1/*
2 * Copyright 2018 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8@header {
9    #include "GrClip.h"
10    #include "GrContext.h"
11    #include "GrContextPriv.h"
12    #include "GrProxyProvider.h"
13    #include "GrRenderTargetContext.h"
14}
15
16@class {
17    static bool TestForPreservingPMConversions(GrContext* context) {
18        static constexpr int kSize = 256;
19        static constexpr GrPixelConfig kConfig = kRGBA_8888_GrPixelConfig;
20        static constexpr SkColorType kColorType = kRGBA_8888_SkColorType;
21        const GrBackendFormat format =
22                context->contextPriv().caps()->getBackendFormatFromColorType(kColorType);
23        SkAutoTMalloc<uint32_t> data(kSize * kSize * 3);
24        uint32_t* srcData = data.get();
25        uint32_t* firstRead = data.get() + kSize * kSize;
26        uint32_t* secondRead = data.get() + 2 * kSize * kSize;
27
28        // Fill with every possible premultiplied A, color channel value. There will be 256-y
29        // duplicate values in row y. We set r, g, and b to the same value since they are handled
30        // identically.
31        for (int y = 0; y < kSize; ++y) {
32            for (int x = 0; x < kSize; ++x) {
33                uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[kSize*y + x]);
34                color[3] = y;
35                color[2] = SkTMin(x, y);
36                color[1] = SkTMin(x, y);
37                color[0] = SkTMin(x, y);
38            }
39        }
40        memset(firstRead, 0, kSize * kSize * sizeof(uint32_t));
41        memset(secondRead, 0, kSize * kSize * sizeof(uint32_t));
42
43        const SkImageInfo ii = SkImageInfo::Make(kSize, kSize,
44                                                 kRGBA_8888_SkColorType, kPremul_SkAlphaType);
45
46        sk_sp<GrRenderTargetContext> readRTC(
47                context->contextPriv().makeDeferredRenderTargetContext(format, SkBackingFit::kExact,
48                                                                       kSize, kSize,
49                                                                       kConfig, nullptr));
50        sk_sp<GrRenderTargetContext> tempRTC(
51                context->contextPriv().makeDeferredRenderTargetContext(format, SkBackingFit::kExact,
52                                                                       kSize, kSize,
53                                                                       kConfig, nullptr));
54        if (!readRTC || !readRTC->asTextureProxy() || !tempRTC) {
55            return false;
56        }
57        // Adding discard to appease vulkan validation warning about loading uninitialized data on
58        // draw
59        readRTC->discard();
60
61        GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
62
63        SkPixmap pixmap(ii, srcData, 4 * kSize);
64
65        // This function is only ever called if we are in a GrContext that has a GrGpu since we are
66        // calling read pixels here. Thus the pixel data will be uploaded immediately and we don't
67        // need to keep the pixel data alive in the proxy. Therefore the ReleaseProc is nullptr.
68        sk_sp<SkImage> image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr);
69
70        sk_sp<GrTextureProxy> dataProxy = proxyProvider->createTextureProxy(std::move(image),
71                                                                            kNone_GrSurfaceFlags,
72                                                                            1,
73                                                                            SkBudgeted::kYes,
74                                                                            SkBackingFit::kExact);
75        if (!dataProxy) {
76            return false;
77        }
78
79        static const SkRect kRect = SkRect::MakeIWH(kSize, kSize);
80
81        // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw
82        // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data.
83        // We then verify that two reads produced the same values.
84
85        GrPaint paint1;
86        GrPaint paint2;
87        GrPaint paint3;
88        std::unique_ptr<GrFragmentProcessor> pmToUPM(
89                new GrConfigConversionEffect(PMConversion::kToUnpremul));
90        std::unique_ptr<GrFragmentProcessor> upmToPM(
91                new GrConfigConversionEffect(PMConversion::kToPremul));
92
93        paint1.addColorTextureProcessor(dataProxy, SkMatrix::I());
94        paint1.addColorFragmentProcessor(pmToUPM->clone());
95        paint1.setPorterDuffXPFactory(SkBlendMode::kSrc);
96
97        readRTC->fillRectToRect(GrNoClip(), std::move(paint1), GrAA::kNo, SkMatrix::I(), kRect,
98                                kRect);
99        if (!readRTC->readPixels(ii, firstRead, 0, 0, 0)) {
100            return false;
101        }
102
103        // Adding discard to appease vulkan validation warning about loading uninitialized data on
104        // draw
105        tempRTC->discard();
106
107        paint2.addColorTextureProcessor(readRTC->asTextureProxyRef(), SkMatrix::I());
108        paint2.addColorFragmentProcessor(std::move(upmToPM));
109        paint2.setPorterDuffXPFactory(SkBlendMode::kSrc);
110
111        tempRTC->fillRectToRect(GrNoClip(), std::move(paint2), GrAA::kNo, SkMatrix::I(), kRect,
112                                kRect);
113
114        paint3.addColorTextureProcessor(tempRTC->asTextureProxyRef(), SkMatrix::I());
115        paint3.addColorFragmentProcessor(std::move(pmToUPM));
116        paint3.setPorterDuffXPFactory(SkBlendMode::kSrc);
117
118        readRTC->fillRectToRect(GrNoClip(), std::move(paint3), GrAA::kNo, SkMatrix::I(), kRect,
119                                kRect);
120
121        if (!readRTC->readPixels(ii, secondRead, 0, 0, 0)) {
122            return false;
123        }
124
125        for (int y = 0; y < kSize; ++y) {
126            for (int x = 0; x <= y; ++x) {
127                if (firstRead[kSize * y + x] != secondRead[kSize * y + x]) {
128                    return false;
129                }
130            }
131        }
132
133        return true;
134    }
135}
136
137@make {
138    static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp,
139                                                     PMConversion pmConversion) {
140        if (!fp) {
141            return nullptr;
142        }
143        std::unique_ptr<GrFragmentProcessor> ccFP(new GrConfigConversionEffect(pmConversion));
144        std::unique_ptr<GrFragmentProcessor> fpPipeline[] = { std::move(fp), std::move(ccFP) };
145        return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
146    }
147}
148
149layout(key) in PMConversion pmConversion;
150
151@emitCode {
152    fragBuilder->forceHighPrecision();
153}
154
155void main() {
156    // Aggressively round to the nearest exact (N / 255) floating point value. This lets us find a
157    // round-trip preserving pair on some GPUs that do odd byte to float conversion.
158    sk_OutColor = floor(sk_InColor * 255 + 0.5) / 255;
159
160    @switch (pmConversion) {
161        case PMConversion::kToPremul:
162            sk_OutColor.rgb = floor(sk_OutColor.rgb * sk_OutColor.a * 255 + 0.5) / 255;
163            break;
164
165        case PMConversion::kToUnpremul:
166            sk_OutColor.rgb = sk_OutColor.a <= 0.0 ?
167                                          half3(0) :
168                                          floor(sk_OutColor.rgb / sk_OutColor.a * 255 + 0.5) / 255;
169            break;
170    }
171}
172
173@test(data) {
174    PMConversion pmConv = static_cast<PMConversion>(data->fRandom->nextULessThan(
175                                                             (int) PMConversion::kPMConversionCnt));
176    return std::unique_ptr<GrFragmentProcessor>(new GrConfigConversionEffect(pmConv));
177}
178