• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkTypes.h"
9 #include "Test.h"
10 
11 #include "GrClip.h"
12 #include "GrContext.h"
13 #include "GrContextPriv.h"
14 #include "GrGpuResource.h"
15 #include "GrMemoryPool.h"
16 #include "GrProxyProvider.h"
17 #include "GrRenderTargetContext.h"
18 #include "GrRenderTargetContextPriv.h"
19 #include "GrResourceProvider.h"
20 #include "glsl/GrGLSLFragmentProcessor.h"
21 #include "glsl/GrGLSLFragmentShaderBuilder.h"
22 #include "ops/GrFillRectOp.h"
23 #include "ops/GrMeshDrawOp.h"
24 #include "TestUtils.h"
25 
26 #include <atomic>
27 #include <random>
28 
29 namespace {
30 class TestOp : public GrMeshDrawOp {
31 public:
32     DEFINE_OP_CLASS_ID
Make(GrContext * context,std::unique_ptr<GrFragmentProcessor> fp)33     static std::unique_ptr<GrDrawOp> Make(GrContext* context,
34                                           std::unique_ptr<GrFragmentProcessor> fp) {
35         GrOpMemoryPool* pool = context->priv().opMemoryPool();
36 
37         return pool->allocate<TestOp>(std::move(fp));
38     }
39 
name() const40     const char* name() const override { return "TestOp"; }
41 
visitProxies(const VisitProxyFunc & func,VisitorType) const42     void visitProxies(const VisitProxyFunc& func, VisitorType) const override {
43         fProcessors.visitProxies(func);
44     }
45 
fixedFunctionFlags() const46     FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
47 
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrFSAAType fsaaType,GrClampType clampType)48     GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
49                                       GrFSAAType fsaaType, GrClampType clampType) override {
50         static constexpr GrProcessorAnalysisColor kUnknownColor;
51         SkPMColor4f overrideColor;
52         return fProcessors.finalize(
53                 kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
54                 &GrUserStencilSettings::kUnused, fsaaType, caps, clampType, &overrideColor);
55     }
56 
57 private:
58     friend class ::GrOpMemoryPool; // for ctor
59 
TestOp(std::unique_ptr<GrFragmentProcessor> fp)60     TestOp(std::unique_ptr<GrFragmentProcessor> fp)
61             : INHERITED(ClassID()), fProcessors(std::move(fp)) {
62         this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo);
63     }
64 
onPrepareDraws(Target * target)65     void onPrepareDraws(Target* target) override { return; }
onExecute(GrOpFlushState *,const SkRect &)66     void onExecute(GrOpFlushState*, const SkRect&) override { return; }
67 
68     GrProcessorSet fProcessors;
69 
70     typedef GrMeshDrawOp INHERITED;
71 };
72 
73 /**
74  * FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts
75  * of resources owned by child FPs.
76  */
77 class TestFP : public GrFragmentProcessor {
78 public:
Make(std::unique_ptr<GrFragmentProcessor> child)79     static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
80         return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
81     }
Make(const SkTArray<sk_sp<GrTextureProxy>> & proxies,const SkTArray<sk_sp<GrGpuBuffer>> & buffers)82     static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies,
83                                                      const SkTArray<sk_sp<GrGpuBuffer>>& buffers) {
84         return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers));
85     }
86 
name() const87     const char* name() const override { return "test"; }
88 
onGetGLSLProcessorKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const89     void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
90         static std::atomic<int32_t> nextKey{0};
91         b->add32(nextKey++);
92     }
93 
clone() const94     std::unique_ptr<GrFragmentProcessor> clone() const override {
95         return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
96     }
97 
98 private:
TestFP(const SkTArray<sk_sp<GrTextureProxy>> & proxies,const SkTArray<sk_sp<GrGpuBuffer>> & buffers)99     TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies,
100            const SkTArray<sk_sp<GrGpuBuffer>>& buffers)
101             : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
102         for (const auto& proxy : proxies) {
103             fSamplers.emplace_back(proxy);
104         }
105         this->setTextureSamplerCnt(fSamplers.count());
106     }
107 
TestFP(std::unique_ptr<GrFragmentProcessor> child)108     TestFP(std::unique_ptr<GrFragmentProcessor> child)
109             : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) {
110         this->registerChildProcessor(std::move(child));
111     }
112 
TestFP(const TestFP & that)113     explicit TestFP(const TestFP& that)
114             : INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) {
115         for (int i = 0; i < that.fSamplers.count(); ++i) {
116             fSamplers.emplace_back(that.fSamplers[i]);
117         }
118         for (int i = 0; i < that.numChildProcessors(); ++i) {
119             this->registerChildProcessor(that.childProcessor(i).clone());
120         }
121         this->setTextureSamplerCnt(fSamplers.count());
122     }
123 
onCreateGLSLInstance() const124     virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
125         class TestGLSLFP : public GrGLSLFragmentProcessor {
126         public:
127             TestGLSLFP() {}
128             void emitCode(EmitArgs& args) override {
129                 GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
130                 fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
131             }
132 
133         private:
134         };
135         return new TestGLSLFP();
136     }
137 
onIsEqual(const GrFragmentProcessor &) const138     bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
onTextureSampler(int i) const139     const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; }
140 
141     GrTAllocator<TextureSampler> fSamplers;
142     typedef GrFragmentProcessor INHERITED;
143 };
144 }
145 
146 template <typename T>
testingOnly_getIORefCnts(const T * resource,int * refCnt,int * readCnt,int * writeCnt)147 inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) {
148     *refCnt = resource->fRefCnt;
149     *readCnt = resource->fPendingReads;
150     *writeCnt = resource->fPendingWrites;
151 }
152 
testingOnly_getIORefCnts(GrTextureProxy * proxy,int * refCnt,int * readCnt,int * writeCnt)153 void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) {
154     *refCnt = proxy->getBackingRefCnt_TestOnly();
155     *readCnt = proxy->getPendingReadCnt_TestOnly();
156     *writeCnt = proxy->getPendingWriteCnt_TestOnly();
157 }
158 
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest,reporter,ctxInfo)159 DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
160     GrContext* context = ctxInfo.grContext();
161     GrProxyProvider* proxyProvider = context->priv().proxyProvider();
162 
163     GrSurfaceDesc desc;
164     desc.fWidth = 10;
165     desc.fHeight = 10;
166     desc.fConfig = kRGBA_8888_GrPixelConfig;
167 
168     const GrBackendFormat format =
169             context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
170 
171     for (bool makeClone : {false, true}) {
172         for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
173             sk_sp<GrRenderTargetContext> renderTargetContext(
174                     context->priv().makeDeferredRenderTargetContext(
175                                                              format, SkBackingFit::kApprox, 1, 1,
176                                                              kRGBA_8888_GrPixelConfig, nullptr));
177             {
178                 sk_sp<GrTextureProxy> proxy1 = proxyProvider->createProxy(
179                         format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
180                         SkBudgeted::kYes);
181                 sk_sp<GrTextureProxy> proxy2 = proxyProvider->createProxy(
182                         format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
183                         SkBudgeted::kYes);
184                 sk_sp<GrTextureProxy> proxy3 = proxyProvider->createProxy(
185                         format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
186                         SkBudgeted::kYes);
187                 sk_sp<GrTextureProxy> proxy4 = proxyProvider->createProxy(
188                         format, desc, kTopLeft_GrSurfaceOrigin, SkBackingFit::kExact,
189                         SkBudgeted::kYes);
190                 {
191                     SkTArray<sk_sp<GrTextureProxy>> proxies;
192                     SkTArray<sk_sp<GrGpuBuffer>> buffers;
193                     proxies.push_back(proxy1);
194                     auto fp = TestFP::Make(std::move(proxies), std::move(buffers));
195                     for (int i = 0; i < parentCnt; ++i) {
196                         fp = TestFP::Make(std::move(fp));
197                     }
198                     std::unique_ptr<GrFragmentProcessor> clone;
199                     if (makeClone) {
200                         clone = fp->clone();
201                     }
202                     std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp)));
203                     renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
204                     if (clone) {
205                         op = TestOp::Make(context, std::move(clone));
206                         renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
207                     }
208                 }
209                 int refCnt, readCnt, writeCnt;
210 
211                 testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
212                 // IO counts should be double if there is a clone of the FP.
213                 int ioRefMul = makeClone ? 2 : 1;
214                 REPORTER_ASSERT(reporter, -1 == refCnt);
215                 REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt);
216                 REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
217 
218                 context->flush();
219 
220                 testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
221                 REPORTER_ASSERT(reporter, 1 == refCnt);
222                 REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
223                 REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
224 
225             }
226         }
227     }
228 }
229 
230 // This test uses the random GrFragmentProcessor test factory, which relies on static initializers.
231 #if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
232 
233 #include "SkCommandLineFlags.h"
234 DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?");
235 DEFINE_uint32(processorSeed, 0, "Use specific seed for processor tests. Overridden by " \
236                                 "--randomProcessorTest.");
237 
238 #if GR_TEST_UTILS
239 
input_texel_color(int i,int j,SkScalar delta)240 static GrColor input_texel_color(int i, int j, SkScalar delta) {
241     // Delta must be less than 0.5 to prevent over/underflow issues with the input color
242     SkASSERT(delta <= 0.5);
243 
244     SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
245                                    (uint8_t)(j & 0xFF),
246                                    (uint8_t)((i + j) & 0xFF),
247                                    (uint8_t)((2 * j - i) & 0xFF));
248     SkColor4f color4f = SkColor4f::FromColor(color);
249     for (int i = 0; i < 4; i++) {
250         if (color4f[i] > 0.5) {
251             color4f[i] -= delta;
252         } else {
253             color4f[i] += delta;
254         }
255     }
256     return color4f.premul().toBytes_RGBA();
257 }
258 
test_draw_op(GrContext * context,GrRenderTargetContext * rtc,std::unique_ptr<GrFragmentProcessor> fp,sk_sp<GrTextureProxy> inputDataProxy)259 void test_draw_op(GrContext* context,
260                   GrRenderTargetContext* rtc,
261                   std::unique_ptr<GrFragmentProcessor> fp,
262                   sk_sp<GrTextureProxy> inputDataProxy) {
263     GrPaint paint;
264     paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I());
265     paint.addColorFragmentProcessor(std::move(fp));
266     paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
267 
268     auto op = GrFillRectOp::Make(context, std::move(paint), GrAAType::kNone, SkMatrix::I(),
269                                  SkRect::MakeWH(rtc->width(), rtc->height()));
270     rtc->addDrawOp(GrNoClip(), std::move(op));
271 }
272 
273 // This assumes that the output buffer will be the same size as inputDataProxy
render_fp(GrContext * context,GrRenderTargetContext * rtc,GrFragmentProcessor * fp,sk_sp<GrTextureProxy> inputDataProxy,GrColor * buffer)274 void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp,
275                sk_sp<GrTextureProxy> inputDataProxy, GrColor* buffer) {
276     int width = inputDataProxy->width();
277     int height = inputDataProxy->height();
278 
279     // test_draw_op needs to take ownership of an FP, so give it a clone that it can own
280     test_draw_op(context, rtc, fp->clone(), inputDataProxy);
281     memset(buffer, 0x0, sizeof(GrColor) * width * height);
282            rtc->readPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType,
283                                              kPremul_SkAlphaType),
284                            buffer, 0, 0, 0);
285 }
286 
287 /** Initializes the two test texture proxies that are available to the FP test factories. */
init_test_textures(GrProxyProvider * proxyProvider,SkRandom * random,sk_sp<GrTextureProxy> proxies[2])288 bool init_test_textures(GrProxyProvider* proxyProvider, SkRandom* random,
289                         sk_sp<GrTextureProxy> proxies[2]) {
290     static const int kTestTextureSize = 256;
291 
292     {
293         // Put premul data into the RGBA texture that the test FPs can optionally use.
294         std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]);
295         for (int y = 0; y < kTestTextureSize; ++y) {
296             for (int x = 0; x < kTestTextureSize; ++x) {
297                 rgbaData[kTestTextureSize * y + x] = input_texel_color(
298                         random->nextULessThan(256), random->nextULessThan(256), 0.0f);
299             }
300         }
301 
302         SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
303                                            kRGBA_8888_SkColorType, kPremul_SkAlphaType);
304         SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes());
305         sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
306         proxies[0] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
307                                                        SkBudgeted::kYes, SkBackingFit::kExact);
308     }
309 
310     {
311         // Put random values into the alpha texture that the test FPs can optionally use.
312         std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]);
313         for (int y = 0; y < kTestTextureSize; ++y) {
314             for (int x = 0; x < kTestTextureSize; ++x) {
315                 alphaData[kTestTextureSize * y + x] = random->nextULessThan(256);
316             }
317         }
318 
319         SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
320                                            kAlpha_8_SkColorType, kPremul_SkAlphaType);
321         SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes());
322         sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
323         proxies[1] = proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
324                                                        SkBudgeted::kYes, SkBackingFit::kExact);
325     }
326 
327     return proxies[0] && proxies[1];
328 }
329 
330 // Creates a texture of premul colors used as the output of the fragment processor that precedes
331 // the fragment processor under test. Color values are those provided by input_texel_color().
make_input_texture(GrProxyProvider * proxyProvider,int width,int height,SkScalar delta)332 sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height,
333                                          SkScalar delta) {
334     std::unique_ptr<GrColor[]> data(new GrColor[width * height]);
335     for (int y = 0; y < width; ++y) {
336         for (int x = 0; x < height; ++x) {
337             data.get()[width * y + x] = input_texel_color(x, y, delta);
338         }
339     }
340 
341     SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
342     SkPixmap pixmap(ii, data.get(), ii.minRowBytes());
343     sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap);
344     return proxyProvider->createTextureProxy(img, kNone_GrSurfaceFlags, 1,
345                                              SkBudgeted::kYes, SkBackingFit::kExact);
346 }
347 
log_surface_context(sk_sp<GrSurfaceContext> src,SkString * dst)348 bool log_surface_context(sk_sp<GrSurfaceContext> src, SkString* dst) {
349     SkImageInfo ii = SkImageInfo::Make(src->width(), src->height(), kRGBA_8888_SkColorType,
350                                        kPremul_SkAlphaType);
351     SkBitmap bm;
352     SkAssertResult(bm.tryAllocPixels(ii));
353     SkAssertResult(src->readPixels(ii, bm.getPixels(), bm.rowBytes(), 0, 0));
354 
355     return bitmap_to_base64_data_uri(bm, dst);
356 }
357 
log_surface_proxy(GrContext * context,sk_sp<GrSurfaceProxy> src,SkString * dst)358 bool log_surface_proxy(GrContext* context, sk_sp<GrSurfaceProxy> src, SkString* dst) {
359     sk_sp<GrSurfaceContext> sContext(context->priv().makeWrappedSurfaceContext(src));
360     return log_surface_context(sContext, dst);
361 }
362 
fuzzy_color_equals(const SkPMColor4f & c1,const SkPMColor4f & c2)363 bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
364     // With the loss of precision of rendering into 32-bit color, then estimating the FP's output
365     // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
366     // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
367     // too unforgiving).
368     static constexpr SkScalar kTolerance = 0.01f;
369     for (int i = 0; i < 4; i++) {
370         if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
371             return false;
372         }
373     }
374     return true;
375 }
376 
modulation_index(int channelIndex,bool alphaModulation)377 int modulation_index(int channelIndex, bool alphaModulation) {
378     return alphaModulation ? 3 : channelIndex;
379 }
380 
381 // Given three input colors (color preceding the FP being tested), and the output of the FP, this
382 // ensures that the out1 = fp * in1.a, out2 = fp * in2.a, and out3 = fp * in3.a, where fp is the
383 // pre-modulated color that should not be changing across frames (FP's state doesn't change).
384 //
385 // When alphaModulation is false, this tests the very similar conditions that out1 = fp * in1,
386 // etc. using per-channel modulation instead of modulation by just the input alpha channel.
387 // - This estimates the pre-modulated fp color from one of the input/output pairs and confirms the
388 //   conditions hold for the other two pairs.
legal_modulation(const GrColor & in1,const GrColor & in2,const GrColor & in3,const GrColor & out1,const GrColor & out2,const GrColor & out3,bool alphaModulation)389 bool legal_modulation(const GrColor& in1, const GrColor& in2, const GrColor& in3,
390                       const GrColor& out1, const GrColor& out2, const GrColor& out3,
391                       bool alphaModulation) {
392     // Convert to floating point, which is the number space the FP operates in (more or less)
393     SkPMColor4f in1f = SkPMColor4f::FromBytes_RGBA(in1);
394     SkPMColor4f in2f = SkPMColor4f::FromBytes_RGBA(in2);
395     SkPMColor4f in3f = SkPMColor4f::FromBytes_RGBA(in3);
396     SkPMColor4f out1f = SkPMColor4f::FromBytes_RGBA(out1);
397     SkPMColor4f out2f = SkPMColor4f::FromBytes_RGBA(out2);
398     SkPMColor4f out3f = SkPMColor4f::FromBytes_RGBA(out3);
399 
400     // Reconstruct the output of the FP before the shader modulated its color with the input value.
401     // When the original input is very small, it may cause the final output color to round
402     // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
403     // will then have a guaranteed larger channel value (since the offset will be added to it).
404     SkPMColor4f fpPreModulation;
405     for (int i = 0; i < 4; i++) {
406         int modulationIndex = modulation_index(i, alphaModulation);
407         if (in1f[modulationIndex] < 0.2f) {
408             // Use the stepped frame
409             fpPreModulation[i] = out2f[i] / in2f[modulationIndex];
410         } else {
411             fpPreModulation[i] = out1f[i] / in1f[modulationIndex];
412         }
413     }
414 
415     // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
416     // of the transformed input colors.
417     SkPMColor4f expected1 = alphaModulation ? (fpPreModulation * in1f.fA)
418                                             : (fpPreModulation * in1f);
419     SkPMColor4f expected2 = alphaModulation ? (fpPreModulation * in2f.fA)
420                                             : (fpPreModulation * in2f);
421     SkPMColor4f expected3 = alphaModulation ? (fpPreModulation * in3f.fA)
422                                             : (fpPreModulation * in3f);
423 
424     return fuzzy_color_equals(out1f, expected1) &&
425            fuzzy_color_equals(out2f, expected2) &&
426            fuzzy_color_equals(out3f, expected3);
427 }
428 
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest,reporter,ctxInfo)429 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
430     GrContext* context = ctxInfo.grContext();
431     GrProxyProvider* proxyProvider = context->priv().proxyProvider();
432     auto resourceProvider = context->priv().resourceProvider();
433     using FPFactory = GrFragmentProcessorTestFactory;
434 
435     uint32_t seed = FLAGS_processorSeed;
436     if (FLAGS_randomProcessorTest) {
437         std::random_device rd;
438         seed = rd();
439     }
440     // If a non-deterministic bot fails this test, check the output to see what seed it used, then
441     // use --processorSeed <seed> (without --randomProcessorTest) to reproduce.
442     SkRandom random(seed);
443 
444     const GrBackendFormat format =
445             context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
446 
447     // Make the destination context for the test.
448     static constexpr int kRenderSize = 256;
449     sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext(
450             format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig,
451             nullptr);
452 
453     sk_sp<GrTextureProxy> proxies[2];
454     if (!init_test_textures(proxyProvider, &random, proxies)) {
455         ERRORF(reporter, "Could not create test textures");
456         return;
457     }
458     GrProcessorTestData testData(&random, context, rtc.get(), proxies);
459 
460     // Coverage optimization uses three frames with a linearly transformed input texture.  The first
461     // frame has no offset, second frames add .2 and .4, which should then be present as a fixed
462     // difference between the frame outputs if the FP is properly following the modulation
463     // requirements of the coverage optimization.
464     static constexpr SkScalar kInputDelta = 0.2f;
465     auto inputTexture1 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f);
466     auto inputTexture2 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, kInputDelta);
467     auto inputTexture3 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 2*kInputDelta);
468 
469     // Encoded images are very verbose and this tests many potential images, so only export the
470     // first failure (subsequent failures have a reasonable chance of being related).
471     bool loggedFirstFailure = false;
472     bool loggedFirstWarning = false;
473 
474     // Storage for the three frames required for coverage compatibility optimization. Each frame
475     // uses the correspondingly numbered inputTextureX.
476     std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
477     std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
478     std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]);
479 
480     // Because processor factories configure themselves in random ways, this is not exhaustive.
481     for (int i = 0; i < FPFactory::Count(); ++i) {
482         int timesToInvokeFactory = 5;
483         // Increase the number of attempts if the FP has child FPs since optimizations likely depend
484         // on child optimizations being present.
485         std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData);
486         for (int j = 0; j < fp->numChildProcessors(); ++j) {
487             // This value made a reasonable trade off between time and coverage when this test was
488             // written.
489             timesToInvokeFactory *= FPFactory::Count() / 2;
490         }
491 #if defined(__MSVC_RUNTIME_CHECKS)
492         // This test is infuriatingly slow with MSVC runtime checks enabled
493         timesToInvokeFactory = 1;
494 #endif
495         for (int j = 0; j < timesToInvokeFactory; ++j) {
496             fp = FPFactory::MakeIdx(i, &testData);
497             if (!fp->instantiate(resourceProvider)) {
498                 continue;
499             }
500 
501             if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
502                 !fp->compatibleWithCoverageAsAlpha()) {
503                 continue;
504             }
505 
506             if (fp->compatibleWithCoverageAsAlpha()) {
507                 // 2nd and 3rd frames are only used when checking coverage optimization
508                 render_fp(context, rtc.get(), fp.get(), inputTexture2, readData2.get());
509                 render_fp(context, rtc.get(), fp.get(), inputTexture3, readData3.get());
510             }
511             // Draw base frame last so that rtc holds the original FP behavior if we need to
512             // dump the image to the log.
513             render_fp(context, rtc.get(), fp.get(), inputTexture1, readData1.get());
514 
515             if (0) {  // Useful to see what FPs are being tested.
516                 SkString children;
517                 for (int c = 0; c < fp->numChildProcessors(); ++c) {
518                     if (!c) {
519                         children.append("(");
520                     }
521                     children.append(fp->childProcessor(c).name());
522                     children.append(c == fp->numChildProcessors() - 1 ? ")" : ", ");
523                 }
524                 SkDebugf("%s %s\n", fp->name(), children.c_str());
525             }
526 
527             // This test has a history of being flaky on a number of devices. If an FP is logically
528             // violating the optimizations, it's reasonable to expect it to violate requirements on
529             // a large number of pixels in the image. Sporadic pixel violations are more indicative
530             // of device errors and represents a separate problem.
531 #if defined(SK_BUILD_FOR_SKQP)
532             static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
533 #else
534             static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
535 #endif
536 
537             int failedPixelCount = 0;
538             // Collect first optimization failure message, to be output later as a warning or an
539             // error depending on whether the rendering "passed" or failed.
540             SkString coverageMessage;
541             SkString opaqueMessage;
542             SkString constMessage;
543             for (int y = 0; y < kRenderSize; ++y) {
544                 for (int x = 0; x < kRenderSize; ++x) {
545                     bool passing = true;
546                     GrColor input = input_texel_color(x, y, 0.0f);
547                     GrColor output = readData1.get()[y * kRenderSize + x];
548 
549                     if (fp->compatibleWithCoverageAsAlpha()) {
550                         GrColor i2 = input_texel_color(x, y, kInputDelta);
551                         GrColor i3 = input_texel_color(x, y, 2 * kInputDelta);
552 
553                         GrColor o2 = readData2.get()[y * kRenderSize + x];
554                         GrColor o3 = readData3.get()[y * kRenderSize + x];
555 
556                         // A compatible processor is allowed to modulate either the input color or
557                         // just the input alpha.
558                         bool legalAlphaModulation = legal_modulation(input, i2, i3, output, o2, o3,
559                                                                      /* alpha */ true);
560                         bool legalColorModulation = legal_modulation(input, i2, i3, output, o2, o3,
561                                                                      /* alpha */ false);
562 
563                         if (!legalColorModulation && !legalAlphaModulation) {
564                             passing = false;
565 
566                             if (coverageMessage.isEmpty()) {
567                                 coverageMessage.printf("\"Modulating\" processor %s did not match "
568                                         "alpha-modulation nor color-modulation rules. "
569                                         "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
570                                         fp->name(), input, output, x, y);
571                             }
572                         }
573                     }
574 
575                     SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
576                     SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
577                     SkPMColor4f expected4f;
578                     if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
579                         float rDiff = fabsf(output4f.fR - expected4f.fR);
580                         float gDiff = fabsf(output4f.fG - expected4f.fG);
581                         float bDiff = fabsf(output4f.fB - expected4f.fB);
582                         float aDiff = fabsf(output4f.fA - expected4f.fA);
583                         static constexpr float kTol = 4 / 255.f;
584                         if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
585                             if (constMessage.isEmpty()) {
586                                 passing = false;
587 
588                                 constMessage.printf("Processor %s claimed output for const input "
589                                         "doesn't match actual output. Error: %f, Tolerance: %f, "
590                                         "input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), "
591                                         "expected(%f, %f, %f, %f)", fp->name(),
592                                         SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol,
593                                         input4f.fR, input4f.fG, input4f.fB, input4f.fA,
594                                         output4f.fR, output4f.fG, output4f.fB, output4f.fA,
595                                         expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
596                             }
597                         }
598                     }
599                     if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
600                         passing = false;
601 
602                         if (opaqueMessage.isEmpty()) {
603                             opaqueMessage.printf("Processor %s claimed opaqueness is preserved but "
604                                     "it is not. Input: 0x%08x, Output: 0x%08x.",
605                                     fp->name(), input, output);
606                         }
607                     }
608 
609                     if (!passing) {
610                         // Regardless of how many optimizations the pixel violates, count it as a
611                         // single bad pixel.
612                         failedPixelCount++;
613                     }
614                 }
615             }
616 
617             // Finished analyzing the entire image, see if the number of pixel failures meets the
618             // threshold for an FP violating the optimization requirements.
619             if (failedPixelCount > kMaxAcceptableFailedPixels) {
620                 ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s"
621                        ", first failing pixel details are below:",
622                        failedPixelCount, kRenderSize * kRenderSize, seed,
623                        fp->dumpInfo().c_str());
624 
625                 // Print first failing pixel's details.
626                 if (!coverageMessage.isEmpty()) {
627                     ERRORF(reporter, coverageMessage.c_str());
628                 }
629                 if (!constMessage.isEmpty()) {
630                     ERRORF(reporter, constMessage.c_str());
631                 }
632                 if (!opaqueMessage.isEmpty()) {
633                     ERRORF(reporter, opaqueMessage.c_str());
634                 }
635 
636                 if (!loggedFirstFailure) {
637                     // Print with ERRORF to make sure the encoded image is output
638                     SkString input;
639                     log_surface_proxy(context, inputTexture1, &input);
640                     SkString output;
641                     log_surface_context(rtc, &output);
642                     ERRORF(reporter, "Input image: %s\n\n"
643                            "===========================================================\n\n"
644                            "Output image: %s\n", input.c_str(), output.c_str());
645                     loggedFirstFailure = true;
646                 }
647             } else if(failedPixelCount > 0) {
648                 // Don't trigger an error, but don't just hide the failures either.
649                 INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
650                       "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
651                       seed, fp->dumpInfo().c_str());
652                 if (!coverageMessage.isEmpty()) {
653                     INFOF(reporter, coverageMessage.c_str());
654                 }
655                 if (!constMessage.isEmpty()) {
656                     INFOF(reporter, constMessage.c_str());
657                 }
658                 if (!opaqueMessage.isEmpty()) {
659                     INFOF(reporter, opaqueMessage.c_str());
660                 }
661                 if (!loggedFirstWarning) {
662                     SkString input;
663                     log_surface_proxy(context, inputTexture1, &input);
664                     SkString output;
665                     log_surface_context(rtc, &output);
666                     INFOF(reporter, "Input image: %s\n\n"
667                           "===========================================================\n\n"
668                           "Output image: %s\n", input.c_str(), output.c_str());
669                     loggedFirstWarning = true;
670                 }
671             }
672         }
673     }
674 }
675 
676 // Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their
677 // progenitors.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest,reporter,ctxInfo)678 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
679     GrContext* context = ctxInfo.grContext();
680     GrProxyProvider* proxyProvider = context->priv().proxyProvider();
681     auto resourceProvider = context->priv().resourceProvider();
682 
683     SkRandom random;
684 
685     const GrBackendFormat format =
686             context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType);
687 
688     // Make the destination context for the test.
689     static constexpr int kRenderSize = 1024;
690     sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext(
691             format, SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig,
692             nullptr);
693 
694     sk_sp<GrTextureProxy> proxies[2];
695     if (!init_test_textures(proxyProvider, &random, proxies)) {
696         ERRORF(reporter, "Could not create test textures");
697         return;
698     }
699     GrProcessorTestData testData(&random, context, rtc.get(), proxies);
700 
701     auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f);
702     std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
703     std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
704     auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType,
705                                       kPremul_SkAlphaType);
706 
707     // Because processor factories configure themselves in random ways, this is not exhaustive.
708     for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
709         static constexpr int kTimesToInvokeFactory = 10;
710         for (int j = 0; j < kTimesToInvokeFactory; ++j) {
711             auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData);
712             auto clone = fp->clone();
713             if (!clone) {
714                 ERRORF(reporter, "Clone of processor %s failed.", fp->name());
715                 continue;
716             }
717             const char* name = fp->name();
718             if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) {
719                 continue;
720             }
721             REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name()));
722             REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() ==
723                                       clone->compatibleWithCoverageAsAlpha());
724             REPORTER_ASSERT(reporter, fp->isEqual(*clone));
725             REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput());
726             REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() ==
727                                       clone->hasConstantOutputForConstantInput());
728             REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors());
729             REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords());
730             // Draw with original and read back the results.
731             render_fp(context, rtc.get(), fp.get(), inputTexture, readData1.get());
732 
733             // Draw with clone and read back the results.
734             render_fp(context, rtc.get(), clone.get(), inputTexture, readData2.get());
735 
736             // Check that the results are the same.
737             bool passing = true;
738             for (int y = 0; y < kRenderSize && passing; ++y) {
739                 for (int x = 0; x < kRenderSize && passing; ++x) {
740                     int idx = y * kRenderSize + x;
741                     if (readData1[idx] != readData2[idx]) {
742                         ERRORF(reporter,
743                                "Processor %s made clone produced different output. "
744                                "Input color: 0x%08x, Original Output Color: 0x%08x, "
745                                "Clone Output Color: 0x%08x..",
746                                name, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]);
747                         passing = false;
748                     }
749                 }
750             }
751         }
752     }
753 }
754 
755 #endif  // GR_TEST_UTILS
756 #endif  // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
757