1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTHash_DEFINED 9 #define SkTHash_DEFINED 10 11 #include "SkChecksum.h" 12 #include "SkTypes.h" 13 #include "SkTemplates.h" 14 #include <new> 15 16 // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you. 17 // They're easier to use, usually perform the same, and have fewer sharp edges. 18 19 // T and K are treated as ordinary copyable C++ types. 20 // Traits must have: 21 // - static K GetKey(T) 22 // - static uint32_t Hash(K) 23 // If the key is large and stored inside T, you may want to make K a const&. 24 // Similarly, if T is large you might want it to be a pointer. 25 template <typename T, typename K, typename Traits = T> 26 class SkTHashTable { 27 public: SkTHashTable()28 SkTHashTable() : fCount(0), fCapacity(0) {} SkTHashTable(SkTHashTable && other)29 SkTHashTable(SkTHashTable&& other) 30 : fCount(other.fCount) 31 , fCapacity(other.fCapacity) 32 , fSlots(std::move(other.fSlots)) { other.fCount = other.fCapacity = 0; } 33 34 SkTHashTable& operator=(SkTHashTable&& other) { 35 if (this != &other) { 36 this->~SkTHashTable(); 37 new (this) SkTHashTable(std::move(other)); 38 } 39 return *this; 40 } 41 42 // Clear the table. reset()43 void reset() { *this = SkTHashTable(); } 44 45 // How many entries are in the table? count()46 int count() const { return fCount; } 47 48 // Approximately how many bytes of memory do we use beyond sizeof(*this)? approxBytesUsed()49 size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); } 50 51 // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!! 52 // set(), find() and foreach() all allow mutable access to table entries. 53 // If you change an entry so that it no longer has the same key, all hell 54 // will break loose. Do not do that! 55 // 56 // Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger. 57 58 // The pointers returned by set() and find() are valid only until the next call to set(). 59 // The pointers you receive in foreach() are only valid for its duration. 60 61 // Copy val into the hash table, returning a pointer to the copy now in the table. 62 // If there already is an entry in the table with the same key, we overwrite it. set(T val)63 T* set(T val) { 64 if (4 * fCount >= 3 * fCapacity) { 65 this->resize(fCapacity > 0 ? fCapacity * 2 : 4); 66 } 67 return this->uncheckedSet(std::move(val)); 68 } 69 70 // If there is an entry in the table with this key, return a pointer to it. If not, null. find(const K & key)71 T* find(const K& key) const { 72 uint32_t hash = Hash(key); 73 int index = hash & (fCapacity-1); 74 for (int n = 0; n < fCapacity; n++) { 75 Slot& s = fSlots[index]; 76 if (s.empty()) { 77 return nullptr; 78 } 79 if (hash == s.hash && key == Traits::GetKey(s.val)) { 80 return &s.val; 81 } 82 index = this->next(index); 83 } 84 SkASSERT(fCapacity == 0); 85 return nullptr; 86 } 87 88 // If there is an entry in the table with this key, return it. If not, null. 89 // This only works for pointer type T, and cannot be used to find an nullptr entry. findOrNull(const K & key)90 T findOrNull(const K& key) const { 91 if (T* p = this->find(key)) { 92 return *p; 93 } 94 return nullptr; 95 } 96 97 // Remove the value with this key from the hash table. remove(const K & key)98 void remove(const K& key) { 99 SkASSERT(this->find(key)); 100 101 uint32_t hash = Hash(key); 102 int index = hash & (fCapacity-1); 103 for (int n = 0; n < fCapacity; n++) { 104 Slot& s = fSlots[index]; 105 SkASSERT(!s.empty()); 106 if (hash == s.hash && key == Traits::GetKey(s.val)) { 107 fCount--; 108 break; 109 } 110 index = this->next(index); 111 } 112 113 // Rearrange elements to restore the invariants for linear probing. 114 for (;;) { 115 Slot& emptySlot = fSlots[index]; 116 int emptyIndex = index; 117 int originalIndex; 118 // Look for an element that can be moved into the empty slot. 119 // If the empty slot is in between where an element landed, and its native slot, then 120 // move it to the empty slot. Don't move it if its native slot is in between where 121 // the element landed and the empty slot. 122 // [native] <= [empty] < [candidate] == GOOD, can move candidate to empty slot 123 // [empty] < [native] < [candidate] == BAD, need to leave candidate where it is 124 do { 125 index = this->next(index); 126 Slot& s = fSlots[index]; 127 if (s.empty()) { 128 // We're done shuffling elements around. Clear the last empty slot. 129 emptySlot = Slot(); 130 return; 131 } 132 originalIndex = s.hash & (fCapacity - 1); 133 } while ((index <= originalIndex && originalIndex < emptyIndex) 134 || (originalIndex < emptyIndex && emptyIndex < index) 135 || (emptyIndex < index && index <= originalIndex)); 136 // Move the element to the empty slot. 137 Slot& moveFrom = fSlots[index]; 138 emptySlot = std::move(moveFrom); 139 } 140 } 141 142 // Call fn on every entry in the table. You may mutate the entries, but be very careful. 143 template <typename Fn> // f(T*) foreach(Fn && fn)144 void foreach(Fn&& fn) { 145 for (int i = 0; i < fCapacity; i++) { 146 if (!fSlots[i].empty()) { 147 fn(&fSlots[i].val); 148 } 149 } 150 } 151 152 // Call fn on every entry in the table. You may not mutate anything. 153 template <typename Fn> // f(T) or f(const T&) foreach(Fn && fn)154 void foreach(Fn&& fn) const { 155 for (int i = 0; i < fCapacity; i++) { 156 if (!fSlots[i].empty()) { 157 fn(fSlots[i].val); 158 } 159 } 160 } 161 162 private: uncheckedSet(T && val)163 T* uncheckedSet(T&& val) { 164 const K& key = Traits::GetKey(val); 165 uint32_t hash = Hash(key); 166 int index = hash & (fCapacity-1); 167 for (int n = 0; n < fCapacity; n++) { 168 Slot& s = fSlots[index]; 169 if (s.empty()) { 170 // New entry. 171 s.val = std::move(val); 172 s.hash = hash; 173 fCount++; 174 return &s.val; 175 } 176 if (hash == s.hash && key == Traits::GetKey(s.val)) { 177 // Overwrite previous entry. 178 // Note: this triggers extra copies when adding the same value repeatedly. 179 s.val = std::move(val); 180 return &s.val; 181 } 182 183 index = this->next(index); 184 } 185 SkASSERT(false); 186 return nullptr; 187 } 188 resize(int capacity)189 void resize(int capacity) { 190 int oldCapacity = fCapacity; 191 SkDEBUGCODE(int oldCount = fCount); 192 193 fCount = 0; 194 fCapacity = capacity; 195 SkAutoTArray<Slot> oldSlots = std::move(fSlots); 196 fSlots = SkAutoTArray<Slot>(capacity); 197 198 for (int i = 0; i < oldCapacity; i++) { 199 Slot& s = oldSlots[i]; 200 if (!s.empty()) { 201 this->uncheckedSet(std::move(s.val)); 202 } 203 } 204 SkASSERT(fCount == oldCount); 205 } 206 next(int index)207 int next(int index) const { 208 index--; 209 if (index < 0) { index += fCapacity; } 210 return index; 211 } 212 Hash(const K & key)213 static uint32_t Hash(const K& key) { 214 uint32_t hash = Traits::Hash(key); 215 return hash ? hash : 1; // We reserve hash 0 to mark empty. 216 } 217 218 struct Slot { SlotSlot219 Slot() : hash(0) {} SlotSlot220 Slot(T&& v, uint32_t h) : val(std::move(v)), hash(h) {} SlotSlot221 Slot(Slot&& o) { *this = std::move(o); } 222 Slot& operator=(Slot&& o) { 223 val = std::move(o.val); 224 hash = o.hash; 225 return *this; 226 } 227 emptySlot228 bool empty() const { return this->hash == 0; } 229 230 T val; 231 uint32_t hash; 232 }; 233 234 int fCount, fCapacity; 235 SkAutoTArray<Slot> fSlots; 236 237 SkTHashTable(const SkTHashTable&) = delete; 238 SkTHashTable& operator=(const SkTHashTable&) = delete; 239 }; 240 241 // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases. 242 // K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two. 243 template <typename K, typename V, typename HashK = SkGoodHash> 244 class SkTHashMap { 245 public: SkTHashMap()246 SkTHashMap() {} 247 SkTHashMap(SkTHashMap&&) = default; 248 SkTHashMap& operator=(SkTHashMap&&) = default; 249 250 // Clear the map. reset()251 void reset() { fTable.reset(); } 252 253 // How many key/value pairs are in the table? count()254 int count() const { return fTable.count(); } 255 256 // Approximately how many bytes of memory do we use beyond sizeof(*this)? approxBytesUsed()257 size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } 258 259 // N.B. The pointers returned by set() and find() are valid only until the next call to set(). 260 261 // Set key to val in the table, replacing any previous value with the same key. 262 // We copy both key and val, and return a pointer to the value copy now in the table. set(K key,V val)263 V* set(K key, V val) { 264 Pair* out = fTable.set({std::move(key), std::move(val)}); 265 return &out->val; 266 } 267 268 // If there is key/value entry in the table with this key, return a pointer to the value. 269 // If not, return null. find(const K & key)270 V* find(const K& key) const { 271 if (Pair* p = fTable.find(key)) { 272 return &p->val; 273 } 274 return nullptr; 275 } 276 277 // Remove the key/value entry in the table with this key. remove(const K & key)278 void remove(const K& key) { 279 SkASSERT(this->find(key)); 280 fTable.remove(key); 281 } 282 283 // Call fn on every key/value pair in the table. You may mutate the value but not the key. 284 template <typename Fn> // f(K, V*) or f(const K&, V*) foreach(Fn && fn)285 void foreach(Fn&& fn) { 286 fTable.foreach([&fn](Pair* p){ fn(p->key, &p->val); }); 287 } 288 289 // Call fn on every key/value pair in the table. You may not mutate anything. 290 template <typename Fn> // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&). foreach(Fn && fn)291 void foreach(Fn&& fn) const { 292 fTable.foreach([&fn](const Pair& p){ fn(p.key, p.val); }); 293 } 294 295 private: 296 struct Pair { 297 K key; 298 V val; GetKeyPair299 static const K& GetKey(const Pair& p) { return p.key; } HashPair300 static uint32_t Hash(const K& key) { return HashK()(key); } 301 }; 302 303 SkTHashTable<Pair, K> fTable; 304 305 SkTHashMap(const SkTHashMap&) = delete; 306 SkTHashMap& operator=(const SkTHashMap&) = delete; 307 }; 308 309 // A set of T. T is treated as an ordinary copyable C++ type. 310 template <typename T, typename HashT = SkGoodHash> 311 class SkTHashSet { 312 public: SkTHashSet()313 SkTHashSet() {} 314 SkTHashSet(SkTHashSet&&) = default; 315 SkTHashSet& operator=(SkTHashSet&&) = default; 316 317 // Clear the set. reset()318 void reset() { fTable.reset(); } 319 320 // How many items are in the set? count()321 int count() const { return fTable.count(); } 322 323 // Approximately how many bytes of memory do we use beyond sizeof(*this)? approxBytesUsed()324 size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } 325 326 // Copy an item into the set. add(T item)327 void add(T item) { fTable.set(std::move(item)); } 328 329 // Is this item in the set? contains(const T & item)330 bool contains(const T& item) const { return SkToBool(this->find(item)); } 331 332 // If an item equal to this is in the set, return a pointer to it, otherwise null. 333 // This pointer remains valid until the next call to add(). find(const T & item)334 const T* find(const T& item) const { return fTable.find(item); } 335 336 // Remove the item in the set equal to this. remove(const T & item)337 void remove(const T& item) { 338 SkASSERT(this->contains(item)); 339 fTable.remove(item); 340 } 341 342 // Call fn on every item in the set. You may not mutate anything. 343 template <typename Fn> // f(T), f(const T&) foreach(Fn && fn)344 void foreach (Fn&& fn) const { 345 fTable.foreach(fn); 346 } 347 348 private: 349 struct Traits { GetKeyTraits350 static const T& GetKey(const T& item) { return item; } HashTraits351 static uint32_t Hash(const T& item) { return HashT()(item); } 352 }; 353 SkTHashTable<T, T, Traits> fTable; 354 355 SkTHashSet(const SkTHashSet&) = delete; 356 SkTHashSet& operator=(const SkTHashSet&) = delete; 357 }; 358 359 #endif//SkTHash_DEFINED 360