1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "SkShadowUtils.h"
9 #include "SkBlurMask.h"
10 #include "SkCanvas.h"
11 #include "SkColorFilter.h"
12 #include "SkColorData.h"
13 #include "SkDevice.h"
14 #include "SkDrawShadowInfo.h"
15 #include "SkMaskFilter.h"
16 #include "SkPath.h"
17 #include "SkRandom.h"
18 #include "SkRasterPipeline.h"
19 #include "SkResourceCache.h"
20 #include "SkShadowTessellator.h"
21 #include "SkString.h"
22 #include "SkTLazy.h"
23 #include "SkVertices.h"
24 #include <new>
25 #if SK_SUPPORT_GPU
26 #include "GrShape.h"
27 #include "effects/GrBlurredEdgeFragmentProcessor.h"
28 #endif
29 
30 /**
31 *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
32 *                           then blends with the color's G value.
33 *                           Final result is black with alpha of Gaussian(B)*G.
34 *                           The assumption is that the original color's alpha is 1.
35 */
36 class SkGaussianColorFilter : public SkColorFilter {
37 public:
Make()38     static sk_sp<SkColorFilter> Make() {
39         return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
40     }
41 
42 #if SK_SUPPORT_GPU
43     std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
44             GrContext*, const GrColorSpaceInfo&) const override;
45 #endif
46 
47 protected:
flatten(SkWriteBuffer &) const48     void flatten(SkWriteBuffer&) const override {}
onAppendStages(SkRasterPipeline * pipeline,SkColorSpace * dstCS,SkArenaAlloc * alloc,bool shaderIsOpaque) const49     void onAppendStages(SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc,
50                         bool shaderIsOpaque) const override {
51         pipeline->append(SkRasterPipeline::gauss_a_to_rgba);
52     }
53 private:
54     SK_FLATTENABLE_HOOKS(SkGaussianColorFilter)
55 
SkGaussianColorFilter()56     SkGaussianColorFilter() : INHERITED() {}
57 
58     typedef SkColorFilter INHERITED;
59 };
60 
CreateProc(SkReadBuffer &)61 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
62     return Make();
63 }
64 
65 #if SK_SUPPORT_GPU
66 
asFragmentProcessor(GrContext *,const GrColorSpaceInfo &) const67 std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(
68         GrContext*, const GrColorSpaceInfo&) const {
69     return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian);
70 }
71 #endif
72 
73 ///////////////////////////////////////////////////////////////////////////////////////////////////
74 
75 namespace {
76 
resource_cache_shared_id()77 uint64_t resource_cache_shared_id() {
78     return 0x2020776f64616873llu;  // 'shadow  '
79 }
80 
81 /** Factory for an ambient shadow mesh with particular shadow properties. */
82 struct AmbientVerticesFactory {
83     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
84     bool fTransparent;
85     SkVector fOffset;
86 
isCompatible__anon788e051c0111::AmbientVerticesFactory87     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
88         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
89             return false;
90         }
91         *translate = that.fOffset;
92         return true;
93     }
94 
makeVertices__anon788e051c0111::AmbientVerticesFactory95     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
96                                    SkVector* translate) const {
97         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
98         // pick a canonical place to generate shadow
99         SkMatrix noTrans(ctm);
100         if (!ctm.hasPerspective()) {
101             noTrans[SkMatrix::kMTransX] = 0;
102             noTrans[SkMatrix::kMTransY] = 0;
103         }
104         *translate = fOffset;
105         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
106     }
107 };
108 
109 /** Factory for an spot shadow mesh with particular shadow properties. */
110 struct SpotVerticesFactory {
111     enum class OccluderType {
112         // The umbra cannot be dropped out because either the occluder is not opaque,
113         // or the center of the umbra is visible.
114         kTransparent,
115         // The umbra can be dropped where it is occluded.
116         kOpaquePartialUmbra,
117         // It is known that the entire umbra is occluded.
118         kOpaqueNoUmbra
119     };
120 
121     SkVector fOffset;
122     SkPoint  fLocalCenter;
123     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
124     SkPoint3 fDevLightPos;
125     SkScalar fLightRadius;
126     OccluderType fOccluderType;
127 
isCompatible__anon788e051c0111::SpotVerticesFactory128     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
129         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
130             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
131             return false;
132         }
133         switch (fOccluderType) {
134             case OccluderType::kTransparent:
135             case OccluderType::kOpaqueNoUmbra:
136                 // 'this' and 'that' will either both have no umbra removed or both have all the
137                 // umbra removed.
138                 *translate = that.fOffset;
139                 return true;
140             case OccluderType::kOpaquePartialUmbra:
141                 // In this case we partially remove the umbra differently for 'this' and 'that'
142                 // if the offsets don't match.
143                 if (fOffset == that.fOffset) {
144                     translate->set(0, 0);
145                     return true;
146                 }
147                 return false;
148         }
149         SK_ABORT("Uninitialized occluder type?");
150         return false;
151     }
152 
makeVertices__anon788e051c0111::SpotVerticesFactory153     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
154                                    SkVector* translate) const {
155         bool transparent = OccluderType::kTransparent == fOccluderType;
156         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
157         if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
158             translate->set(0, 0);
159             return SkShadowTessellator::MakeSpot(path, ctm, zParams,
160                                                  fDevLightPos, fLightRadius, transparent);
161         } else {
162             // pick a canonical place to generate shadow, with light centered over path
163             SkMatrix noTrans(ctm);
164             noTrans[SkMatrix::kMTransX] = 0;
165             noTrans[SkMatrix::kMTransY] = 0;
166             SkPoint devCenter(fLocalCenter);
167             noTrans.mapPoints(&devCenter, 1);
168             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
169             *translate = fOffset;
170             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
171                                                  centerLightPos, fLightRadius, transparent);
172         }
173     }
174 };
175 
176 /**
177  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
178  * records are immutable this is not itself a Rec. When we need to update it we return this on
179  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
180  * a new Rec with an adjusted size for any deletions/additions.
181  */
182 class CachedTessellations : public SkRefCnt {
183 public:
size() const184     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
185 
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const186     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
187                            SkVector* translate) const {
188         return fAmbientSet.find(ambient, matrix, translate);
189     }
190 
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)191     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
192                           const SkMatrix& matrix, SkVector* translate) {
193         return fAmbientSet.add(devPath, ambient, matrix, translate);
194     }
195 
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const196     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
197                            SkVector* translate) const {
198         return fSpotSet.find(spot, matrix, translate);
199     }
200 
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)201     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
202                           const SkMatrix& matrix, SkVector* translate) {
203         return fSpotSet.add(devPath, spot, matrix, translate);
204     }
205 
206 private:
207     template <typename FACTORY, int MAX_ENTRIES>
208     class Set {
209     public:
size() const210         size_t size() const { return fSize; }
211 
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const212         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
213                                SkVector* translate) const {
214             for (int i = 0; i < MAX_ENTRIES; ++i) {
215                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
216                     const SkMatrix& m = fEntries[i].fMatrix;
217                     if (matrix.hasPerspective() || m.hasPerspective()) {
218                         if (matrix != fEntries[i].fMatrix) {
219                             continue;
220                         }
221                     } else if (matrix.getScaleX() != m.getScaleX() ||
222                                matrix.getSkewX() != m.getSkewX() ||
223                                matrix.getScaleY() != m.getScaleY() ||
224                                matrix.getSkewY() != m.getSkewY()) {
225                         continue;
226                     }
227                     return fEntries[i].fVertices;
228                 }
229             }
230             return nullptr;
231         }
232 
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)233         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
234                               SkVector* translate) {
235             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
236             if (!vertices) {
237                 return nullptr;
238             }
239             int i;
240             if (fCount < MAX_ENTRIES) {
241                 i = fCount++;
242             } else {
243                 i = fRandom.nextULessThan(MAX_ENTRIES);
244                 fSize -= fEntries[i].fVertices->approximateSize();
245             }
246             fEntries[i].fFactory = factory;
247             fEntries[i].fVertices = vertices;
248             fEntries[i].fMatrix = matrix;
249             fSize += vertices->approximateSize();
250             return vertices;
251         }
252 
253     private:
254         struct Entry {
255             FACTORY fFactory;
256             sk_sp<SkVertices> fVertices;
257             SkMatrix fMatrix;
258         };
259         Entry fEntries[MAX_ENTRIES];
260         int fCount = 0;
261         size_t fSize = 0;
262         SkRandom fRandom;
263     };
264 
265     Set<AmbientVerticesFactory, 4> fAmbientSet;
266     Set<SpotVerticesFactory, 4> fSpotSet;
267 };
268 
269 /**
270  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
271  * path. The key represents the path's geometry and not any shadow params.
272  */
273 class CachedTessellationsRec : public SkResourceCache::Rec {
274 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)275     CachedTessellationsRec(const SkResourceCache::Key& key,
276                            sk_sp<CachedTessellations> tessellations)
277             : fTessellations(std::move(tessellations)) {
278         fKey.reset(new uint8_t[key.size()]);
279         memcpy(fKey.get(), &key, key.size());
280     }
281 
getKey() const282     const Key& getKey() const override {
283         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
284     }
285 
bytesUsed() const286     size_t bytesUsed() const override { return fTessellations->size(); }
287 
getCategory() const288     const char* getCategory() const override { return "tessellated shadow masks"; }
289 
refTessellations() const290     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
291 
292     template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const293     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
294                            SkVector* translate) const {
295         return fTessellations->find(factory, matrix, translate);
296     }
297 
298 private:
299     std::unique_ptr<uint8_t[]> fKey;
300     sk_sp<CachedTessellations> fTessellations;
301 };
302 
303 /**
304  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
305  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
306  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
307  * to the caller. The caller will update it and reinsert it back into the cache.
308  */
309 template <typename FACTORY>
310 struct FindContext {
FindContext__anon788e051c0111::FindContext311     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
312             : fViewMatrix(viewMatrix), fFactory(factory) {}
313     const SkMatrix* const fViewMatrix;
314     // If this is valid after Find is called then we found the vertices and they should be drawn
315     // with fTranslate applied.
316     sk_sp<SkVertices> fVertices;
317     SkVector fTranslate = {0, 0};
318 
319     // If this is valid after Find then the caller should add the vertices to the tessellation set
320     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
321     sk_sp<CachedTessellations> fTessellationsOnFailure;
322 
323     const FACTORY* fFactory;
324 };
325 
326 /**
327  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
328  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
329  * necessary translation vector are set on the FindContext.
330  */
331 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)332 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
333     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
334     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
335     findContext->fVertices =
336             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
337     if (findContext->fVertices) {
338         return true;
339     }
340     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
341     // manipulated we will add a new Rec.
342     findContext->fTessellationsOnFailure = rec.refTessellations();
343     return false;
344 }
345 
346 class ShadowedPath {
347 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)348     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
349             : fPath(path)
350             , fViewMatrix(viewMatrix)
351 #if SK_SUPPORT_GPU
352             , fShapeForKey(*path, GrStyle::SimpleFill())
353 #endif
354     {}
355 
path() const356     const SkPath& path() const { return *fPath; }
viewMatrix() const357     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
358 #if SK_SUPPORT_GPU
359     /** Negative means the vertices should not be cached for this path. */
keyBytes() const360     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const361     void writeKey(void* key) const {
362         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
363     }
isRRect(SkRRect * rrect)364     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
365 #else
keyBytes() const366     int keyBytes() const { return -1; }
writeKey(void * key) const367     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)368     bool isRRect(SkRRect* rrect) { return false; }
369 #endif
370 
371 private:
372     const SkPath* fPath;
373     const SkMatrix* fViewMatrix;
374 #if SK_SUPPORT_GPU
375     GrShape fShapeForKey;
376 #endif
377 };
378 
379 // This creates a domain of keys in SkResourceCache used by this file.
380 static void* kNamespace;
381 
382 /**
383  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
384  * they are first found in SkResourceCache.
385  */
386 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty)> drawProc,ShadowedPath & path,SkColor color)387 bool draw_shadow(const FACTORY& factory,
388                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
389                  SkScalar tx, SkScalar ty)> drawProc, ShadowedPath& path, SkColor color) {
390     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
391 
392     SkResourceCache::Key* key = nullptr;
393     SkAutoSTArray<32 * 4, uint8_t> keyStorage;
394     int keyDataBytes = path.keyBytes();
395     if (keyDataBytes >= 0) {
396         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
397         key = new (keyStorage.begin()) SkResourceCache::Key();
398         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
399         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
400         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
401     }
402 
403     sk_sp<SkVertices> vertices;
404     bool foundInCache = SkToBool(context.fVertices);
405     if (foundInCache) {
406         vertices = std::move(context.fVertices);
407     } else {
408         // TODO: handle transforming the path as part of the tessellator
409         if (key) {
410             // Update or initialize a tessellation set and add it to the cache.
411             sk_sp<CachedTessellations> tessellations;
412             if (context.fTessellationsOnFailure) {
413                 tessellations = std::move(context.fTessellationsOnFailure);
414             } else {
415                 tessellations.reset(new CachedTessellations());
416             }
417             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
418                                           &context.fTranslate);
419             if (!vertices) {
420                 return false;
421             }
422             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
423             SkResourceCache::Add(rec);
424         } else {
425             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
426                                             &context.fTranslate);
427             if (!vertices) {
428                 return false;
429             }
430         }
431     }
432 
433     SkPaint paint;
434     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
435     // that against our 'color' param.
436     paint.setColorFilter(
437          SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate)->makeComposed(
438                                                                     SkGaussianColorFilter::Make()));
439 
440     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
441              context.fTranslate.fX, context.fTranslate.fY);
442 
443     return true;
444 }
445 }
446 
tilted(const SkPoint3 & zPlaneParams)447 static bool tilted(const SkPoint3& zPlaneParams) {
448     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
449 }
450 
map(const SkMatrix & m,const SkPoint3 & pt)451 static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
452     SkPoint3 result;
453     m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
454     result.fZ = pt.fZ;
455     return result;
456 }
457 
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)458 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
459                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
460     // For tonal color we only compute color values for the spot shadow.
461     // The ambient shadow is greyscale only.
462 
463     // Ambient
464     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
465 
466     // Spot
467     int spotR = SkColorGetR(inSpotColor);
468     int spotG = SkColorGetG(inSpotColor);
469     int spotB = SkColorGetB(inSpotColor);
470     int max = SkTMax(SkTMax(spotR, spotG), spotB);
471     int min = SkTMin(SkTMin(spotR, spotG), spotB);
472     SkScalar luminance = 0.5f*(max + min)/255.f;
473     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
474 
475     // We compute a color alpha value based on the luminance of the color, scaled by an
476     // adjusted alpha value. We want the following properties to match the UX examples
477     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
478     // is black and/or the alpha is 0:
479     //     f(0, a) = 0
480     //     f(luminance, 0) = 0
481     //     f(1, 0.25) = .5
482     //     f(0.5, 0.25) = .4
483     //     f(1, 1) = 1
484     // The following functions match this as closely as possible.
485     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
486     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
487     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
488 
489     // Similarly, we set the greyscale alpha based on luminance and alpha so that
490     //     f(0, a) = a
491     //     f(luminance, 0) = 0
492     //     f(1, 0.25) = 0.15
493     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
494 
495     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
496     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
497     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
498     // ignoring edge falloff, this becomes
499     //
500     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
501     //
502     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
503     // set the alpha to (S_a + C_a - S_a*C_a).
504     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
505     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
506     SkScalar unPremulScale = colorScale / tonalAlpha;
507     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
508                                    unPremulScale*spotR,
509                                    unPremulScale*spotG,
510                                    unPremulScale*spotB);
511 }
512 
513 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & devLightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)514 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
515                                const SkPoint3& devLightPos, SkScalar lightRadius,
516                                SkColor ambientColor, SkColor spotColor,
517                                uint32_t flags) {
518     SkMatrix inverse;
519     if (!canvas->getTotalMatrix().invert(&inverse)) {
520         return;
521     }
522     SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);
523 
524     SkDrawShadowRec rec;
525     rec.fZPlaneParams   = zPlaneParams;
526     rec.fLightPos       = { pt.fX, pt.fY, devLightPos.fZ };
527     rec.fLightRadius    = lightRadius;
528     rec.fAmbientColor   = ambientColor;
529     rec.fSpotColor      = spotColor;
530     rec.fFlags          = flags;
531 
532     canvas->private_draw_shadow_rec(path, rec);
533 }
534 
validate_rec(const SkDrawShadowRec & rec)535 static bool validate_rec(const SkDrawShadowRec& rec) {
536     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
537            SkScalarIsFinite(rec.fLightRadius);
538 }
539 
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)540 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
541     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
542                                 SkScalar tx, SkScalar ty) {
543         if (vertices->vertexCount()) {
544             SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(),
545                                                               SkMatrix::MakeTrans(tx, ty)));
546             this->drawVertices(vertices, nullptr, 0, mode, paint);
547         }
548     };
549 
550     if (!validate_rec(rec)) {
551         return;
552     }
553 
554     SkMatrix viewMatrix = this->ctm();
555     SkAutoDeviceCTMRestore adr(this, SkMatrix::I());
556 
557     ShadowedPath shadowedPath(&path, &viewMatrix);
558 
559     bool tiltZPlane = tilted(rec.fZPlaneParams);
560     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
561     bool uncached = tiltZPlane || path.isVolatile();
562 
563     SkPoint3 zPlaneParams = rec.fZPlaneParams;
564     SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
565     float lightRadius = rec.fLightRadius;
566 
567     if (SkColorGetA(rec.fAmbientColor) > 0) {
568         bool success = false;
569         if (uncached) {
570             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
571                                                                           zPlaneParams,
572                                                                           transparent);
573             if (vertices) {
574                 SkPaint paint;
575                 // Run the vertex color through a GaussianColorFilter and then modulate the
576                 // grayscale result of that against our 'color' param.
577                 paint.setColorFilter(
578                     SkColorFilter::MakeModeFilter(rec.fAmbientColor,
579                                                   SkBlendMode::kModulate)->makeComposed(
580                                                                    SkGaussianColorFilter::Make()));
581                 this->drawVertices(vertices.get(), nullptr, 0, SkBlendMode::kModulate, paint);
582                 success = true;
583             }
584         }
585 
586         if (!success) {
587             AmbientVerticesFactory factory;
588             factory.fOccluderHeight = zPlaneParams.fZ;
589             factory.fTransparent = transparent;
590             if (viewMatrix.hasPerspective()) {
591                 factory.fOffset.set(0, 0);
592             } else {
593                 factory.fOffset.fX = viewMatrix.getTranslateX();
594                 factory.fOffset.fY = viewMatrix.getTranslateY();
595             }
596 
597             if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) {
598                 // Pretransform the path to avoid transforming the stroke, below.
599                 SkPath devSpacePath;
600                 path.transform(viewMatrix, &devSpacePath);
601 
602                 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
603                 // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
604                 //
605                 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
606                 // can be calculated by interpolating:
607                 //
608                 //            original edge        outer edge
609                 //         |       |<---------- r ------>|
610                 //         |<------|--- f -------------->|
611                 //         |       |                     |
612                 //    alpha = 1  alpha = a          alpha = 0
613                 //
614                 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
615                 //
616                 // We now need to outset the path to place the new edge in the center of the
617                 // blur region:
618                 //
619                 //             original   new
620                 //         |       |<------|--- r ------>|
621                 //         |<------|--- f -|------------>|
622                 //         |       |<- o ->|<--- f/2 --->|
623                 //
624                 //     r = o + f/2, so o = r - f/2
625                 //
626                 // We outset by using the stroker, so the strokeWidth is o/2.
627                 //
628                 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
629                 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
630                 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
631                 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
632 
633                 // Now draw with blur
634                 SkPaint paint;
635                 paint.setColor(rec.fAmbientColor);
636                 paint.setStrokeWidth(strokeWidth);
637                 paint.setStyle(SkPaint::kStrokeAndFill_Style);
638                 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
639                 bool respectCTM = false;
640                 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
641                 this->drawPath(devSpacePath, paint);
642             }
643         }
644     }
645 
646     if (SkColorGetA(rec.fSpotColor) > 0) {
647         bool success = false;
648         if (uncached) {
649             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
650                                                                        zPlaneParams,
651                                                                        devLightPos, lightRadius,
652                                                                        transparent);
653             if (vertices) {
654                 SkPaint paint;
655                 // Run the vertex color through a GaussianColorFilter and then modulate the
656                 // grayscale result of that against our 'color' param.
657                 paint.setColorFilter(
658                     SkColorFilter::MakeModeFilter(rec.fSpotColor,
659                                                   SkBlendMode::kModulate)->makeComposed(
660                                                       SkGaussianColorFilter::Make()));
661                 this->drawVertices(vertices.get(), nullptr, 0, SkBlendMode::kModulate, paint);
662                 success = true;
663             }
664         }
665 
666         if (!success) {
667             SpotVerticesFactory factory;
668             factory.fOccluderHeight = zPlaneParams.fZ;
669             factory.fDevLightPos = devLightPos;
670             factory.fLightRadius = lightRadius;
671 
672             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
673             factory.fLocalCenter = center;
674             viewMatrix.mapPoints(&center, 1);
675             SkScalar radius, scale;
676             SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
677                                                devLightPos.fY - center.fY, devLightPos.fZ,
678                                                lightRadius, &radius, &scale, &factory.fOffset);
679             SkRect devBounds;
680             viewMatrix.mapRect(&devBounds, path.getBounds());
681             if (transparent ||
682                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
683                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
684                 // if the translation of the shadow is big enough we're going to end up
685                 // filling the entire umbra, so we can treat these as all the same
686                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
687             } else if (factory.fOffset.length()*scale + scale < radius) {
688                 // if we don't translate more than the blur distance, can assume umbra is covered
689                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
690             } else if (path.isConvex()) {
691                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
692             } else {
693                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
694             }
695             // need to add this after we classify the shadow
696             factory.fOffset.fX += viewMatrix.getTranslateX();
697             factory.fOffset.fY += viewMatrix.getTranslateY();
698 
699             SkColor color = rec.fSpotColor;
700 #ifdef DEBUG_SHADOW_CHECKS
701             switch (factory.fOccluderType) {
702                 case SpotVerticesFactory::OccluderType::kTransparent:
703                     color = 0xFFD2B48C;  // tan for transparent
704                     break;
705                 case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
706                     color = 0xFFFFA500;   // orange for opaque
707                     break;
708                 case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
709                     color = 0xFFE5E500;  // corn yellow for covered
710                     break;
711             }
712 #endif
713             if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) {
714                 // draw with blur
715                 SkMatrix shadowMatrix;
716                 if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
717                                                                  viewMatrix, zPlaneParams,
718                                                                  path.getBounds(),
719                                                                  &shadowMatrix, &radius)) {
720                     return;
721                 }
722                 SkAutoDeviceCTMRestore adr(this, shadowMatrix);
723 
724                 SkPaint paint;
725                 paint.setColor(rec.fSpotColor);
726                 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
727                 bool respectCTM = false;
728                 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
729                 this->drawPath(path, paint);
730             }
731         }
732     }
733 }
734