1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrAAConvexTessellator.h"
9 #include "SkCanvas.h"
10 #include "SkPath.h"
11 #include "SkPoint.h"
12 #include "SkString.h"
13 #include "GrPathUtils.h"
14 
15 // Next steps:
16 //  add an interactive sample app slide
17 //  add debug check that all points are suitably far apart
18 //  test more degenerate cases
19 
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = kClose * kClose;
23 
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.25f;
28 
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31 
32 // dot product above which we consider two adjacent curves to be part of the "same" curve
33 static const SkScalar kCurveConnectionThreshold = 0.8f;
34 
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)35 static bool intersect(const SkPoint& p0, const SkPoint& n0,
36                       const SkPoint& p1, const SkPoint& n1,
37                       SkScalar* t) {
38     const SkPoint v = p1 - p0;
39     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
40     if (SkScalarNearlyZero(perpDot)) {
41         return false;
42     }
43     *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
44     SkASSERT(SkScalarIsFinite(*t));
45     return true;
46 }
47 
48 // This is a special case version of intersect where we have the vector
49 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)50 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
51                                const SkPoint& p1, const SkPoint& perp) {
52     const SkPoint v = p1 - p0;
53     SkScalar perpDot = n0.dot(perp);
54     return v.dot(perp) / perpDot;
55 }
56 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)57 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
58     SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
59     return distSq < kCloseSqd;
60 }
61 
points_are_colinear_and_b_is_middle(const SkPoint & a,const SkPoint & b,const SkPoint & c)62 static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
63                                                 const SkPoint& c) {
64     // 'area' is twice the area of the triangle with corners a, b, and c.
65     SkScalar area = a.fX * (b.fY - c.fY) + b.fX * (c.fY - a.fY) + c.fX * (a.fY - b.fY);
66     if (SkScalarAbs(area) >= 2 * kCloseSqd) {
67         return false;
68     }
69     return (a - b).dot(b - c) >= 0;
70 }
71 
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)72 int GrAAConvexTessellator::addPt(const SkPoint& pt,
73                                  SkScalar depth,
74                                  SkScalar coverage,
75                                  bool movable,
76                                  CurveState curve) {
77     SkASSERT(pt.isFinite());
78     this->validate();
79 
80     int index = fPts.count();
81     *fPts.push() = pt;
82     *fCoverages.push() = coverage;
83     *fMovable.push() = movable;
84     *fCurveState.push() = curve;
85 
86     this->validate();
87     return index;
88 }
89 
popLastPt()90 void GrAAConvexTessellator::popLastPt() {
91     this->validate();
92 
93     fPts.pop();
94     fCoverages.pop();
95     fMovable.pop();
96     fCurveState.pop();
97 
98     this->validate();
99 }
100 
popFirstPtShuffle()101 void GrAAConvexTessellator::popFirstPtShuffle() {
102     this->validate();
103 
104     fPts.removeShuffle(0);
105     fCoverages.removeShuffle(0);
106     fMovable.removeShuffle(0);
107     fCurveState.removeShuffle(0);
108 
109     this->validate();
110 }
111 
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)112 void GrAAConvexTessellator::updatePt(int index,
113                                      const SkPoint& pt,
114                                      SkScalar depth,
115                                      SkScalar coverage) {
116     this->validate();
117     SkASSERT(fMovable[index]);
118 
119     fPts[index] = pt;
120     fCoverages[index] = coverage;
121 }
122 
addTri(int i0,int i1,int i2)123 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
124     if (i0 == i1 || i1 == i2 || i2 == i0) {
125         return;
126     }
127 
128     *fIndices.push() = i0;
129     *fIndices.push() = i1;
130     *fIndices.push() = i2;
131 }
132 
rewind()133 void GrAAConvexTessellator::rewind() {
134     fPts.rewind();
135     fCoverages.rewind();
136     fMovable.rewind();
137     fIndices.rewind();
138     fNorms.rewind();
139     fCurveState.rewind();
140     fInitialRing.rewind();
141     fCandidateVerts.rewind();
142 #if GR_AA_CONVEX_TESSELLATOR_VIZ
143     fRings.rewind();        // TODO: leak in this case!
144 #else
145     fRings[0].rewind();
146     fRings[1].rewind();
147 #endif
148 }
149 
computeNormals()150 void GrAAConvexTessellator::computeNormals() {
151     auto normalToVector = [this](SkVector v) {
152         SkVector n = SkPointPriv::MakeOrthog(v, fSide);
153         SkAssertResult(n.normalize());
154         SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
155         return n;
156     };
157 
158     // Check the cross product of the final trio
159     fNorms.append(fPts.count());
160     fNorms[0] = fPts[1] - fPts[0];
161     fNorms.top() = fPts[0] - fPts.top();
162     SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
163     fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
164     fNorms[0] = normalToVector(fNorms[0]);
165     for (int cur = 1; cur < fNorms.count() - 1; ++cur) {
166         fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
167     }
168     fNorms.top() = normalToVector(fNorms.top());
169 }
170 
computeBisectors()171 void GrAAConvexTessellator::computeBisectors() {
172     fBisectors.setCount(fNorms.count());
173 
174     int prev = fBisectors.count() - 1;
175     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
176         fBisectors[cur] = fNorms[cur] + fNorms[prev];
177         if (!fBisectors[cur].normalize()) {
178             fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
179                               SkPointPriv::MakeOrthog(fNorms[prev], fSide);
180             SkAssertResult(fBisectors[cur].normalize());
181         } else {
182             fBisectors[cur].negate();      // make the bisector face in
183         }
184         if (fCurveState[prev] == kIndeterminate_CurveState) {
185             if (fCurveState[cur] == kSharp_CurveState) {
186                 fCurveState[prev] = kSharp_CurveState;
187             } else {
188                 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
189                     fCurveState[prev] = kCurve_CurveState;
190                     fCurveState[cur]  = kCurve_CurveState;
191                 } else {
192                     fCurveState[prev] = kSharp_CurveState;
193                     fCurveState[cur]  = kSharp_CurveState;
194                 }
195             }
196         }
197 
198         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
199     }
200 }
201 
202 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
203 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)204 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
205                                              SkScalar initialCoverage, SkScalar targetDepth,
206                                              SkScalar targetCoverage, Ring** finalRing) {
207     static const int kMaxNumRings = 8;
208 
209     if (previousRing.numPts() < 3) {
210         return false;
211     }
212     Ring* currentRing = &previousRing;
213     int i;
214     for (i = 0; i < kMaxNumRings; ++i) {
215         Ring* nextRing = this->getNextRing(currentRing);
216         SkASSERT(nextRing != currentRing);
217 
218         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
219                                           targetDepth, targetCoverage, i == 0);
220         currentRing = nextRing;
221         if (done) {
222             break;
223         }
224         currentRing->init(*this);
225     }
226 
227     if (kMaxNumRings == i) {
228         // Bail if we've exceeded the amount of time we want to throw at this.
229         this->terminate(*currentRing);
230         return false;
231     }
232     bool done = currentRing->numPts() >= 3;
233     if (done) {
234         currentRing->init(*this);
235     }
236     *finalRing = currentRing;
237     return done;
238 }
239 
240 // The general idea here is to, conceptually, start with the original polygon and slide
241 // the vertices along the bisectors until the first intersection. At that
242 // point two of the edges collapse and the process repeats on the new polygon.
243 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
244 // controls the iteration. The CandidateVerts holds the formative points for the
245 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)246 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
247     if (!this->extractFromPath(m, path)) {
248         return false;
249     }
250 
251     SkScalar coverage = 1.0f;
252     SkScalar scaleFactor = 0.0f;
253 
254     if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
255         SkASSERT(m.isSimilarity());
256         scaleFactor = m.getMaxScale(); // x and y scale are the same
257         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
258         Ring outerStrokeAndAARing;
259         this->createOuterRing(fInitialRing,
260                               effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
261                               &outerStrokeAndAARing);
262 
263         // discard all the triangles added between the originating ring and the new outer ring
264         fIndices.rewind();
265 
266         outerStrokeAndAARing.init(*this);
267 
268         outerStrokeAndAARing.makeOriginalRing();
269 
270         // Add the outer stroke ring's normals to the originating ring's normals
271         // so it can also act as an originating ring
272         fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
273         for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
274             SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
275             fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
276         }
277 
278         // the bisectors are only needed for the computation of the outer ring
279         fBisectors.rewind();
280 
281         Ring* insetAARing;
282         this->createInsetRings(outerStrokeAndAARing,
283                                0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
284                                &insetAARing);
285 
286         SkDEBUGCODE(this->validate();)
287         return true;
288     }
289 
290     if (SkStrokeRec::kStroke_Style == fStyle) {
291         SkASSERT(fStrokeWidth >= 0.0f);
292         SkASSERT(m.isSimilarity());
293         scaleFactor = m.getMaxScale(); // x and y scale are the same
294         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
295         Ring outerStrokeRing;
296         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
297                               coverage, &outerStrokeRing);
298         outerStrokeRing.init(*this);
299         Ring outerAARing;
300         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
301     } else {
302         Ring outerAARing;
303         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
304     }
305 
306     // the bisectors are only needed for the computation of the outer ring
307     fBisectors.rewind();
308     if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
309         SkASSERT(fStrokeWidth >= 0.0f);
310         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
311         Ring* insetStrokeRing;
312         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
313         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
314                                    &insetStrokeRing)) {
315             Ring* insetAARing;
316             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
317                                    kAntialiasingRadius * 2, 0.0f, &insetAARing);
318         }
319     } else {
320         Ring* insetAARing;
321         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
322     }
323 
324     SkDEBUGCODE(this->validate();)
325     return true;
326 }
327 
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const328 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
329     SkASSERT(edgeIdx < fNorms.count());
330 
331     SkPoint v = p - fPts[edgeIdx];
332     SkScalar depth = -fNorms[edgeIdx].dot(v);
333     return depth;
334 }
335 
336 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
337 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const338 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
339                                                    const SkVector& bisector,
340                                                    int edgeIdx,
341                                                    SkScalar desiredDepth,
342                                                    SkPoint* result) const {
343     const SkPoint& norm = fNorms[edgeIdx];
344 
345     // First find the point where the edge and the bisector intersect
346     SkPoint newP;
347 
348     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
349     if (SkScalarNearlyEqual(t, 0.0f)) {
350         // the start point was one of the original ring points
351         SkASSERT(startIdx < fPts.count());
352         newP = fPts[startIdx];
353     } else if (t < 0.0f) {
354         newP = bisector;
355         newP.scale(t);
356         newP += fPts[startIdx];
357     } else {
358         return false;
359     }
360 
361     // Then offset along the bisector from that point the correct distance
362     SkScalar dot = bisector.dot(norm);
363     t = -desiredDepth / dot;
364     *result = bisector;
365     result->scale(t);
366     *result += newP;
367 
368     return true;
369 }
370 
extractFromPath(const SkMatrix & m,const SkPath & path)371 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
372     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
373 
374     SkRect bounds = path.getBounds();
375     m.mapRect(&bounds);
376     if (!bounds.isFinite()) {
377         // We could do something smarter here like clip the path based on the bounds of the dst.
378         // We'd have to be careful about strokes to ensure we don't draw something wrong.
379         return false;
380     }
381 
382     // Outer ring: 3*numPts
383     // Middle ring: numPts
384     // Presumptive inner ring: numPts
385     this->reservePts(5*path.countPoints());
386     // Outer ring: 12*numPts
387     // Middle ring: 0
388     // Presumptive inner ring: 6*numPts + 6
389     fIndices.setReserve(18*path.countPoints() + 6);
390 
391     // TODO: is there a faster way to extract the points from the path? Perhaps
392     // get all the points via a new entry point, transform them all in bulk
393     // and then walk them to find duplicates?
394     SkPath::Iter iter(path, true);
395     SkPoint pts[4];
396     SkPath::Verb verb;
397     while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
398         switch (verb) {
399             case SkPath::kLine_Verb:
400                 this->lineTo(m, pts[1], kSharp_CurveState);
401                 break;
402             case SkPath::kQuad_Verb:
403                 this->quadTo(m, pts);
404                 break;
405             case SkPath::kCubic_Verb:
406                 this->cubicTo(m, pts);
407                 break;
408             case SkPath::kConic_Verb:
409                 this->conicTo(m, pts, iter.conicWeight());
410                 break;
411             case SkPath::kMove_Verb:
412             case SkPath::kClose_Verb:
413             case SkPath::kDone_Verb:
414                 break;
415         }
416     }
417 
418     if (this->numPts() < 2) {
419         return false;
420     }
421 
422     // check if last point is a duplicate of the first point. If so, remove it.
423     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
424         this->popLastPt();
425     }
426 
427     // Remove any lingering colinear points where the path wraps around
428     bool noRemovalsToDo = false;
429     while (!noRemovalsToDo && this->numPts() >= 3) {
430         if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0])) {
431             this->popLastPt();
432         } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1])) {
433             this->popFirstPtShuffle();
434         } else {
435             noRemovalsToDo = true;
436         }
437     }
438 
439     // Compute the normals and bisectors.
440     SkASSERT(fNorms.empty());
441     if (this->numPts() >= 3) {
442         this->computeNormals();
443         this->computeBisectors();
444     } else if (this->numPts() == 2) {
445         // We've got two points, so we're degenerate.
446         if (fStyle == SkStrokeRec::kFill_Style) {
447             // it's a fill, so we don't need to worry about degenerate paths
448             return false;
449         }
450         // For stroking, we still need to process the degenerate path, so fix it up
451         fSide = SkPointPriv::kLeft_Side;
452 
453         fNorms.append(2);
454         fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
455         fNorms[0].normalize();
456         fNorms[1] = -fNorms[0];
457         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
458         // we won't actually use the bisectors, so just push zeroes
459         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
460         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
461     } else {
462         return false;
463     }
464 
465     fCandidateVerts.setReserve(this->numPts());
466     fInitialRing.setReserve(this->numPts());
467     for (int i = 0; i < this->numPts(); ++i) {
468         fInitialRing.addIdx(i, i);
469     }
470     fInitialRing.init(fNorms, fBisectors);
471 
472     this->validate();
473     return true;
474 }
475 
getNextRing(Ring * lastRing)476 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
477 #if GR_AA_CONVEX_TESSELLATOR_VIZ
478     Ring* ring = *fRings.push() = new Ring;
479     ring->setReserve(fInitialRing.numPts());
480     ring->rewind();
481     return ring;
482 #else
483     // Flip flop back and forth between fRings[0] & fRings[1]
484     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
485     fRings[nextRing].setReserve(fInitialRing.numPts());
486     fRings[nextRing].rewind();
487     return &fRings[nextRing];
488 #endif
489 }
490 
fanRing(const Ring & ring)491 void GrAAConvexTessellator::fanRing(const Ring& ring) {
492     // fan out from point 0
493     int startIdx = ring.index(0);
494     for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
495         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
496     }
497 }
498 
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)499 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
500                                             SkScalar coverage, Ring* nextRing) {
501     const int numPts = previousRing.numPts();
502     if (numPts == 0) {
503         return;
504     }
505 
506     int prev = numPts - 1;
507     int lastPerpIdx = -1, firstPerpIdx = -1;
508 
509     const SkScalar outsetSq = outset * outset;
510     SkScalar miterLimitSq = outset * fMiterLimit;
511     miterLimitSq = miterLimitSq * miterLimitSq;
512     for (int cur = 0; cur < numPts; ++cur) {
513         int originalIdx = previousRing.index(cur);
514         // For each vertex of the original polygon we add at least two points to the
515         // outset polygon - one extending perpendicular to each impinging edge. Connecting these
516         // two points yields a bevel join. We need one additional point for a mitered join, and
517         // a round join requires one or more points depending upon curvature.
518 
519         // The perpendicular point for the last edge
520         SkPoint normal1 = previousRing.norm(prev);
521         SkPoint perp1 = normal1;
522         perp1.scale(outset);
523         perp1 += this->point(originalIdx);
524 
525         // The perpendicular point for the next edge.
526         SkPoint normal2 = previousRing.norm(cur);
527         SkPoint perp2 = normal2;
528         perp2.scale(outset);
529         perp2 += fPts[originalIdx];
530 
531         CurveState curve = fCurveState[originalIdx];
532 
533         // We know it isn't a duplicate of the prior point (since it and this
534         // one are just perpendicular offsets from the non-merged polygon points)
535         int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
536         nextRing->addIdx(perp1Idx, originalIdx);
537 
538         int perp2Idx;
539         // For very shallow angles all the corner points could fuse.
540         if (duplicate_pt(perp2, this->point(perp1Idx))) {
541             perp2Idx = perp1Idx;
542         } else {
543             perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
544         }
545 
546         if (perp2Idx != perp1Idx) {
547             if (curve == kCurve_CurveState) {
548                 // bevel or round depending upon curvature
549                 SkScalar dotProd = normal1.dot(normal2);
550                 if (dotProd < kRoundCapThreshold) {
551                     // Currently we "round" by creating a single extra point, which produces
552                     // good results for common cases. For thick strokes with high curvature, we will
553                     // need to add more points; for the time being we simply fall back to software
554                     // rendering for thick strokes.
555                     SkPoint miter = previousRing.bisector(cur);
556                     miter.setLength(-outset);
557                     miter += fPts[originalIdx];
558 
559                     // For very shallow angles all the corner points could fuse
560                     if (!duplicate_pt(miter, this->point(perp1Idx))) {
561                         int miterIdx;
562                         miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
563                         nextRing->addIdx(miterIdx, originalIdx);
564                         // The two triangles for the corner
565                         this->addTri(originalIdx, perp1Idx, miterIdx);
566                         this->addTri(originalIdx, miterIdx, perp2Idx);
567                     }
568                 } else {
569                     this->addTri(originalIdx, perp1Idx, perp2Idx);
570                 }
571             } else {
572                 switch (fJoin) {
573                     case SkPaint::Join::kMiter_Join: {
574                         // The bisector outset point
575                         SkPoint miter = previousRing.bisector(cur);
576                         SkScalar dotProd = normal1.dot(normal2);
577                         // The max is because this could go slightly negative if precision causes
578                         // us to become slightly concave.
579                         SkScalar sinHalfAngleSq = SkTMax(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
580                         SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
581                         if (lengthSq > miterLimitSq) {
582                             // just bevel it
583                             this->addTri(originalIdx, perp1Idx, perp2Idx);
584                             break;
585                         }
586                         miter.setLength(-SkScalarSqrt(lengthSq));
587                         miter += fPts[originalIdx];
588 
589                         // For very shallow angles all the corner points could fuse
590                         if (!duplicate_pt(miter, this->point(perp1Idx))) {
591                             int miterIdx;
592                             miterIdx = this->addPt(miter, -outset, coverage, false,
593                                                    kSharp_CurveState);
594                             nextRing->addIdx(miterIdx, originalIdx);
595                             // The two triangles for the corner
596                             this->addTri(originalIdx, perp1Idx, miterIdx);
597                             this->addTri(originalIdx, miterIdx, perp2Idx);
598                         } else {
599                             // ignore the miter point as it's so close to perp1/perp2 and simply
600                             // bevel.
601                             this->addTri(originalIdx, perp1Idx, perp2Idx);
602                         }
603                         break;
604                     }
605                     case SkPaint::Join::kBevel_Join:
606                         this->addTri(originalIdx, perp1Idx, perp2Idx);
607                         break;
608                     default:
609                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
610                         // only willing to draw mitered or beveled, so we should never get here.
611                         SkASSERT(false);
612                 }
613             }
614 
615             nextRing->addIdx(perp2Idx, originalIdx);
616         }
617 
618         if (0 == cur) {
619             // Store the index of the first perpendicular point to finish up
620             firstPerpIdx = perp1Idx;
621             SkASSERT(-1 == lastPerpIdx);
622         } else {
623             // The triangles for the previous edge
624             int prevIdx = previousRing.index(prev);
625             this->addTri(prevIdx, perp1Idx, originalIdx);
626             this->addTri(prevIdx, lastPerpIdx, perp1Idx);
627         }
628 
629         // Track the last perpendicular outset point so we can construct the
630         // trailing edge triangles.
631         lastPerpIdx = perp2Idx;
632         prev = cur;
633     }
634 
635     // pick up the final edge rect
636     int lastIdx = previousRing.index(numPts - 1);
637     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
638     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
639 
640     this->validate();
641 }
642 
643 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
644 // and fan it.
terminate(const Ring & ring)645 void GrAAConvexTessellator::terminate(const Ring& ring) {
646     if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
647         this->fanRing(ring);
648     }
649 }
650 
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)651 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
652                                 SkScalar targetDepth, SkScalar targetCoverage) {
653     if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
654         return targetCoverage;
655     }
656     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
657             (targetCoverage - initialCoverage) + initialCoverage;
658     return SkScalarClampMax(result, 1.0f);
659 }
660 
661 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)662 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
663                                             SkScalar initialDepth, SkScalar initialCoverage,
664                                             SkScalar targetDepth, SkScalar targetCoverage,
665                                             bool forceNew) {
666     bool done = false;
667 
668     fCandidateVerts.rewind();
669 
670     // Loop through all the points in the ring and find the intersection with the smallest depth
671     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
672     int minEdgeIdx = -1;
673 
674     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
675         int next = (cur + 1) % lastRing.numPts();
676 
677         SkScalar t;
678         bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
679                                 this->point(lastRing.index(next)), lastRing.bisector(next),
680                                 &t);
681         // The bisectors may be parallel (!result) or the previous ring may have become slightly
682         // concave due to accumulated error (t <= 0).
683         if (!result || t <= 0) {
684             continue;
685         }
686         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
687 
688         if (minDist > dist) {
689             minDist = dist;
690             minT = t;
691             minEdgeIdx = cur;
692         }
693     }
694 
695     if (minEdgeIdx == -1) {
696         return false;
697     }
698     SkPoint newPt = lastRing.bisector(minEdgeIdx);
699     newPt.scale(minT);
700     newPt += this->point(lastRing.index(minEdgeIdx));
701 
702     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
703     if (depth >= targetDepth) {
704         // None of the bisectors intersect before reaching the desired depth.
705         // Just step them all to the desired depth
706         depth = targetDepth;
707         done = true;
708     }
709 
710     // 'dst' stores where each point in the last ring maps to/transforms into
711     // in the next ring.
712     SkTDArray<int> dst;
713     dst.setCount(lastRing.numPts());
714 
715     // Create the first point (who compares with no one)
716     if (!this->computePtAlongBisector(lastRing.index(0),
717                                       lastRing.bisector(0),
718                                       lastRing.origEdgeID(0),
719                                       depth, &newPt)) {
720         this->terminate(lastRing);
721         return true;
722     }
723     dst[0] = fCandidateVerts.addNewPt(newPt,
724                                       lastRing.index(0), lastRing.origEdgeID(0),
725                                       !this->movable(lastRing.index(0)));
726 
727     // Handle the middle points (who only compare with the prior point)
728     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
729         if (!this->computePtAlongBisector(lastRing.index(cur),
730                                           lastRing.bisector(cur),
731                                           lastRing.origEdgeID(cur),
732                                           depth, &newPt)) {
733             this->terminate(lastRing);
734             return true;
735         }
736         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
737             dst[cur] = fCandidateVerts.addNewPt(newPt,
738                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
739                                                 !this->movable(lastRing.index(cur)));
740         } else {
741             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
742         }
743     }
744 
745     // Check on the last point (handling the wrap around)
746     int cur = lastRing.numPts()-1;
747     if  (!this->computePtAlongBisector(lastRing.index(cur),
748                                        lastRing.bisector(cur),
749                                        lastRing.origEdgeID(cur),
750                                        depth, &newPt)) {
751         this->terminate(lastRing);
752         return true;
753     }
754     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
755     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
756 
757     if (!dupPrev && !dupNext) {
758         dst[cur] = fCandidateVerts.addNewPt(newPt,
759                                             lastRing.index(cur), lastRing.origEdgeID(cur),
760                                             !this->movable(lastRing.index(cur)));
761     } else if (dupPrev && !dupNext) {
762         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
763     } else if (!dupPrev && dupNext) {
764         dst[cur] = fCandidateVerts.fuseWithNext();
765     } else {
766         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
767 
768         if (!dupPrevVsNext) {
769             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
770         } else {
771             const int fused = fCandidateVerts.fuseWithBoth();
772             dst[cur] = fused;
773             const int targetIdx = dst[cur - 1];
774             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
775                 dst[i] = fused;
776             }
777         }
778     }
779 
780     // Fold the new ring's points into the global pool
781     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
782         int newIdx;
783         if (fCandidateVerts.needsToBeNew(i) || forceNew) {
784             // if the originating index is still valid then this point wasn't
785             // fused (and is thus movable)
786             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
787                                                  targetDepth, targetCoverage);
788             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
789                                  fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
790         } else {
791             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
792             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
793                            targetCoverage);
794             newIdx = fCandidateVerts.originatingIdx(i);
795         }
796 
797         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
798     }
799 
800     // 'dst' currently has indices into the ring. Remap these to be indices
801     // into the global pool since the triangulation operates in that space.
802     for (int i = 0; i < dst.count(); ++i) {
803         dst[i] = nextRing->index(dst[i]);
804     }
805 
806     for (int i = 0; i < lastRing.numPts(); ++i) {
807         int next = (i + 1) % lastRing.numPts();
808 
809         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
810         this->addTri(lastRing.index(i), dst[next], dst[i]);
811     }
812 
813     if (done && fStyle != SkStrokeRec::kStroke_Style) {
814         // fill or stroke-and-fill
815         this->fanRing(*nextRing);
816     }
817 
818     if (nextRing->numPts() < 3) {
819         done = true;
820     }
821     return done;
822 }
823 
validate() const824 void GrAAConvexTessellator::validate() const {
825     SkASSERT(fPts.count() == fMovable.count());
826     SkASSERT(fPts.count() == fCoverages.count());
827     SkASSERT(fPts.count() == fCurveState.count());
828     SkASSERT(0 == (fIndices.count() % 3));
829     SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
830 }
831 
832 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)833 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
834     this->computeNormals(tess);
835     this->computeBisectors(tess);
836 }
837 
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)838 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
839                                        const SkTDArray<SkVector>& bisectors) {
840     for (int i = 0; i < fPts.count(); ++i) {
841         fPts[i].fNorm = norms[i];
842         fPts[i].fBisector = bisectors[i];
843     }
844 }
845 
846 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)847 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
848     for (int cur = 0; cur < fPts.count(); ++cur) {
849         int next = (cur + 1) % fPts.count();
850 
851         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
852         SkPoint::Normalize(&fPts[cur].fNorm);
853         fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
854     }
855 }
856 
computeBisectors(const GrAAConvexTessellator & tess)857 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
858     int prev = fPts.count() - 1;
859     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
860         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
861         if (!fPts[cur].fBisector.normalize()) {
862             fPts[cur].fBisector =
863                     SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
864                     SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
865             SkAssertResult(fPts[cur].fBisector.normalize());
866         } else {
867             fPts[cur].fBisector.negate();      // make the bisector face in
868         }
869     }
870 }
871 
872 //////////////////////////////////////////////////////////////////////////////
873 #ifdef SK_DEBUG
874 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const875 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
876     if (fPts.count() < 3) {
877         return true;
878     }
879 
880     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
881     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
882     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
883     SkScalar maxDot = minDot;
884 
885     prev = cur;
886     for (int i = 1; i < fPts.count(); ++i) {
887         int next = (i + 1) % fPts.count();
888 
889         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
890         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
891 
892         minDot = SkMinScalar(minDot, dot);
893         maxDot = SkMaxScalar(maxDot, dot);
894 
895         prev = cur;
896     }
897 
898     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
899         maxDot = 0;
900     }
901     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
902         minDot = 0;
903     }
904     return (maxDot >= 0.0f) == (minDot >= 0.0f);
905 }
906 
907 #endif
908 
lineTo(const SkPoint & p,CurveState curve)909 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
910     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
911         return;
912     }
913 
914     if (this->numPts() >= 2 &&
915         points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p)) {
916         // The old last point is on the line from the second to last to the new point
917         this->popLastPt();
918         // double-check that the new last point is not a duplicate of the new point. In an ideal
919         // world this wouldn't be necessary (since it's only possible for non-convex paths), but
920         // floating point precision issues mean it can actually happen on paths that were
921         // determined to be convex.
922         if (duplicate_pt(p, this->lastPoint())) {
923             return;
924         }
925     }
926     SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
927     this->addPt(p, 0.0f, initialRingCoverage, false, curve);
928 }
929 
lineTo(const SkMatrix & m,SkPoint p,CurveState curve)930 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
931     m.mapPoints(&p, 1);
932     this->lineTo(p, curve);
933 }
934 
quadTo(const SkPoint pts[3])935 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
936     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
937     fPointBuffer.setCount(maxCount);
938     SkPoint* target = fPointBuffer.begin();
939     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
940                                                      kQuadTolerance, &target, maxCount);
941     fPointBuffer.setCount(count);
942     for (int i = 0; i < count - 1; i++) {
943         this->lineTo(fPointBuffer[i], kCurve_CurveState);
944     }
945     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
946 }
947 
quadTo(const SkMatrix & m,SkPoint pts[3])948 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
949     m.mapPoints(pts, 3);
950     this->quadTo(pts);
951 }
952 
cubicTo(const SkMatrix & m,SkPoint pts[4])953 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
954     m.mapPoints(pts, 4);
955     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
956     fPointBuffer.setCount(maxCount);
957     SkPoint* target = fPointBuffer.begin();
958     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
959             kCubicTolerance, &target, maxCount);
960     fPointBuffer.setCount(count);
961     for (int i = 0; i < count - 1; i++) {
962         this->lineTo(fPointBuffer[i], kCurve_CurveState);
963     }
964     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
965 }
966 
967 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
968 #include "SkGeometry.h"
969 
conicTo(const SkMatrix & m,SkPoint pts[3],SkScalar w)970 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
971     m.mapPoints(pts, 3);
972     SkAutoConicToQuads quadder;
973     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
974     SkPoint lastPoint = *(quads++);
975     int count = quadder.countQuads();
976     for (int i = 0; i < count; ++i) {
977         SkPoint quadPts[3];
978         quadPts[0] = lastPoint;
979         quadPts[1] = quads[0];
980         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
981         this->quadTo(quadPts);
982         lastPoint = quadPts[2];
983         quads += 2;
984     }
985 }
986 
987 //////////////////////////////////////////////////////////////////////////////
988 #if GR_AA_CONVEX_TESSELLATOR_VIZ
989 static const SkScalar kPointRadius = 0.02f;
990 static const SkScalar kArrowStrokeWidth = 0.0f;
991 static const SkScalar kArrowLength = 0.2f;
992 static const SkScalar kEdgeTextSize = 0.1f;
993 static const SkScalar kPointTextSize = 0.02f;
994 
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)995 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
996     SkPaint paint;
997     SkASSERT(paramValue <= 1.0f);
998     int gs = int(255*paramValue);
999     paint.setARGB(255, gs, gs, gs);
1000 
1001     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1002 
1003     if (stroke) {
1004         SkPaint stroke;
1005         stroke.setColor(SK_ColorYELLOW);
1006         stroke.setStyle(SkPaint::kStroke_Style);
1007         stroke.setStrokeWidth(kPointRadius/3.0f);
1008         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1009     }
1010 }
1011 
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1012 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1013     SkPaint p;
1014     p.setColor(color);
1015 
1016     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1017 }
1018 
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1019 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1020                        SkScalar len, SkColor color) {
1021     SkPaint paint;
1022     paint.setColor(color);
1023     paint.setStrokeWidth(kArrowStrokeWidth);
1024     paint.setStyle(SkPaint::kStroke_Style);
1025 
1026     canvas->drawLine(p.fX, p.fY,
1027                      p.fX + len * n.fX, p.fY + len * n.fY,
1028                      paint);
1029 }
1030 
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1031 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1032     SkPaint paint;
1033     paint.setTextSize(kEdgeTextSize);
1034 
1035     for (int cur = 0; cur < fPts.count(); ++cur) {
1036         int next = (cur + 1) % fPts.count();
1037 
1038         draw_line(canvas,
1039                   tess.point(fPts[cur].fIndex),
1040                   tess.point(fPts[next].fIndex),
1041                   SK_ColorGREEN);
1042 
1043         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1044         mid.scale(0.5f);
1045 
1046         if (fPts.count()) {
1047             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1048             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1049             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1050         }
1051 
1052         SkString num;
1053         num.printf("%d", this->origEdgeID(cur));
1054         canvas->drawString(num, mid.fX, mid.fY, paint);
1055 
1056         if (fPts.count()) {
1057             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1058                        kArrowLength, SK_ColorBLUE);
1059         }
1060     }
1061 }
1062 
draw(SkCanvas * canvas) const1063 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1064     for (int i = 0; i < fIndices.count(); i += 3) {
1065         SkASSERT(fIndices[i] < this->numPts()) ;
1066         SkASSERT(fIndices[i+1] < this->numPts()) ;
1067         SkASSERT(fIndices[i+2] < this->numPts()) ;
1068 
1069         draw_line(canvas,
1070                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1071                   SK_ColorBLACK);
1072         draw_line(canvas,
1073                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1074                   SK_ColorBLACK);
1075         draw_line(canvas,
1076                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1077                   SK_ColorBLACK);
1078     }
1079 
1080     fInitialRing.draw(canvas, *this);
1081     for (int i = 0; i < fRings.count(); ++i) {
1082         fRings[i]->draw(canvas, *this);
1083     }
1084 
1085     for (int i = 0; i < this->numPts(); ++i) {
1086         draw_point(canvas,
1087                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1088                    !this->movable(i));
1089 
1090         SkPaint paint;
1091         paint.setTextSize(kPointTextSize);
1092         if (this->depth(i) <= -kAntialiasingRadius) {
1093             paint.setColor(SK_ColorWHITE);
1094         }
1095 
1096         SkString num;
1097         num.printf("%d", i);
1098         canvas->drawString(num,
1099                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1100                          paint);
1101     }
1102 }
1103 
1104 #endif
1105