1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsConic.h"
10 #include "SkPathOpsCubic.h"
11 #include "SkPathOpsQuad.h"
12 #include "SkPathOpsRect.h"
13 
14 // cribbed from the float version in SkGeometry.cpp
conic_deriv_coeff(const double src[],SkScalar w,double coeff[3])15 static void conic_deriv_coeff(const double src[],
16                               SkScalar w,
17                               double coeff[3]) {
18     const double P20 = src[4] - src[0];
19     const double P10 = src[2] - src[0];
20     const double wP10 = w * P10;
21     coeff[0] = w * P20 - P20;
22     coeff[1] = P20 - 2 * wP10;
23     coeff[2] = wP10;
24 }
25 
conic_eval_tan(const double coord[],SkScalar w,double t)26 static double conic_eval_tan(const double coord[], SkScalar w, double t) {
27     double coeff[3];
28     conic_deriv_coeff(coord, w, coeff);
29     return t * (t * coeff[0] + coeff[1]) + coeff[2];
30 }
31 
FindExtrema(const double src[],SkScalar w,double t[1])32 int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
33     double coeff[3];
34     conic_deriv_coeff(src, w, coeff);
35 
36     double tValues[2];
37     int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
38     // In extreme cases, the number of roots returned can be 2. Pathops
39     // will fail later on, so there's no advantage to plumbing in an error
40     // return here.
41     // SkASSERT(0 == roots || 1 == roots);
42 
43     if (1 == roots) {
44         t[0] = tValues[0];
45         return 1;
46     }
47     return 0;
48 }
49 
dxdyAtT(double t) const50 SkDVector SkDConic::dxdyAtT(double t) const {
51     SkDVector result = {
52         conic_eval_tan(&fPts[0].fX, fWeight, t),
53         conic_eval_tan(&fPts[0].fY, fWeight, t)
54     };
55     if (result.fX == 0 && result.fY == 0) {
56         if (zero_or_one(t)) {
57             result = fPts[2] - fPts[0];
58         } else {
59             // incomplete
60             SkDebugf("!k");
61         }
62     }
63     return result;
64 }
65 
conic_eval_numerator(const double src[],SkScalar w,double t)66 static double conic_eval_numerator(const double src[], SkScalar w, double t) {
67     SkASSERT(src);
68     SkASSERT(t >= 0 && t <= 1);
69     double src2w = src[2] * w;
70     double C = src[0];
71     double A = src[4] - 2 * src2w + C;
72     double B = 2 * (src2w - C);
73     return (A * t + B) * t + C;
74 }
75 
76 
conic_eval_denominator(SkScalar w,double t)77 static double conic_eval_denominator(SkScalar w, double t) {
78     double B = 2 * (w - 1);
79     double C = 1;
80     double A = -B;
81     return (A * t + B) * t + C;
82 }
83 
hullIntersects(const SkDCubic & cubic,bool * isLinear) const84 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
85     return cubic.hullIntersects(*this, isLinear);
86 }
87 
ptAtT(double t) const88 SkDPoint SkDConic::ptAtT(double t) const {
89     if (t == 0) {
90         return fPts[0];
91     }
92     if (t == 1) {
93         return fPts[2];
94     }
95     double denominator = conic_eval_denominator(fWeight, t);
96     SkDPoint result = {
97         sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator),
98         sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator)
99     };
100     return result;
101 }
102 
103 /* see quad subdivide for point rationale */
104 /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
105    values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
106    that it is the same as the point on the new curve t==(0+1)/2.
107 
108     d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);
109 
110     conic_poly(dst, unknownW, .5)
111                   =   a / 4 + (b * unknownW) / 2 + c / 4
112                   =  (a + c) / 4 + (bx * unknownW) / 2
113 
114     conic_weight(unknownW, .5)
115                   =   unknownW / 2 + 1 / 2
116 
117     d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
118     d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW
119               unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b)
120 
121     Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
122     distance of the on-curve point to the control point.
123  */
subDivide(double t1,double t2) const124 SkDConic SkDConic::subDivide(double t1, double t2) const {
125     double ax, ay, az;
126     if (t1 == 0) {
127         ax = fPts[0].fX;
128         ay = fPts[0].fY;
129         az = 1;
130     } else if (t1 != 1) {
131         ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
132         ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
133         az = conic_eval_denominator(fWeight, t1);
134     } else {
135         ax = fPts[2].fX;
136         ay = fPts[2].fY;
137         az = 1;
138     }
139     double midT = (t1 + t2) / 2;
140     double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
141     double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
142     double dz = conic_eval_denominator(fWeight, midT);
143     double cx, cy, cz;
144     if (t2 == 1) {
145         cx = fPts[2].fX;
146         cy = fPts[2].fY;
147         cz = 1;
148     } else if (t2 != 0) {
149         cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
150         cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
151         cz = conic_eval_denominator(fWeight, t2);
152     } else {
153         cx = fPts[0].fX;
154         cy = fPts[0].fY;
155         cz = 1;
156     }
157     double bx = 2 * dx - (ax + cx) / 2;
158     double by = 2 * dy - (ay + cy) / 2;
159     double bz = 2 * dz - (az + cz) / 2;
160     if (!bz) {
161         bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do
162     }
163     SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}
164             SkDEBUGPARAMS(fPts.fDebugGlobalState) },
165             SkDoubleToScalar(bz / sqrt(az * cz)) };
166     return dst;
167 }
168 
subDivide(const SkDPoint & a,const SkDPoint & c,double t1,double t2,SkScalar * weight) const169 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
170         SkScalar* weight) const {
171     SkDConic chopped = this->subDivide(t1, t2);
172     *weight = chopped.fWeight;
173     return chopped[1];
174 }
175 
intersectRay(SkIntersections * i,const SkDLine & line) const176 int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const {
177     return i->intersectRay(fConic, line);
178 }
179 
hullIntersects(const SkDQuad & quad,bool * isLinear) const180 bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const  {
181     return quad.hullIntersects(fConic, isLinear);
182 }
183 
hullIntersects(const SkDCubic & cubic,bool * isLinear) const184 bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
185     return cubic.hullIntersects(fConic, isLinear);
186 }
187 
setBounds(SkDRect * rect) const188 void SkTConic::setBounds(SkDRect* rect) const {
189     rect->setBounds(fConic);
190 }
191