1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrAAConvexTessellator.h"
9 #include "SkCanvas.h"
10 #include "SkPath.h"
11 #include "SkPoint.h"
12 #include "SkString.h"
13 #include "GrPathUtils.h"
14
15 // Next steps:
16 // add an interactive sample app slide
17 // add debug check that all points are suitably far apart
18 // test more degenerate cases
19
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = kClose * kClose;
23
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.25f;
28
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31
32 // dot product above which we consider two adjacent curves to be part of the "same" curve
33 static const SkScalar kCurveConnectionThreshold = 0.8f;
34
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)35 static bool intersect(const SkPoint& p0, const SkPoint& n0,
36 const SkPoint& p1, const SkPoint& n1,
37 SkScalar* t) {
38 const SkPoint v = p1 - p0;
39 SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
40 if (SkScalarNearlyZero(perpDot)) {
41 return false;
42 }
43 *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
44 SkASSERT(SkScalarIsFinite(*t));
45 return true;
46 }
47
48 // This is a special case version of intersect where we have the vector
49 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)50 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
51 const SkPoint& p1, const SkPoint& perp) {
52 const SkPoint v = p1 - p0;
53 SkScalar perpDot = n0.dot(perp);
54 return v.dot(perp) / perpDot;
55 }
56
duplicate_pt(const SkPoint & p0,const SkPoint & p1)57 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
58 SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
59 return distSq < kCloseSqd;
60 }
61
points_are_colinear_and_b_is_middle(const SkPoint & a,const SkPoint & b,const SkPoint & c)62 static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
63 const SkPoint& c) {
64 // 'area' is twice the area of the triangle with corners a, b, and c.
65 SkScalar area = a.fX * (b.fY - c.fY) + b.fX * (c.fY - a.fY) + c.fX * (a.fY - b.fY);
66 if (SkScalarAbs(area) >= 2 * kCloseSqd) {
67 return false;
68 }
69 return (a - b).dot(b - c) >= 0;
70 }
71
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)72 int GrAAConvexTessellator::addPt(const SkPoint& pt,
73 SkScalar depth,
74 SkScalar coverage,
75 bool movable,
76 CurveState curve) {
77 SkASSERT(pt.isFinite());
78 this->validate();
79
80 int index = fPts.count();
81 *fPts.push() = pt;
82 *fCoverages.push() = coverage;
83 *fMovable.push() = movable;
84 *fCurveState.push() = curve;
85
86 this->validate();
87 return index;
88 }
89
popLastPt()90 void GrAAConvexTessellator::popLastPt() {
91 this->validate();
92
93 fPts.pop();
94 fCoverages.pop();
95 fMovable.pop();
96 fCurveState.pop();
97
98 this->validate();
99 }
100
popFirstPtShuffle()101 void GrAAConvexTessellator::popFirstPtShuffle() {
102 this->validate();
103
104 fPts.removeShuffle(0);
105 fCoverages.removeShuffle(0);
106 fMovable.removeShuffle(0);
107 fCurveState.removeShuffle(0);
108
109 this->validate();
110 }
111
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)112 void GrAAConvexTessellator::updatePt(int index,
113 const SkPoint& pt,
114 SkScalar depth,
115 SkScalar coverage) {
116 this->validate();
117 SkASSERT(fMovable[index]);
118
119 fPts[index] = pt;
120 fCoverages[index] = coverage;
121 }
122
addTri(int i0,int i1,int i2)123 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
124 if (i0 == i1 || i1 == i2 || i2 == i0) {
125 return;
126 }
127
128 *fIndices.push() = i0;
129 *fIndices.push() = i1;
130 *fIndices.push() = i2;
131 }
132
rewind()133 void GrAAConvexTessellator::rewind() {
134 fPts.rewind();
135 fCoverages.rewind();
136 fMovable.rewind();
137 fIndices.rewind();
138 fNorms.rewind();
139 fCurveState.rewind();
140 fInitialRing.rewind();
141 fCandidateVerts.rewind();
142 #if GR_AA_CONVEX_TESSELLATOR_VIZ
143 fRings.rewind(); // TODO: leak in this case!
144 #else
145 fRings[0].rewind();
146 fRings[1].rewind();
147 #endif
148 }
149
computeNormals()150 void GrAAConvexTessellator::computeNormals() {
151 auto normalToVector = [this](SkVector v) {
152 SkVector n = SkPointPriv::MakeOrthog(v, fSide);
153 SkAssertResult(n.normalize());
154 SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
155 return n;
156 };
157
158 // Check the cross product of the final trio
159 fNorms.append(fPts.count());
160 fNorms[0] = fPts[1] - fPts[0];
161 fNorms.top() = fPts[0] - fPts.top();
162 SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
163 fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
164 fNorms[0] = normalToVector(fNorms[0]);
165 for (int cur = 1; cur < fNorms.count() - 1; ++cur) {
166 fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
167 }
168 fNorms.top() = normalToVector(fNorms.top());
169 }
170
computeBisectors()171 void GrAAConvexTessellator::computeBisectors() {
172 fBisectors.setCount(fNorms.count());
173
174 int prev = fBisectors.count() - 1;
175 for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
176 fBisectors[cur] = fNorms[cur] + fNorms[prev];
177 if (!fBisectors[cur].normalize()) {
178 fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
179 SkPointPriv::MakeOrthog(fNorms[prev], fSide);
180 SkAssertResult(fBisectors[cur].normalize());
181 } else {
182 fBisectors[cur].negate(); // make the bisector face in
183 }
184 if (fCurveState[prev] == kIndeterminate_CurveState) {
185 if (fCurveState[cur] == kSharp_CurveState) {
186 fCurveState[prev] = kSharp_CurveState;
187 } else {
188 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
189 fCurveState[prev] = kCurve_CurveState;
190 fCurveState[cur] = kCurve_CurveState;
191 } else {
192 fCurveState[prev] = kSharp_CurveState;
193 fCurveState[cur] = kSharp_CurveState;
194 }
195 }
196 }
197
198 SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
199 }
200 }
201
202 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
203 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)204 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
205 SkScalar initialCoverage, SkScalar targetDepth,
206 SkScalar targetCoverage, Ring** finalRing) {
207 static const int kMaxNumRings = 8;
208
209 if (previousRing.numPts() < 3) {
210 return false;
211 }
212 Ring* currentRing = &previousRing;
213 int i;
214 for (i = 0; i < kMaxNumRings; ++i) {
215 Ring* nextRing = this->getNextRing(currentRing);
216 SkASSERT(nextRing != currentRing);
217
218 bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
219 targetDepth, targetCoverage, i == 0);
220 currentRing = nextRing;
221 if (done) {
222 break;
223 }
224 currentRing->init(*this);
225 }
226
227 if (kMaxNumRings == i) {
228 // Bail if we've exceeded the amount of time we want to throw at this.
229 this->terminate(*currentRing);
230 return false;
231 }
232 bool done = currentRing->numPts() >= 3;
233 if (done) {
234 currentRing->init(*this);
235 }
236 *finalRing = currentRing;
237 return done;
238 }
239
240 // The general idea here is to, conceptually, start with the original polygon and slide
241 // the vertices along the bisectors until the first intersection. At that
242 // point two of the edges collapse and the process repeats on the new polygon.
243 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
244 // controls the iteration. The CandidateVerts holds the formative points for the
245 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)246 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
247 if (!this->extractFromPath(m, path)) {
248 return false;
249 }
250
251 SkScalar coverage = 1.0f;
252 SkScalar scaleFactor = 0.0f;
253
254 if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
255 SkASSERT(m.isSimilarity());
256 scaleFactor = m.getMaxScale(); // x and y scale are the same
257 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
258 Ring outerStrokeAndAARing;
259 this->createOuterRing(fInitialRing,
260 effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
261 &outerStrokeAndAARing);
262
263 // discard all the triangles added between the originating ring and the new outer ring
264 fIndices.rewind();
265
266 outerStrokeAndAARing.init(*this);
267
268 outerStrokeAndAARing.makeOriginalRing();
269
270 // Add the outer stroke ring's normals to the originating ring's normals
271 // so it can also act as an originating ring
272 fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
273 for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
274 SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
275 fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
276 }
277
278 // the bisectors are only needed for the computation of the outer ring
279 fBisectors.rewind();
280
281 Ring* insetAARing;
282 this->createInsetRings(outerStrokeAndAARing,
283 0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
284 &insetAARing);
285
286 SkDEBUGCODE(this->validate();)
287 return true;
288 }
289
290 if (SkStrokeRec::kStroke_Style == fStyle) {
291 SkASSERT(fStrokeWidth >= 0.0f);
292 SkASSERT(m.isSimilarity());
293 scaleFactor = m.getMaxScale(); // x and y scale are the same
294 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
295 Ring outerStrokeRing;
296 this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
297 coverage, &outerStrokeRing);
298 outerStrokeRing.init(*this);
299 Ring outerAARing;
300 this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
301 } else {
302 Ring outerAARing;
303 this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
304 }
305
306 // the bisectors are only needed for the computation of the outer ring
307 fBisectors.rewind();
308 if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
309 SkASSERT(fStrokeWidth >= 0.0f);
310 SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
311 Ring* insetStrokeRing;
312 SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
313 if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
314 &insetStrokeRing)) {
315 Ring* insetAARing;
316 this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
317 kAntialiasingRadius * 2, 0.0f, &insetAARing);
318 }
319 } else {
320 Ring* insetAARing;
321 this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
322 }
323
324 SkDEBUGCODE(this->validate();)
325 return true;
326 }
327
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const328 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
329 SkASSERT(edgeIdx < fNorms.count());
330
331 SkPoint v = p - fPts[edgeIdx];
332 SkScalar depth = -fNorms[edgeIdx].dot(v);
333 return depth;
334 }
335
336 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
337 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const338 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
339 const SkVector& bisector,
340 int edgeIdx,
341 SkScalar desiredDepth,
342 SkPoint* result) const {
343 const SkPoint& norm = fNorms[edgeIdx];
344
345 // First find the point where the edge and the bisector intersect
346 SkPoint newP;
347
348 SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
349 if (SkScalarNearlyEqual(t, 0.0f)) {
350 // the start point was one of the original ring points
351 SkASSERT(startIdx < fPts.count());
352 newP = fPts[startIdx];
353 } else if (t < 0.0f) {
354 newP = bisector;
355 newP.scale(t);
356 newP += fPts[startIdx];
357 } else {
358 return false;
359 }
360
361 // Then offset along the bisector from that point the correct distance
362 SkScalar dot = bisector.dot(norm);
363 t = -desiredDepth / dot;
364 *result = bisector;
365 result->scale(t);
366 *result += newP;
367
368 return true;
369 }
370
extractFromPath(const SkMatrix & m,const SkPath & path)371 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
372 SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
373
374 SkRect bounds = path.getBounds();
375 m.mapRect(&bounds);
376 if (!bounds.isFinite()) {
377 // We could do something smarter here like clip the path based on the bounds of the dst.
378 // We'd have to be careful about strokes to ensure we don't draw something wrong.
379 return false;
380 }
381
382 // Outer ring: 3*numPts
383 // Middle ring: numPts
384 // Presumptive inner ring: numPts
385 this->reservePts(5*path.countPoints());
386 // Outer ring: 12*numPts
387 // Middle ring: 0
388 // Presumptive inner ring: 6*numPts + 6
389 fIndices.setReserve(18*path.countPoints() + 6);
390
391 // TODO: is there a faster way to extract the points from the path? Perhaps
392 // get all the points via a new entry point, transform them all in bulk
393 // and then walk them to find duplicates?
394 SkPath::Iter iter(path, true);
395 SkPoint pts[4];
396 SkPath::Verb verb;
397 while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) {
398 switch (verb) {
399 case SkPath::kLine_Verb:
400 this->lineTo(m, pts[1], kSharp_CurveState);
401 break;
402 case SkPath::kQuad_Verb:
403 this->quadTo(m, pts);
404 break;
405 case SkPath::kCubic_Verb:
406 this->cubicTo(m, pts);
407 break;
408 case SkPath::kConic_Verb:
409 this->conicTo(m, pts, iter.conicWeight());
410 break;
411 case SkPath::kMove_Verb:
412 case SkPath::kClose_Verb:
413 case SkPath::kDone_Verb:
414 break;
415 }
416 }
417
418 if (this->numPts() < 2) {
419 return false;
420 }
421
422 // check if last point is a duplicate of the first point. If so, remove it.
423 if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
424 this->popLastPt();
425 }
426
427 // Remove any lingering colinear points where the path wraps around
428 bool noRemovalsToDo = false;
429 while (!noRemovalsToDo && this->numPts() >= 3) {
430 if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0])) {
431 this->popLastPt();
432 } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1])) {
433 this->popFirstPtShuffle();
434 } else {
435 noRemovalsToDo = true;
436 }
437 }
438
439 // Compute the normals and bisectors.
440 SkASSERT(fNorms.empty());
441 if (this->numPts() >= 3) {
442 this->computeNormals();
443 this->computeBisectors();
444 } else if (this->numPts() == 2) {
445 // We've got two points, so we're degenerate.
446 if (fStyle == SkStrokeRec::kFill_Style) {
447 // it's a fill, so we don't need to worry about degenerate paths
448 return false;
449 }
450 // For stroking, we still need to process the degenerate path, so fix it up
451 fSide = SkPointPriv::kLeft_Side;
452
453 fNorms.append(2);
454 fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
455 fNorms[0].normalize();
456 fNorms[1] = -fNorms[0];
457 SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
458 // we won't actually use the bisectors, so just push zeroes
459 fBisectors.push_back(SkPoint::Make(0.0, 0.0));
460 fBisectors.push_back(SkPoint::Make(0.0, 0.0));
461 } else {
462 return false;
463 }
464
465 fCandidateVerts.setReserve(this->numPts());
466 fInitialRing.setReserve(this->numPts());
467 for (int i = 0; i < this->numPts(); ++i) {
468 fInitialRing.addIdx(i, i);
469 }
470 fInitialRing.init(fNorms, fBisectors);
471
472 this->validate();
473 return true;
474 }
475
getNextRing(Ring * lastRing)476 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
477 #if GR_AA_CONVEX_TESSELLATOR_VIZ
478 Ring* ring = *fRings.push() = new Ring;
479 ring->setReserve(fInitialRing.numPts());
480 ring->rewind();
481 return ring;
482 #else
483 // Flip flop back and forth between fRings[0] & fRings[1]
484 int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
485 fRings[nextRing].setReserve(fInitialRing.numPts());
486 fRings[nextRing].rewind();
487 return &fRings[nextRing];
488 #endif
489 }
490
fanRing(const Ring & ring)491 void GrAAConvexTessellator::fanRing(const Ring& ring) {
492 // fan out from point 0
493 int startIdx = ring.index(0);
494 for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
495 this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
496 }
497 }
498
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)499 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
500 SkScalar coverage, Ring* nextRing) {
501 const int numPts = previousRing.numPts();
502 if (numPts == 0) {
503 return;
504 }
505
506 int prev = numPts - 1;
507 int lastPerpIdx = -1, firstPerpIdx = -1;
508
509 const SkScalar outsetSq = outset * outset;
510 SkScalar miterLimitSq = outset * fMiterLimit;
511 miterLimitSq = miterLimitSq * miterLimitSq;
512 for (int cur = 0; cur < numPts; ++cur) {
513 int originalIdx = previousRing.index(cur);
514 // For each vertex of the original polygon we add at least two points to the
515 // outset polygon - one extending perpendicular to each impinging edge. Connecting these
516 // two points yields a bevel join. We need one additional point for a mitered join, and
517 // a round join requires one or more points depending upon curvature.
518
519 // The perpendicular point for the last edge
520 SkPoint normal1 = previousRing.norm(prev);
521 SkPoint perp1 = normal1;
522 perp1.scale(outset);
523 perp1 += this->point(originalIdx);
524
525 // The perpendicular point for the next edge.
526 SkPoint normal2 = previousRing.norm(cur);
527 SkPoint perp2 = normal2;
528 perp2.scale(outset);
529 perp2 += fPts[originalIdx];
530
531 CurveState curve = fCurveState[originalIdx];
532
533 // We know it isn't a duplicate of the prior point (since it and this
534 // one are just perpendicular offsets from the non-merged polygon points)
535 int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
536 nextRing->addIdx(perp1Idx, originalIdx);
537
538 int perp2Idx;
539 // For very shallow angles all the corner points could fuse.
540 if (duplicate_pt(perp2, this->point(perp1Idx))) {
541 perp2Idx = perp1Idx;
542 } else {
543 perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
544 }
545
546 if (perp2Idx != perp1Idx) {
547 if (curve == kCurve_CurveState) {
548 // bevel or round depending upon curvature
549 SkScalar dotProd = normal1.dot(normal2);
550 if (dotProd < kRoundCapThreshold) {
551 // Currently we "round" by creating a single extra point, which produces
552 // good results for common cases. For thick strokes with high curvature, we will
553 // need to add more points; for the time being we simply fall back to software
554 // rendering for thick strokes.
555 SkPoint miter = previousRing.bisector(cur);
556 miter.setLength(-outset);
557 miter += fPts[originalIdx];
558
559 // For very shallow angles all the corner points could fuse
560 if (!duplicate_pt(miter, this->point(perp1Idx))) {
561 int miterIdx;
562 miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
563 nextRing->addIdx(miterIdx, originalIdx);
564 // The two triangles for the corner
565 this->addTri(originalIdx, perp1Idx, miterIdx);
566 this->addTri(originalIdx, miterIdx, perp2Idx);
567 }
568 } else {
569 this->addTri(originalIdx, perp1Idx, perp2Idx);
570 }
571 } else {
572 switch (fJoin) {
573 case SkPaint::Join::kMiter_Join: {
574 // The bisector outset point
575 SkPoint miter = previousRing.bisector(cur);
576 SkScalar dotProd = normal1.dot(normal2);
577 // The max is because this could go slightly negative if precision causes
578 // us to become slightly concave.
579 SkScalar sinHalfAngleSq = SkTMax(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
580 SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
581 if (lengthSq > miterLimitSq) {
582 // just bevel it
583 this->addTri(originalIdx, perp1Idx, perp2Idx);
584 break;
585 }
586 miter.setLength(-SkScalarSqrt(lengthSq));
587 miter += fPts[originalIdx];
588
589 // For very shallow angles all the corner points could fuse
590 if (!duplicate_pt(miter, this->point(perp1Idx))) {
591 int miterIdx;
592 miterIdx = this->addPt(miter, -outset, coverage, false,
593 kSharp_CurveState);
594 nextRing->addIdx(miterIdx, originalIdx);
595 // The two triangles for the corner
596 this->addTri(originalIdx, perp1Idx, miterIdx);
597 this->addTri(originalIdx, miterIdx, perp2Idx);
598 } else {
599 // ignore the miter point as it's so close to perp1/perp2 and simply
600 // bevel.
601 this->addTri(originalIdx, perp1Idx, perp2Idx);
602 }
603 break;
604 }
605 case SkPaint::Join::kBevel_Join:
606 this->addTri(originalIdx, perp1Idx, perp2Idx);
607 break;
608 default:
609 // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
610 // only willing to draw mitered or beveled, so we should never get here.
611 SkASSERT(false);
612 }
613 }
614
615 nextRing->addIdx(perp2Idx, originalIdx);
616 }
617
618 if (0 == cur) {
619 // Store the index of the first perpendicular point to finish up
620 firstPerpIdx = perp1Idx;
621 SkASSERT(-1 == lastPerpIdx);
622 } else {
623 // The triangles for the previous edge
624 int prevIdx = previousRing.index(prev);
625 this->addTri(prevIdx, perp1Idx, originalIdx);
626 this->addTri(prevIdx, lastPerpIdx, perp1Idx);
627 }
628
629 // Track the last perpendicular outset point so we can construct the
630 // trailing edge triangles.
631 lastPerpIdx = perp2Idx;
632 prev = cur;
633 }
634
635 // pick up the final edge rect
636 int lastIdx = previousRing.index(numPts - 1);
637 this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
638 this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
639
640 this->validate();
641 }
642
643 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
644 // and fan it.
terminate(const Ring & ring)645 void GrAAConvexTessellator::terminate(const Ring& ring) {
646 if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
647 this->fanRing(ring);
648 }
649 }
650
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)651 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
652 SkScalar targetDepth, SkScalar targetCoverage) {
653 if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
654 return targetCoverage;
655 }
656 SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
657 (targetCoverage - initialCoverage) + initialCoverage;
658 return SkScalarClampMax(result, 1.0f);
659 }
660
661 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)662 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
663 SkScalar initialDepth, SkScalar initialCoverage,
664 SkScalar targetDepth, SkScalar targetCoverage,
665 bool forceNew) {
666 bool done = false;
667
668 fCandidateVerts.rewind();
669
670 // Loop through all the points in the ring and find the intersection with the smallest depth
671 SkScalar minDist = SK_ScalarMax, minT = 0.0f;
672 int minEdgeIdx = -1;
673
674 for (int cur = 0; cur < lastRing.numPts(); ++cur) {
675 int next = (cur + 1) % lastRing.numPts();
676
677 SkScalar t;
678 bool result = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur),
679 this->point(lastRing.index(next)), lastRing.bisector(next),
680 &t);
681 // The bisectors may be parallel (!result) or the previous ring may have become slightly
682 // concave due to accumulated error (t <= 0).
683 if (!result || t <= 0) {
684 continue;
685 }
686 SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
687
688 if (minDist > dist) {
689 minDist = dist;
690 minT = t;
691 minEdgeIdx = cur;
692 }
693 }
694
695 if (minEdgeIdx == -1) {
696 return false;
697 }
698 SkPoint newPt = lastRing.bisector(minEdgeIdx);
699 newPt.scale(minT);
700 newPt += this->point(lastRing.index(minEdgeIdx));
701
702 SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
703 if (depth >= targetDepth) {
704 // None of the bisectors intersect before reaching the desired depth.
705 // Just step them all to the desired depth
706 depth = targetDepth;
707 done = true;
708 }
709
710 // 'dst' stores where each point in the last ring maps to/transforms into
711 // in the next ring.
712 SkTDArray<int> dst;
713 dst.setCount(lastRing.numPts());
714
715 // Create the first point (who compares with no one)
716 if (!this->computePtAlongBisector(lastRing.index(0),
717 lastRing.bisector(0),
718 lastRing.origEdgeID(0),
719 depth, &newPt)) {
720 this->terminate(lastRing);
721 return true;
722 }
723 dst[0] = fCandidateVerts.addNewPt(newPt,
724 lastRing.index(0), lastRing.origEdgeID(0),
725 !this->movable(lastRing.index(0)));
726
727 // Handle the middle points (who only compare with the prior point)
728 for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
729 if (!this->computePtAlongBisector(lastRing.index(cur),
730 lastRing.bisector(cur),
731 lastRing.origEdgeID(cur),
732 depth, &newPt)) {
733 this->terminate(lastRing);
734 return true;
735 }
736 if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
737 dst[cur] = fCandidateVerts.addNewPt(newPt,
738 lastRing.index(cur), lastRing.origEdgeID(cur),
739 !this->movable(lastRing.index(cur)));
740 } else {
741 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
742 }
743 }
744
745 // Check on the last point (handling the wrap around)
746 int cur = lastRing.numPts()-1;
747 if (!this->computePtAlongBisector(lastRing.index(cur),
748 lastRing.bisector(cur),
749 lastRing.origEdgeID(cur),
750 depth, &newPt)) {
751 this->terminate(lastRing);
752 return true;
753 }
754 bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
755 bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
756
757 if (!dupPrev && !dupNext) {
758 dst[cur] = fCandidateVerts.addNewPt(newPt,
759 lastRing.index(cur), lastRing.origEdgeID(cur),
760 !this->movable(lastRing.index(cur)));
761 } else if (dupPrev && !dupNext) {
762 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
763 } else if (!dupPrev && dupNext) {
764 dst[cur] = fCandidateVerts.fuseWithNext();
765 } else {
766 bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
767
768 if (!dupPrevVsNext) {
769 dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
770 } else {
771 const int fused = fCandidateVerts.fuseWithBoth();
772 dst[cur] = fused;
773 const int targetIdx = dst[cur - 1];
774 for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
775 dst[i] = fused;
776 }
777 }
778 }
779
780 // Fold the new ring's points into the global pool
781 for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
782 int newIdx;
783 if (fCandidateVerts.needsToBeNew(i) || forceNew) {
784 // if the originating index is still valid then this point wasn't
785 // fused (and is thus movable)
786 SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
787 targetDepth, targetCoverage);
788 newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
789 fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
790 } else {
791 SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
792 this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
793 targetCoverage);
794 newIdx = fCandidateVerts.originatingIdx(i);
795 }
796
797 nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
798 }
799
800 // 'dst' currently has indices into the ring. Remap these to be indices
801 // into the global pool since the triangulation operates in that space.
802 for (int i = 0; i < dst.count(); ++i) {
803 dst[i] = nextRing->index(dst[i]);
804 }
805
806 for (int i = 0; i < lastRing.numPts(); ++i) {
807 int next = (i + 1) % lastRing.numPts();
808
809 this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
810 this->addTri(lastRing.index(i), dst[next], dst[i]);
811 }
812
813 if (done && fStyle != SkStrokeRec::kStroke_Style) {
814 // fill or stroke-and-fill
815 this->fanRing(*nextRing);
816 }
817
818 if (nextRing->numPts() < 3) {
819 done = true;
820 }
821 return done;
822 }
823
validate() const824 void GrAAConvexTessellator::validate() const {
825 SkASSERT(fPts.count() == fMovable.count());
826 SkASSERT(fPts.count() == fCoverages.count());
827 SkASSERT(fPts.count() == fCurveState.count());
828 SkASSERT(0 == (fIndices.count() % 3));
829 SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
830 }
831
832 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)833 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
834 this->computeNormals(tess);
835 this->computeBisectors(tess);
836 }
837
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)838 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
839 const SkTDArray<SkVector>& bisectors) {
840 for (int i = 0; i < fPts.count(); ++i) {
841 fPts[i].fNorm = norms[i];
842 fPts[i].fBisector = bisectors[i];
843 }
844 }
845
846 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)847 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
848 for (int cur = 0; cur < fPts.count(); ++cur) {
849 int next = (cur + 1) % fPts.count();
850
851 fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
852 SkPoint::Normalize(&fPts[cur].fNorm);
853 fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
854 }
855 }
856
computeBisectors(const GrAAConvexTessellator & tess)857 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
858 int prev = fPts.count() - 1;
859 for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
860 fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
861 if (!fPts[cur].fBisector.normalize()) {
862 fPts[cur].fBisector =
863 SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
864 SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
865 SkAssertResult(fPts[cur].fBisector.normalize());
866 } else {
867 fPts[cur].fBisector.negate(); // make the bisector face in
868 }
869 }
870 }
871
872 //////////////////////////////////////////////////////////////////////////////
873 #ifdef SK_DEBUG
874 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const875 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
876 if (fPts.count() < 3) {
877 return true;
878 }
879
880 SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
881 SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
882 SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
883 SkScalar maxDot = minDot;
884
885 prev = cur;
886 for (int i = 1; i < fPts.count(); ++i) {
887 int next = (i + 1) % fPts.count();
888
889 cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
890 SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
891
892 minDot = SkMinScalar(minDot, dot);
893 maxDot = SkMaxScalar(maxDot, dot);
894
895 prev = cur;
896 }
897
898 if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
899 maxDot = 0;
900 }
901 if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
902 minDot = 0;
903 }
904 return (maxDot >= 0.0f) == (minDot >= 0.0f);
905 }
906
907 #endif
908
lineTo(const SkPoint & p,CurveState curve)909 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
910 if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
911 return;
912 }
913
914 if (this->numPts() >= 2 &&
915 points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p)) {
916 // The old last point is on the line from the second to last to the new point
917 this->popLastPt();
918 // double-check that the new last point is not a duplicate of the new point. In an ideal
919 // world this wouldn't be necessary (since it's only possible for non-convex paths), but
920 // floating point precision issues mean it can actually happen on paths that were
921 // determined to be convex.
922 if (duplicate_pt(p, this->lastPoint())) {
923 return;
924 }
925 }
926 SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
927 this->addPt(p, 0.0f, initialRingCoverage, false, curve);
928 }
929
lineTo(const SkMatrix & m,SkPoint p,CurveState curve)930 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
931 m.mapPoints(&p, 1);
932 this->lineTo(p, curve);
933 }
934
quadTo(const SkPoint pts[3])935 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
936 int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
937 fPointBuffer.setCount(maxCount);
938 SkPoint* target = fPointBuffer.begin();
939 int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
940 kQuadTolerance, &target, maxCount);
941 fPointBuffer.setCount(count);
942 for (int i = 0; i < count - 1; i++) {
943 this->lineTo(fPointBuffer[i], kCurve_CurveState);
944 }
945 this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
946 }
947
quadTo(const SkMatrix & m,SkPoint pts[3])948 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
949 m.mapPoints(pts, 3);
950 this->quadTo(pts);
951 }
952
cubicTo(const SkMatrix & m,SkPoint pts[4])953 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
954 m.mapPoints(pts, 4);
955 int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
956 fPointBuffer.setCount(maxCount);
957 SkPoint* target = fPointBuffer.begin();
958 int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
959 kCubicTolerance, &target, maxCount);
960 fPointBuffer.setCount(count);
961 for (int i = 0; i < count - 1; i++) {
962 this->lineTo(fPointBuffer[i], kCurve_CurveState);
963 }
964 this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
965 }
966
967 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
968 #include "SkGeometry.h"
969
conicTo(const SkMatrix & m,SkPoint pts[3],SkScalar w)970 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
971 m.mapPoints(pts, 3);
972 SkAutoConicToQuads quadder;
973 const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
974 SkPoint lastPoint = *(quads++);
975 int count = quadder.countQuads();
976 for (int i = 0; i < count; ++i) {
977 SkPoint quadPts[3];
978 quadPts[0] = lastPoint;
979 quadPts[1] = quads[0];
980 quadPts[2] = i == count - 1 ? pts[2] : quads[1];
981 this->quadTo(quadPts);
982 lastPoint = quadPts[2];
983 quads += 2;
984 }
985 }
986
987 //////////////////////////////////////////////////////////////////////////////
988 #if GR_AA_CONVEX_TESSELLATOR_VIZ
989 static const SkScalar kPointRadius = 0.02f;
990 static const SkScalar kArrowStrokeWidth = 0.0f;
991 static const SkScalar kArrowLength = 0.2f;
992 static const SkScalar kEdgeTextSize = 0.1f;
993 static const SkScalar kPointTextSize = 0.02f;
994
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)995 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
996 SkPaint paint;
997 SkASSERT(paramValue <= 1.0f);
998 int gs = int(255*paramValue);
999 paint.setARGB(255, gs, gs, gs);
1000
1001 canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1002
1003 if (stroke) {
1004 SkPaint stroke;
1005 stroke.setColor(SK_ColorYELLOW);
1006 stroke.setStyle(SkPaint::kStroke_Style);
1007 stroke.setStrokeWidth(kPointRadius/3.0f);
1008 canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1009 }
1010 }
1011
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1012 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1013 SkPaint p;
1014 p.setColor(color);
1015
1016 canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1017 }
1018
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1019 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1020 SkScalar len, SkColor color) {
1021 SkPaint paint;
1022 paint.setColor(color);
1023 paint.setStrokeWidth(kArrowStrokeWidth);
1024 paint.setStyle(SkPaint::kStroke_Style);
1025
1026 canvas->drawLine(p.fX, p.fY,
1027 p.fX + len * n.fX, p.fY + len * n.fY,
1028 paint);
1029 }
1030
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1031 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1032 SkPaint paint;
1033 paint.setTextSize(kEdgeTextSize);
1034
1035 for (int cur = 0; cur < fPts.count(); ++cur) {
1036 int next = (cur + 1) % fPts.count();
1037
1038 draw_line(canvas,
1039 tess.point(fPts[cur].fIndex),
1040 tess.point(fPts[next].fIndex),
1041 SK_ColorGREEN);
1042
1043 SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1044 mid.scale(0.5f);
1045
1046 if (fPts.count()) {
1047 draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1048 mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1049 mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1050 }
1051
1052 SkString num;
1053 num.printf("%d", this->origEdgeID(cur));
1054 canvas->drawString(num, mid.fX, mid.fY, paint);
1055
1056 if (fPts.count()) {
1057 draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1058 kArrowLength, SK_ColorBLUE);
1059 }
1060 }
1061 }
1062
draw(SkCanvas * canvas) const1063 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1064 for (int i = 0; i < fIndices.count(); i += 3) {
1065 SkASSERT(fIndices[i] < this->numPts()) ;
1066 SkASSERT(fIndices[i+1] < this->numPts()) ;
1067 SkASSERT(fIndices[i+2] < this->numPts()) ;
1068
1069 draw_line(canvas,
1070 this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1071 SK_ColorBLACK);
1072 draw_line(canvas,
1073 this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1074 SK_ColorBLACK);
1075 draw_line(canvas,
1076 this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1077 SK_ColorBLACK);
1078 }
1079
1080 fInitialRing.draw(canvas, *this);
1081 for (int i = 0; i < fRings.count(); ++i) {
1082 fRings[i]->draw(canvas, *this);
1083 }
1084
1085 for (int i = 0; i < this->numPts(); ++i) {
1086 draw_point(canvas,
1087 this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1088 !this->movable(i));
1089
1090 SkPaint paint;
1091 paint.setTextSize(kPointTextSize);
1092 if (this->depth(i) <= -kAntialiasingRadius) {
1093 paint.setColor(SK_ColorWHITE);
1094 }
1095
1096 SkString num;
1097 num.printf("%d", i);
1098 canvas->drawString(num,
1099 this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1100 paint);
1101 }
1102 }
1103
1104 #endif
1105