1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "GrVkUniformHandler.h"
9 
10 #include "GrTexturePriv.h"
11 #include "GrVkGpu.h"
12 #include "GrVkPipelineStateBuilder.h"
13 #include "GrVkTexture.h"
14 #include "glsl/GrGLSLProgramBuilder.h"
15 
16 // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
17 // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
18 // are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
19 // This alignment mask will give correct alignments for using the std430 block layout. If you want
20 // the std140 alignment, you can use this, but then make sure if you have an array type it is
21 // aligned to 16 bytes (i.e. has mask of 0xF).
22 // These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
23 // https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
grsltype_to_alignment_mask(GrSLType type)24 static uint32_t grsltype_to_alignment_mask(GrSLType type) {
25     switch(type) {
26         case kByte_GrSLType: // fall through
27         case kUByte_GrSLType:
28             return 0x0;
29         case kByte2_GrSLType: // fall through
30         case kUByte2_GrSLType:
31             return 0x1;
32         case kByte3_GrSLType: // fall through
33         case kByte4_GrSLType:
34         case kUByte3_GrSLType:
35         case kUByte4_GrSLType:
36             return 0x3;
37         case kShort_GrSLType: // fall through
38         case kUShort_GrSLType:
39             return 0x1;
40         case kShort2_GrSLType: // fall through
41         case kUShort2_GrSLType:
42             return 0x3;
43         case kShort3_GrSLType: // fall through
44         case kShort4_GrSLType:
45         case kUShort3_GrSLType:
46         case kUShort4_GrSLType:
47             return 0x7;
48         case kInt_GrSLType:
49         case kUint_GrSLType:
50             return 0x3;
51         case kHalf_GrSLType: // fall through
52         case kFloat_GrSLType:
53             return 0x3;
54         case kHalf2_GrSLType: // fall through
55         case kFloat2_GrSLType:
56             return 0x7;
57         case kHalf3_GrSLType: // fall through
58         case kFloat3_GrSLType:
59             return 0xF;
60         case kHalf4_GrSLType: // fall through
61         case kFloat4_GrSLType:
62             return 0xF;
63         case kUint2_GrSLType:
64             return 0x7;
65         case kInt2_GrSLType:
66             return 0x7;
67         case kInt3_GrSLType:
68             return 0xF;
69         case kInt4_GrSLType:
70             return 0xF;
71         case kHalf2x2_GrSLType: // fall through
72         case kFloat2x2_GrSLType:
73             return 0x7;
74         case kHalf3x3_GrSLType: // fall through
75         case kFloat3x3_GrSLType:
76             return 0xF;
77         case kHalf4x4_GrSLType: // fall through
78         case kFloat4x4_GrSLType:
79             return 0xF;
80 
81         // This query is only valid for certain types.
82         case kVoid_GrSLType:
83         case kBool_GrSLType:
84         case kTexture2DSampler_GrSLType:
85         case kTextureExternalSampler_GrSLType:
86         case kTexture2DRectSampler_GrSLType:
87             break;
88     }
89     SK_ABORT("Unexpected type");
90     return 0;
91 }
92 
93 /** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
grsltype_to_vk_size(GrSLType type)94 static inline uint32_t grsltype_to_vk_size(GrSLType type) {
95     switch(type) {
96         case kByte_GrSLType:
97             return sizeof(int8_t);
98         case kByte2_GrSLType:
99             return 2 * sizeof(int8_t);
100         case kByte3_GrSLType:
101             return 3 * sizeof(int8_t);
102         case kByte4_GrSLType:
103             return 4 * sizeof(int8_t);
104         case kUByte_GrSLType:
105             return sizeof(uint8_t);
106         case kUByte2_GrSLType:
107             return 2 * sizeof(uint8_t);
108         case kUByte3_GrSLType:
109             return 3 * sizeof(uint8_t);
110         case kUByte4_GrSLType:
111             return 4 * sizeof(uint8_t);
112         case kShort_GrSLType:
113             return sizeof(int16_t);
114         case kShort2_GrSLType:
115             return 2 * sizeof(int16_t);
116         case kShort3_GrSLType:
117             return 3 * sizeof(int16_t);
118         case kShort4_GrSLType:
119             return 4 * sizeof(int16_t);
120         case kUShort_GrSLType:
121             return sizeof(uint16_t);
122         case kUShort2_GrSLType:
123             return 2 * sizeof(uint16_t);
124         case kUShort3_GrSLType:
125             return 3 * sizeof(uint16_t);
126         case kUShort4_GrSLType:
127             return 4 * sizeof(uint16_t);
128         case kInt_GrSLType:
129             return sizeof(int32_t);
130         case kUint_GrSLType:
131             return sizeof(int32_t);
132         case kHalf_GrSLType: // fall through
133         case kFloat_GrSLType:
134             return sizeof(float);
135         case kHalf2_GrSLType: // fall through
136         case kFloat2_GrSLType:
137             return 2 * sizeof(float);
138         case kHalf3_GrSLType: // fall through
139         case kFloat3_GrSLType:
140             return 3 * sizeof(float);
141         case kHalf4_GrSLType: // fall through
142         case kFloat4_GrSLType:
143             return 4 * sizeof(float);
144         case kUint2_GrSLType:
145             return 2 * sizeof(uint32_t);
146         case kInt2_GrSLType:
147             return 2 * sizeof(int32_t);
148         case kInt3_GrSLType:
149             return 3 * sizeof(int32_t);
150         case kInt4_GrSLType:
151             return 4 * sizeof(int32_t);
152         case kHalf2x2_GrSLType: // fall through
153         case kFloat2x2_GrSLType:
154             //TODO: this will be 4 * szof(float) on std430.
155             return 8 * sizeof(float);
156         case kHalf3x3_GrSLType: // fall through
157         case kFloat3x3_GrSLType:
158             return 12 * sizeof(float);
159         case kHalf4x4_GrSLType: // fall through
160         case kFloat4x4_GrSLType:
161             return 16 * sizeof(float);
162 
163         // This query is only valid for certain types.
164         case kVoid_GrSLType:
165         case kBool_GrSLType:
166         case kTexture2DSampler_GrSLType:
167         case kTextureExternalSampler_GrSLType:
168         case kTexture2DRectSampler_GrSLType:
169             break;
170     }
171     SK_ABORT("Unexpected type");
172     return 0;
173 }
174 
175 
176 // Given the current offset into the ubo, calculate the offset for the uniform we're trying to add
177 // taking into consideration all alignment requirements. The uniformOffset is set to the offset for
178 // the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
get_ubo_aligned_offset(uint32_t * uniformOffset,uint32_t * currentOffset,GrSLType type,int arrayCount)179 static void get_ubo_aligned_offset(uint32_t* uniformOffset,
180                                    uint32_t* currentOffset,
181                                    GrSLType type,
182                                    int arrayCount) {
183     uint32_t alignmentMask = grsltype_to_alignment_mask(type);
184     // We want to use the std140 layout here, so we must make arrays align to 16 bytes.
185     if (arrayCount || type == kFloat2x2_GrSLType) {
186         alignmentMask = 0xF;
187     }
188     uint32_t offsetDiff = *currentOffset & alignmentMask;
189     if (offsetDiff != 0) {
190         offsetDiff = alignmentMask - offsetDiff + 1;
191     }
192     *uniformOffset = *currentOffset + offsetDiff;
193     SkASSERT(sizeof(float) == 4);
194     if (arrayCount) {
195         uint32_t elementSize = SkTMax<uint32_t>(16, grsltype_to_vk_size(type));
196         SkASSERT(0 == (elementSize & 0xF));
197         *currentOffset = *uniformOffset + elementSize * arrayCount;
198     } else {
199         *currentOffset = *uniformOffset + grsltype_to_vk_size(type);
200     }
201 }
202 
internalAddUniformArray(uint32_t visibility,GrSLType type,GrSLPrecision precision,const char * name,bool mangleName,int arrayCount,const char ** outName)203 GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
204                                                                             uint32_t visibility,
205                                                                             GrSLType type,
206                                                                             GrSLPrecision precision,
207                                                                             const char* name,
208                                                                             bool mangleName,
209                                                                             int arrayCount,
210                                                                             const char** outName) {
211     SkASSERT(name && strlen(name));
212     // For now asserting the the visibility is either geometry types (vertex, tesselation, geometry,
213     // etc.) or only fragment.
214     SkASSERT(kVertex_GrShaderFlag == visibility ||
215              kGeometry_GrShaderFlag == visibility ||
216              (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == visibility ||
217              kFragment_GrShaderFlag == visibility);
218     SkASSERT(kDefault_GrSLPrecision == precision || GrSLTypeIsFloatType(type));
219     GrSLTypeIsFloatType(type);
220 
221     UniformInfo& uni = fUniforms.push_back();
222     uni.fVariable.setType(type);
223     // TODO this is a bit hacky, lets think of a better way.  Basically we need to be able to use
224     // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
225     // exactly what name it wants to use for the uniform view matrix.  If we prefix anythings, then
226     // the names will mismatch.  I think the correct solution is to have all GPs which need the
227     // uniform view matrix, they should upload the view matrix in their setData along with regular
228     // uniforms.
229     char prefix = 'u';
230     if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
231         prefix = '\0';
232     }
233     fProgramBuilder->nameVariable(uni.fVariable.accessName(), prefix, name, mangleName);
234     uni.fVariable.setArrayCount(arrayCount);
235     uni.fVisibility = visibility;
236     uni.fVariable.setPrecision(precision);
237     // When outputing the GLSL, only the outer uniform block will get the Uniform modifier. Thus
238     // we set the modifier to none for all uniforms declared inside the block.
239     uni.fVariable.setTypeModifier(GrShaderVar::kNone_TypeModifier);
240 
241     uint32_t* currentOffset;
242     uint32_t geomStages = kVertex_GrShaderFlag | kGeometry_GrShaderFlag;
243     if (geomStages & visibility) {
244         currentOffset = &fCurrentGeometryUBOOffset;
245     } else {
246         SkASSERT(kFragment_GrShaderFlag == visibility);
247         currentOffset = &fCurrentFragmentUBOOffset;
248     }
249     get_ubo_aligned_offset(&uni.fUBOffset, currentOffset, type, arrayCount);
250 
251     SkString layoutQualifier;
252     layoutQualifier.appendf("offset=%d", uni.fUBOffset);
253     uni.fVariable.addLayoutQualifier(layoutQualifier.c_str());
254 
255     if (outName) {
256         *outName = uni.fVariable.c_str();
257     }
258 
259     return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
260 }
261 
addSampler(const GrTexture * texture,const GrSamplerState & state,const char * name,const GrShaderCaps * shaderCaps)262 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(const GrTexture* texture,
263                                                                    const GrSamplerState& state,
264                                                                    const char* name,
265                                                                    const GrShaderCaps* shaderCaps) {
266     SkASSERT(name && strlen(name));
267     SkString mangleName;
268     char prefix = 'u';
269     fProgramBuilder->nameVariable(&mangleName, prefix, name, true);
270 
271     GrSLPrecision precision = GrSLSamplerPrecision(texture->config());
272     GrSwizzle swizzle = shaderCaps->configTextureSwizzle(texture->config());
273     GrTextureType type = texture->texturePriv().textureType();
274 
275     UniformInfo& info = fSamplers.push_back();
276     info.fVariable.setType(GrSLCombinedSamplerTypeForTextureType(type));
277     info.fVariable.setTypeModifier(GrShaderVar::kUniform_TypeModifier);
278     info.fVariable.setPrecision(precision);
279     info.fVariable.setName(mangleName);
280     SkString layoutQualifier;
281     layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count() - 1);
282     info.fVariable.addLayoutQualifier(layoutQualifier.c_str());
283     info.fVisibility = kFragment_GrShaderFlag;
284     info.fUBOffset = 0;
285 
286     // Check if we are dealing with an external texture and store the needed information if so
287     const GrVkTexture* vkTexture = static_cast<const GrVkTexture*>(texture);
288     if (vkTexture->ycbcrConversionInfo().isValid()) {
289         SkASSERT(type == GrTextureType::kExternal);
290         GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu();
291         info.fImmutableSampler = gpu->resourceProvider().findOrCreateCompatibleSampler(
292                 state, vkTexture->ycbcrConversionInfo());
293         SkASSERT(info.fImmutableSampler);
294     }
295 
296     fSamplerSwizzles.push_back(swizzle);
297     SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
298     return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
299 }
300 
appendUniformDecls(GrShaderFlags visibility,SkString * out) const301 void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
302     SkASSERT(kVertex_GrShaderFlag == visibility ||
303              kGeometry_GrShaderFlag == visibility ||
304              kFragment_GrShaderFlag == visibility);
305 
306     for (int i = 0; i < fSamplers.count(); ++i) {
307         const UniformInfo& sampler = fSamplers[i];
308         SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType);
309         if (visibility == sampler.fVisibility) {
310             sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
311             out->append(";\n");
312         }
313     }
314 
315 #ifdef SK_DEBUG
316     bool firstGeomOffsetCheck = false;
317     bool firstFragOffsetCheck = false;
318     for (int i = 0; i < fUniforms.count(); ++i) {
319         const UniformInfo& localUniform = fUniforms[i];
320         if (kVertex_GrShaderFlag == localUniform.fVisibility ||
321             kGeometry_GrShaderFlag == localUniform.fVisibility ||
322             (kVertex_GrShaderFlag | kGeometry_GrShaderFlag) == localUniform.fVisibility) {
323             if (!firstGeomOffsetCheck) {
324                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
325                 // set on each variable in the uniform block is valid.
326                 SkASSERT(0 == localUniform.fUBOffset);
327                 firstGeomOffsetCheck = true;
328             }
329         } else {
330             SkASSERT(kFragment_GrShaderFlag == localUniform.fVisibility);
331             if (!firstFragOffsetCheck) {
332                 // Check to make sure we are starting our offset at 0 so the offset qualifier we
333                 // set on each variable in the uniform block is valid.
334                 SkASSERT(0 == localUniform.fUBOffset);
335                 firstFragOffsetCheck = true;
336             }
337         }
338     }
339 #endif
340 
341     SkString uniformsString;
342     for (int i = 0; i < fUniforms.count(); ++i) {
343         const UniformInfo& localUniform = fUniforms[i];
344         if (visibility & localUniform.fVisibility) {
345             if (GrSLTypeIsFloatType(localUniform.fVariable.getType())) {
346                 localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
347                 uniformsString.append(";\n");
348             }
349         }
350     }
351 
352     if (!uniformsString.isEmpty()) {
353         uint32_t uniformBinding;
354         const char* stage;
355         if (kVertex_GrShaderFlag == visibility) {
356             uniformBinding = kGeometryBinding;
357             stage = "vertex";
358         } else if (kGeometry_GrShaderFlag == visibility) {
359             uniformBinding = kGeometryBinding;
360             stage = "geometry";
361         } else {
362             SkASSERT(kFragment_GrShaderFlag == visibility);
363             uniformBinding = kFragBinding;
364             stage = "fragment";
365         }
366         out->appendf("layout (set=%d, binding=%d) uniform %sUniformBuffer\n{\n",
367                      kUniformBufferDescSet, uniformBinding, stage);
368         out->appendf("%s\n};\n", uniformsString.c_str());
369     }
370 }
371