1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrGLSLFragmentProcessor_DEFINED
9 #define GrGLSLFragmentProcessor_DEFINED
10 
11 #include "GrFragmentProcessor.h"
12 #include "GrShaderVar.h"
13 #include "glsl/GrGLSLProgramDataManager.h"
14 #include "glsl/GrGLSLUniformHandler.h"
15 
16 class GrProcessor;
17 class GrProcessorKeyBuilder;
18 class GrGLSLFPBuilder;
19 class GrGLSLFPFragmentBuilder;
20 
21 class GrGLSLFragmentProcessor {
22 public:
GrGLSLFragmentProcessor()23     GrGLSLFragmentProcessor() {}
24 
~GrGLSLFragmentProcessor()25     virtual ~GrGLSLFragmentProcessor() {
26         for (int i = 0; i < fChildProcessors.count(); ++i) {
27             delete fChildProcessors[i];
28         }
29     }
30 
31     using UniformHandle      = GrGLSLUniformHandler::UniformHandle;
32     using SamplerHandle      = GrGLSLUniformHandler::SamplerHandle;
33 
34 private:
35     /**
36      * This class allows the shader builder to provide each GrGLSLFragmentProcesor with an array of
37      * generated variables where each generated variable corresponds to an element of an array on
38      * the GrFragmentProcessor that generated the GLSLFP. For example, this is used to provide a
39      * variable holding transformed coords for each GrCoordTransform owned by the FP.
40      */
41     template <typename T, int (GrFragmentProcessor::*COUNT)() const>
42     class BuilderInputProvider {
43     public:
BuilderInputProvider(const GrFragmentProcessor * fp,const T * ts)44         BuilderInputProvider(const GrFragmentProcessor* fp, const T* ts) : fFP(fp) , fTs(ts) {}
45 
46         const T& operator[] (int i) const {
47             SkASSERT(i >= 0 && i < (fFP->*COUNT)());
48             return fTs[i];
49         }
50 
count()51         int count() const { return (fFP->*COUNT)(); }
52 
childInputs(int childIdx)53         BuilderInputProvider childInputs(int childIdx) const {
54             const GrFragmentProcessor* child = &fFP->childProcessor(childIdx);
55             GrFragmentProcessor::Iter iter(fFP);
56             int numToSkip = 0;
57             while (true) {
58                 const GrFragmentProcessor* fp = iter.next();
59                 if (fp == child) {
60                     return BuilderInputProvider(child, fTs + numToSkip);
61                 }
62                 numToSkip += (fp->*COUNT)();
63             }
64         }
65 
66     private:
67         const GrFragmentProcessor* fFP;
68         const T*                   fTs;
69     };
70 
71 public:
72     using TransformedCoordVars =
73             BuilderInputProvider<GrShaderVar, &GrFragmentProcessor::numCoordTransforms>;
74     using TextureSamplers =
75             BuilderInputProvider<SamplerHandle, &GrFragmentProcessor::numTextureSamplers>;
76 
77     /** Called when the program stage should insert its code into the shaders. The code in each
78         shader will be in its own block ({}) and so locally scoped names will not collide across
79         stages.
80 
81         @param fragBuilder       Interface used to emit code in the shaders.
82         @param fp                The processor that generated this program stage.
83         @param key               The key that was computed by GenKey() from the generating
84                                  GrProcessor.
85         @param outputColor       A predefined half4 in the FS in which the stage should place its
86                                  output color (or coverage).
87         @param inputColor        A half4 that holds the input color to the stage in the FS. This may
88                                  be nullptr in which case the fInputColor is set to "half4(1.0)"
89                                  (solid white) so this is guaranteed non-null.
90                                  TODO: Better system for communicating optimization info
91                                  (e.g. input color is solid white, trans black, known to be opaque,
92                                  etc.) that allows the processor to communicate back similar known
93                                  info about its output.
94         @param transformedCoords Fragment shader variables containing the coords computed using
95                                  each of the GrFragmentProcessor's GrCoordTransforms.
96         @param texSamplers       Contains one entry for each TextureSampler  of the GrProcessor.
97                                  These can be passed to the builder to emit texture reads in the
98                                  generated code.
99      */
100     struct EmitArgs {
EmitArgsEmitArgs101         EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
102                  GrGLSLUniformHandler* uniformHandler,
103                  const GrShaderCaps* caps,
104                  const GrFragmentProcessor& fp,
105                  const char* outputColor,
106                  const char* inputColor,
107                  const TransformedCoordVars& transformedCoordVars,
108                  const TextureSamplers& textureSamplers)
109                 : fFragBuilder(fragBuilder)
110                 , fUniformHandler(uniformHandler)
111                 , fShaderCaps(caps)
112                 , fFp(fp)
113                 , fOutputColor(outputColor)
114                 , fInputColor(inputColor ? inputColor : "half4(1.0)")
115                 , fTransformedCoords(transformedCoordVars)
116                 , fTexSamplers(textureSamplers) {}
117         GrGLSLFPFragmentBuilder* fFragBuilder;
118         GrGLSLUniformHandler* fUniformHandler;
119         const GrShaderCaps* fShaderCaps;
120         const GrFragmentProcessor& fFp;
121         const char* fOutputColor;
122         const char* fInputColor;
123         const TransformedCoordVars& fTransformedCoords;
124         const TextureSamplers& fTexSamplers;
125     };
126 
127     virtual void emitCode(EmitArgs&) = 0;
128 
129     // This does not recurse to any attached child processors. Recursing the entire processor tree
130     // is the responsibility of the caller.
131     void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
132 
numChildProcessors()133     int numChildProcessors() const { return fChildProcessors.count(); }
134 
childProcessor(int index)135     GrGLSLFragmentProcessor* childProcessor(int index) {
136         return fChildProcessors[index];
137     }
138 
139     // Emit the child with the default input color (solid white)
emitChild(int childIndex,SkString * outputColor,EmitArgs & parentArgs)140     inline void emitChild(int childIndex, SkString* outputColor, EmitArgs& parentArgs) {
141         this->emitChild(childIndex, nullptr, outputColor, parentArgs);
142     }
143 
144     /** Will emit the code of a child proc in its own scope. Pass in the parent's EmitArgs and
145      *  emitChild will automatically extract the coords and samplers of that child and pass them
146      *  on to the child's emitCode(). Also, any uniforms or functions emitted by the child will
147      *  have their names mangled to prevent redefinitions. The output color name is also mangled
148      *  therefore in an in/out param. It will be declared in mangled form by emitChild(). It is
149      *  legal to pass nullptr as inputColor, since all fragment processors are required to work
150      *  without an input color.
151      */
152     void emitChild(int childIndex, const char* inputColor, SkString* outputColor,
153                    EmitArgs& parentArgs);
154 
155     // Use the parent's output color to hold child's output, and use the
156     // default input color of solid white
emitChild(int childIndex,EmitArgs & args)157     inline void emitChild(int childIndex, EmitArgs& args) {
158         // null pointer cast required to disambiguate the function call
159         this->emitChild(childIndex, (const char*) nullptr, args);
160     }
161 
162     /** Variation that uses the parent's output color variable to hold the child's output.*/
163     void emitChild(int childIndex, const char* inputColor, EmitArgs& parentArgs);
164 
165     /**
166      * Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
167      * GLSLFPS. This agrees with the traversal order of GrFragmentProcessor::Iter
168      */
169     class Iter : public SkNoncopyable {
170     public:
Iter(GrGLSLFragmentProcessor * fp)171         explicit Iter(GrGLSLFragmentProcessor* fp) { fFPStack.push_back(fp); }
Iter(std::unique_ptr<GrGLSLFragmentProcessor> fps[],int cnt)172         explicit Iter(std::unique_ptr<GrGLSLFragmentProcessor> fps[], int cnt) {
173             for (int i = cnt - 1; i >= 0; --i) {
174                 fFPStack.push_back(fps[i].get());
175             }
176         }
177         GrGLSLFragmentProcessor* next();
178 
179     private:
180         SkSTArray<4, GrGLSLFragmentProcessor*, true> fFPStack;
181     };
182 
183 protected:
184     /** A GrGLSLFragmentProcessor instance can be reused with any GrFragmentProcessor that produces
185     the same stage key; this function reads data from a GrFragmentProcessor and uploads any
186     uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
187     parameter is guaranteed to be of the same type that created this GrGLSLFragmentProcessor and
188     to have an identical processor key as the one that created this GrGLSLFragmentProcessor.  */
onSetData(const GrGLSLProgramDataManager &,const GrFragmentProcessor &)189     virtual void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) {}
190 
191 private:
192     void internalEmitChild(int, const char*, const char*, EmitArgs&);
193 
194     SkTArray<GrGLSLFragmentProcessor*, true> fChildProcessors;
195 
196     friend class GrFragmentProcessor;
197 };
198 
199 #endif
200