
504 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
505
506 // Assuming since we will always map in the end to upload the data we might as well just map
507 // from the get go. There is no hard data to suggest this is faster or slower.
508 fBufferMapThreshold = 0;
509
510 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag;
511
512 fOversizedStencilSupport = true;
513
514 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
515 this->supportsPhysicalDeviceProperties2()) {
516
517 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
518 blendProps.sType =
519 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
520 blendProps.pNext = nullptr;
521
522 VkPhysicalDeviceProperties2 props;
523 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
524 props.pNext = &blendProps;
525
526 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
527
528 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
529 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
530
531 auto blendFeatures =
532 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
533 features,
534 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
535 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
536 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
537 } else {
538 // TODO: Currently non coherent blends are not supported in our vulkan backend. They
539 // require us to support self dependencies in our render passes.
540 // fBlendEquationSupport = kAdvanced_BlendEquationSupport;
541 }
542 }
543 }
544 }
545
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)546 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
547 const VkPhysicalDeviceFeatures2& features) {
548 GrShaderCaps* shaderCaps = fShaderCaps.get();
549 shaderCaps->fVersionDeclString = "#version 330\n";
550
551
552 // fConfigOutputSwizzle will default to RGBA so we only need to set it for alpha only config.
553 for (int i = 0; i < kGrPixelConfigCnt; ++i) {
554 GrPixelConfig config = static_cast<GrPixelConfig>(i);
555 // Vulkan doesn't support a single channel format stored in alpha.
556 if (GrPixelConfigIsAlphaOnly(config) &&
557 kAlpha_8_as_Alpha_GrPixelConfig != config) {
558 shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRR();
559 shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::AAAA();
560 } else {
561 if (kGray_8_GrPixelConfig == config ||
562 kGray_8_as_Red_GrPixelConfig == config) {
563 shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RRRA();
564 } else if (kRGBA_4444_GrPixelConfig == config) {
565 // The vulkan spec does not require R4G4B4A4 to be supported for texturing so we
566 // store the data in a B4G4R4A4 texture and then swizzle it when doing texture reads
567 // or writing to outputs. Since we're not actually changing the data at all, the
568 // only extra work is the swizzle in the shader for all operations.
569 shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::BGRA();
570 shaderCaps->fConfigOutputSwizzle[i] = GrSwizzle::BGRA();
571 } else if (kRGB_888X_GrPixelConfig == config) {
572 shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGB1();
573 } else {
574 shaderCaps->fConfigTextureSwizzle[i] = GrSwizzle::RGBA();
575 }
576 }
577 }
578
579 // Vulkan is based off ES 3.0 so the following should all be supported
580 shaderCaps->fUsesPrecisionModifiers = true;
581 shaderCaps->fFlatInterpolationSupport = true;
582 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
583 // to be true with Vulkan as well.
584 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
585
586 // GrShaderCaps
587
588 shaderCaps->fShaderDerivativeSupport = true;
589
590 // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
591 // shaderCaps->fGeometryShaderSupport =
592 // shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
593
594 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
595
596 shaderCaps->fIntegerSupport = true;
597 shaderCaps->fVertexIDSupport = true;
598 shaderCaps->fFPManipulationSupport = true;
599
600 // Assume the minimum precisions mandated by the SPIR-V spec.
601 shaderCaps->fFloatIs32Bits = true;
602 shaderCaps->fHalfIs32Bits = false;
603
604 // SPIR-V supports unsigned integers.
605 shaderCaps->fUnsignedSupport = true;
606
607 shaderCaps->fMaxFragmentSamplers = SkTMin(
608 SkTMin(properties.limits.maxPerStageDescriptorSampledImages,
609 properties.limits.maxPerStageDescriptorSamplers),
610 (uint32_t)INT_MAX);
611 }
612
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)613 bool stencil_format_supported(const GrVkInterface* interface,
614 VkPhysicalDevice physDev,
615 VkFormat format) {
616 VkFormatProperties props;
617 memset(&props, 0, sizeof(VkFormatProperties));
618 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
619 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
620 }
621
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)622 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
623 // List of legal stencil formats (though perhaps not supported on
624 // the particular gpu/driver) from most preferred to least. We are guaranteed to have either
625 // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
626 // can optionally have 24 unused bits at the end so we assume the total bits is 64.
627 static const StencilFormat
628 // internal Format stencil bits total bits packed?
629 gS8 = { VK_FORMAT_S8_UINT, 8, 8, false },
630 gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true },
631 gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true };
632
633 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
634 fPreferredStencilFormat = gS8;
635 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
636 fPreferredStencilFormat = gD24S8;
637 } else {
638 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
639 fPreferredStencilFormat = gD32S8;
640 }
641 }
642
initConfigTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)643 void GrVkCaps::initConfigTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
644 const VkPhysicalDeviceProperties& properties) {
645 for (int i = 0; i < kGrPixelConfigCnt; ++i) {
646 VkFormat format;
647 if (GrPixelConfigToVkFormat(static_cast<GrPixelConfig>(i), &format)) {
648 if (!GrPixelConfigIsSRGB(static_cast<GrPixelConfig>(i)) || fSRGBSupport) {
649 bool disableRendering = false;
650 if (static_cast<GrPixelConfig>(i) == kRGB_888X_GrPixelConfig) {
651 // Currently we don't allow RGB_888X to be renderable because we don't have a
652 // way to handle blends that reference dst alpha when the values in the dst
653 // alpha channel are uninitialized.
654 disableRendering = true;
655 }
656 fConfigTable[i].init(interface, physDev, properties, format, disableRendering);
657 }
658 }
659 }
660 }
661
InitConfigFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags,bool disableRendering)662 void GrVkCaps::ConfigInfo::InitConfigFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags,
663 bool disableRendering) {
664 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
665 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
666 *flags = *flags | kTextureable_Flag;
667
668 // Ganesh assumes that all renderable surfaces are also texturable
669 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags) & !disableRendering) {
670 *flags = *flags | kRenderable_Flag;
671 }
672 }
673
674 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
675 *flags = *flags | kBlitSrc_Flag;
676 }
677
678 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
679 *flags = *flags | kBlitDst_Flag;
680 }
681 }
682
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)683 void GrVkCaps::ConfigInfo::initSampleCounts(const GrVkInterface* interface,
684 VkPhysicalDevice physDev,
685 const VkPhysicalDeviceProperties& physProps,
686 VkFormat format) {
687 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
688 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
689 VK_IMAGE_USAGE_SAMPLED_BIT |
690 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
691 VkImageFormatProperties properties;
692 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
693 format,
694 VK_IMAGE_TYPE_2D,
695 VK_IMAGE_TILING_OPTIMAL,
696 usage,
697 0, // createFlags
698 &properties));
699 VkSampleCountFlags flags = properties.sampleCounts;
700 if (flags & VK_SAMPLE_COUNT_1_BIT) {
701 fColorSampleCounts.push_back(1);
702 }
703 if (kImagination_VkVendor == physProps.vendorID) {
704 // MSAA does not work on imagination
705 return;
706 }
707 if (flags & VK_SAMPLE_COUNT_2_BIT) {
708 fColorSampleCounts.push_back(2);
709 }
710 if (flags & VK_SAMPLE_COUNT_4_BIT) {
711 fColorSampleCounts.push_back(4);
712 }
713 if (flags & VK_SAMPLE_COUNT_8_BIT) {
714 fColorSampleCounts.push_back(8);
715 }
716 if (flags & VK_SAMPLE_COUNT_16_BIT) {
717 fColorSampleCounts.push_back(16);
718 }
719 if (flags & VK_SAMPLE_COUNT_32_BIT) {
720 fColorSampleCounts.push_back(32);
721 }
722 if (flags & VK_SAMPLE_COUNT_64_BIT) {
723 fColorSampleCounts.push_back(64);
724 }
725 }
726
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format,bool disableRendering)727 void GrVkCaps::ConfigInfo::init(const GrVkInterface* interface,
728 VkPhysicalDevice physDev,
729 const VkPhysicalDeviceProperties& properties,
730 VkFormat format,
731 bool disableRendering) {
732 VkFormatProperties props;
733 memset(&props, 0, sizeof(VkFormatProperties));
734 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
735 InitConfigFlags(props.linearTilingFeatures, &fLinearFlags, disableRendering);
736 InitConfigFlags(props.optimalTilingFeatures, &fOptimalFlags, disableRendering);
737 if (fOptimalFlags & kRenderable_Flag) {
738 this->initSampleCounts(interface, physDev, properties, format);
739 }
740 }
741
getRenderTargetSampleCount(int requestedCount,GrPixelConfig config) const742 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, GrPixelConfig config) const {
743 requestedCount = SkTMax(1, requestedCount);
744 int count = fConfigTable[config].fColorSampleCounts.count();
745
746 if (!count) {
747 return 0;
748 }
749
750 if (1 == requestedCount) {
751 SkASSERT(fConfigTable[config].fColorSampleCounts.count() &&
752 fConfigTable[config].fColorSampleCounts[0] == 1);
753 return 1;
754 }
755
756 for (int i = 0; i < count; ++i) {
757 if (fConfigTable[config].fColorSampleCounts[i] >= requestedCount) {
758 return fConfigTable[config].fColorSampleCounts[i];
759 }
760 }
761 return 0;
762 }
763
maxRenderTargetSampleCount(GrPixelConfig config) const764 int GrVkCaps::maxRenderTargetSampleCount(GrPixelConfig config) const {
765 const auto& table = fConfigTable[config].fColorSampleCounts;
766 if (!table.count()) {
767 return 0;
768 }
769 return table[table.count() - 1];
770 }
771
surfaceSupportsReadPixels(const GrSurface * surface) const772 bool GrVkCaps::surfaceSupportsReadPixels(const GrSurface* surface) const {
773 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
774 // We can't directly read from a VkImage that has a ycbcr sampler.
775 if (tex->ycbcrConversionInfo().isValid()) {
776 return false;
777 }
778 }
779 return true;
780 }
781
onSurfaceSupportsWritePixels(const GrSurface * surface) const782 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
783 if (auto rt = surface->asRenderTarget()) {
784 return rt->numColorSamples() <= 1 && SkToBool(surface->asTexture());
785 }
786 // We can't write to a texture that has a ycbcr sampler.
787 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
788 // We can't directly read from a VkImage that has a ycbcr sampler.
789 if (tex->ycbcrConversionInfo().isValid()) {
790 return false;
791 }
792 }
793 return true;
794 }
795
validate_image_info(VkFormat format,SkColorType ct,bool hasYcbcrConversion)796 static GrPixelConfig validate_image_info(VkFormat format, SkColorType ct, bool hasYcbcrConversion) {
797 if (format == VK_FORMAT_UNDEFINED) {
798 // If the format is undefined then it is only valid as an external image which requires that
799 // we have a valid VkYcbcrConversion.
800 if (hasYcbcrConversion) {
801 // We don't actually care what the color type or config are since we won't use those
802 // values for external textures. However, for read pixels we will draw to a non ycbcr
803 // texture of this config so we set RGBA here for that.
804 return kRGBA_8888_GrPixelConfig;
805 } else {
806 return kUnknown_GrPixelConfig;
807 }
808 }
809
810 if (hasYcbcrConversion) {
811 // We only support having a ycbcr conversion for external images.
812 return kUnknown_GrPixelConfig;
813 }
814
815 switch (ct) {
816 case kUnknown_SkColorType:
817 break;
818 case kAlpha_8_SkColorType:
819 if (VK_FORMAT_R8_UNORM == format) {
820 return kAlpha_8_as_Red_GrPixelConfig;
821 }
822 break;
823 case kRGB_565_SkColorType:
824 if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) {
825 return kRGB_565_GrPixelConfig;
826 }
827 break;
828 case kARGB_4444_SkColorType:
829 if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format) {
830 return kRGBA_4444_GrPixelConfig;
831 }
832 break;
833 case kRGBA_8888_SkColorType:
834 if (VK_FORMAT_R8G8B8A8_UNORM == format) {
835 return kRGBA_8888_GrPixelConfig;
836 } else if (VK_FORMAT_R8G8B8A8_SRGB == format) {
837 return kSRGBA_8888_GrPixelConfig;
838 }
839 break;
840 case kRGB_888x_SkColorType:
841 if (VK_FORMAT_R8G8B8_UNORM == format) {
842 return kRGB_888_GrPixelConfig;
843 }
844 if (VK_FORMAT_R8G8B8A8_UNORM == format) {
845 return kRGB_888X_GrPixelConfig;
846 }
847 break;
848 case kBGRA_8888_SkColorType:
849 if (VK_FORMAT_B8G8R8A8_UNORM == format) {
850 return kBGRA_8888_GrPixelConfig;
851 } else if (VK_FORMAT_B8G8R8A8_SRGB == format) {
852 return kSBGRA_8888_GrPixelConfig;
853 }
854 break;
855 case kRGBA_1010102_SkColorType:
856 if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) {
857 return kRGBA_1010102_GrPixelConfig;
858 }
859 break;
860 case kRGB_101010x_SkColorType:
861 return kUnknown_GrPixelConfig;
862 case kGray_8_SkColorType:
863 if (VK_FORMAT_R8_UNORM == format) {
864 return kGray_8_as_Red_GrPixelConfig;
865 }
866 break;
867 case kRGBA_F16Norm_SkColorType:
868 if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
869 return kRGBA_half_Clamped_GrPixelConfig;
870 }
871 break;
872 case kRGBA_F16_SkColorType:
873 if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
874 return kRGBA_half_GrPixelConfig;
875 }
876 break;
877 case kRGBA_F32_SkColorType:
878 if (VK_FORMAT_R32G32B32A32_SFLOAT == format) {
879 return kRGBA_float_GrPixelConfig;
880 }
881 break;
882 }
883
884 return kUnknown_GrPixelConfig;
885 }
886
validateBackendRenderTarget(const GrBackendRenderTarget & rt,SkColorType ct) const887 GrPixelConfig GrVkCaps::validateBackendRenderTarget(const GrBackendRenderTarget& rt,
888 SkColorType ct) const {
889 GrVkImageInfo imageInfo;
890 if (!rt.getVkImageInfo(&imageInfo)) {
891 return kUnknown_GrPixelConfig;
892 }
893 return validate_image_info(imageInfo.fFormat, ct, imageInfo.fYcbcrConversionInfo.isValid());
894 }
895
getConfigFromBackendFormat(const GrBackendFormat & format,SkColorType ct) const896 GrPixelConfig GrVkCaps::getConfigFromBackendFormat(const GrBackendFormat& format,
897 SkColorType ct) const {
898 const VkFormat* vkFormat = format.getVkFormat();
899 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
900 if (!vkFormat || !ycbcrInfo) {
901 return kUnknown_GrPixelConfig;
902 }
903 return validate_image_info(*vkFormat, ct, ycbcrInfo->isValid());
904 }
905
get_yuva_config(VkFormat vkFormat)906 static GrPixelConfig get_yuva_config(VkFormat vkFormat) {
907 switch (vkFormat) {
908 case VK_FORMAT_R8_UNORM:
909 return kAlpha_8_as_Red_GrPixelConfig;
910 case VK_FORMAT_R8G8B8A8_UNORM:
911 return kRGBA_8888_GrPixelConfig;
912 case VK_FORMAT_R8G8B8_UNORM:
913 return kRGB_888_GrPixelConfig;
914 case VK_FORMAT_R8G8_UNORM:
915 return kRG_88_GrPixelConfig;
916 case VK_FORMAT_B8G8R8A8_UNORM:
917 return kBGRA_8888_GrPixelConfig;
918 default:
919 return kUnknown_GrPixelConfig;
920 }
921 }
922
getYUVAConfigFromBackendFormat(const GrBackendFormat & format) const923 GrPixelConfig GrVkCaps::getYUVAConfigFromBackendFormat(const GrBackendFormat& format) const {
924 const VkFormat* vkFormat = format.getVkFormat();
925 if (!vkFormat) {
926 return kUnknown_GrPixelConfig;
927 }
928 return get_yuva_config(*vkFormat);
929 }
930
getBackendFormatFromGrColorType(GrColorType ct,GrSRGBEncoded srgbEncoded) const931 GrBackendFormat GrVkCaps::getBackendFormatFromGrColorType(GrColorType ct,
932 GrSRGBEncoded srgbEncoded) const {
933 GrPixelConfig config = GrColorTypeToPixelConfig(ct, srgbEncoded);
934 if (config == kUnknown_GrPixelConfig) {
935 return GrBackendFormat();
936 }
937 VkFormat format;
938 if (!GrPixelConfigToVkFormat(config, &format)) {
939 return GrBackendFormat();
940 }
941 return GrBackendFormat::MakeVk(format);
942 }
943
944