1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_APINT_H
16 #define LLVM_APINT_H
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <string>
24
25 namespace llvm {
26 class Serializer;
27 class Deserializer;
28 class FoldingSetNodeID;
29 class raw_ostream;
30 class StringRef;
31
32 template<typename T>
33 class SmallVectorImpl;
34
35 // An unsigned host type used as a single part of a multi-part
36 // bignum.
37 typedef uint64_t integerPart;
38
39 const unsigned int host_char_bit = 8;
40 const unsigned int integerPartWidth = host_char_bit *
41 static_cast<unsigned int>(sizeof(integerPart));
42
43 //===----------------------------------------------------------------------===//
44 // APInt Class
45 //===----------------------------------------------------------------------===//
46
47 /// APInt - This class represents arbitrary precision constant integral values.
48 /// It is a functional replacement for common case unsigned integer type like
49 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
50 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
51 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
52 /// and methods to manipulate integer values of any bit-width. It supports both
53 /// the typical integer arithmetic and comparison operations as well as bitwise
54 /// manipulation.
55 ///
56 /// The class has several invariants worth noting:
57 /// * All bit, byte, and word positions are zero-based.
58 /// * Once the bit width is set, it doesn't change except by the Truncate,
59 /// SignExtend, or ZeroExtend operations.
60 /// * All binary operators must be on APInt instances of the same bit width.
61 /// Attempting to use these operators on instances with different bit
62 /// widths will yield an assertion.
63 /// * The value is stored canonically as an unsigned value. For operations
64 /// where it makes a difference, there are both signed and unsigned variants
65 /// of the operation. For example, sdiv and udiv. However, because the bit
66 /// widths must be the same, operations such as Mul and Add produce the same
67 /// results regardless of whether the values are interpreted as signed or
68 /// not.
69 /// * In general, the class tries to follow the style of computation that LLVM
70 /// uses in its IR. This simplifies its use for LLVM.
71 ///
72 /// @brief Class for arbitrary precision integers.
73 class APInt {
74 unsigned BitWidth; ///< The number of bits in this APInt.
75
76 /// This union is used to store the integer value. When the
77 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
78 union {
79 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
80 uint64_t *pVal; ///< Used to store the >64 bits integer value.
81 };
82
83 /// This enum is used to hold the constants we needed for APInt.
84 enum {
85 /// Bits in a word
86 APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
87 CHAR_BIT,
88 /// Byte size of a word
89 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
90 };
91
92 /// This constructor is used only internally for speed of construction of
93 /// temporaries. It is unsafe for general use so it is not public.
94 /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)95 APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
96
97 /// @returns true if the number of bits <= 64, false otherwise.
98 /// @brief Determine if this APInt just has one word to store value.
isSingleWord()99 bool isSingleWord() const {
100 return BitWidth <= APINT_BITS_PER_WORD;
101 }
102
103 /// @returns the word position for the specified bit position.
104 /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)105 static unsigned whichWord(unsigned bitPosition) {
106 return bitPosition / APINT_BITS_PER_WORD;
107 }
108
109 /// @returns the bit position in a word for the specified bit position
110 /// in the APInt.
111 /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)112 static unsigned whichBit(unsigned bitPosition) {
113 return bitPosition % APINT_BITS_PER_WORD;
114 }
115
116 /// This method generates and returns a uint64_t (word) mask for a single
117 /// bit at a specific bit position. This is used to mask the bit in the
118 /// corresponding word.
119 /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
120 /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)121 static uint64_t maskBit(unsigned bitPosition) {
122 return 1ULL << whichBit(bitPosition);
123 }
124
125 /// This method is used internally to clear the to "N" bits in the high order
126 /// word that are not used by the APInt. This is needed after the most
127 /// significant word is assigned a value to ensure that those bits are
128 /// zero'd out.
129 /// @brief Clear unused high order bits
clearUnusedBits()130 APInt& clearUnusedBits() {
131 // Compute how many bits are used in the final word
132 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
133 if (wordBits == 0)
134 // If all bits are used, we want to leave the value alone. This also
135 // avoids the undefined behavior of >> when the shift is the same size as
136 // the word size (64).
137 return *this;
138
139 // Mask out the high bits.
140 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
141 if (isSingleWord())
142 VAL &= mask;
143 else
144 pVal[getNumWords() - 1] &= mask;
145 return *this;
146 }
147
148 /// @returns the corresponding word for the specified bit position.
149 /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)150 uint64_t getWord(unsigned bitPosition) const {
151 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
152 }
153
154 /// Converts a string into a number. The string must be non-empty
155 /// and well-formed as a number of the given base. The bit-width
156 /// must be sufficient to hold the result.
157 ///
158 /// This is used by the constructors that take string arguments.
159 ///
160 /// StringRef::getAsInteger is superficially similar but (1) does
161 /// not assume that the string is well-formed and (2) grows the
162 /// result to hold the input.
163 ///
164 /// @param radix 2, 8, 10, 16, or 36
165 /// @brief Convert a char array into an APInt
166 void fromString(unsigned numBits, StringRef str, uint8_t radix);
167
168 /// This is used by the toString method to divide by the radix. It simply
169 /// provides a more convenient form of divide for internal use since KnuthDiv
170 /// has specific constraints on its inputs. If those constraints are not met
171 /// then it provides a simpler form of divide.
172 /// @brief An internal division function for dividing APInts.
173 static void divide(const APInt LHS, unsigned lhsWords,
174 const APInt &RHS, unsigned rhsWords,
175 APInt *Quotient, APInt *Remainder);
176
177 /// out-of-line slow case for inline constructor
178 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
179
180 /// shared code between two array constructors
181 void initFromArray(ArrayRef<uint64_t> array);
182
183 /// out-of-line slow case for inline copy constructor
184 void initSlowCase(const APInt& that);
185
186 /// out-of-line slow case for shl
187 APInt shlSlowCase(unsigned shiftAmt) const;
188
189 /// out-of-line slow case for operator&
190 APInt AndSlowCase(const APInt& RHS) const;
191
192 /// out-of-line slow case for operator|
193 APInt OrSlowCase(const APInt& RHS) const;
194
195 /// out-of-line slow case for operator^
196 APInt XorSlowCase(const APInt& RHS) const;
197
198 /// out-of-line slow case for operator=
199 APInt& AssignSlowCase(const APInt& RHS);
200
201 /// out-of-line slow case for operator==
202 bool EqualSlowCase(const APInt& RHS) const;
203
204 /// out-of-line slow case for operator==
205 bool EqualSlowCase(uint64_t Val) const;
206
207 /// out-of-line slow case for countLeadingZeros
208 unsigned countLeadingZerosSlowCase() const;
209
210 /// out-of-line slow case for countTrailingOnes
211 unsigned countTrailingOnesSlowCase() const;
212
213 /// out-of-line slow case for countPopulation
214 unsigned countPopulationSlowCase() const;
215
216 public:
217 /// @name Constructors
218 /// @{
219 /// If isSigned is true then val is treated as if it were a signed value
220 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
221 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
222 /// the range of val are zero filled).
223 /// @param numBits the bit width of the constructed APInt
224 /// @param val the initial value of the APInt
225 /// @param isSigned how to treat signedness of val
226 /// @brief Create a new APInt of numBits width, initialized as val.
227 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)228 : BitWidth(numBits), VAL(0) {
229 assert(BitWidth && "bitwidth too small");
230 if (isSingleWord())
231 VAL = val;
232 else
233 initSlowCase(numBits, val, isSigned);
234 clearUnusedBits();
235 }
236
237 /// Note that bigVal.size() can be smaller or larger than the corresponding
238 /// bit width but any extraneous bits will be dropped.
239 /// @param numBits the bit width of the constructed APInt
240 /// @param bigVal a sequence of words to form the initial value of the APInt
241 /// @brief Construct an APInt of numBits width, initialized as bigVal[].
242 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
243 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
244 /// deprecated because this constructor is prone to ambiguity with the
245 /// APInt(unsigned, uint64_t, bool) constructor.
246 ///
247 /// If this overload is ever deleted, care should be taken to prevent calls
248 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
249 /// constructor.
250 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
251
252 /// This constructor interprets the string \arg str in the given radix. The
253 /// interpretation stops when the first character that is not suitable for the
254 /// radix is encountered, or the end of the string. Acceptable radix values
255 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
256 /// string to require more bits than numBits.
257 ///
258 /// @param numBits the bit width of the constructed APInt
259 /// @param str the string to be interpreted
260 /// @param radix the radix to use for the conversion
261 /// @brief Construct an APInt from a string representation.
262 APInt(unsigned numBits, StringRef str, uint8_t radix);
263
264 /// Simply makes *this a copy of that.
265 /// @brief Copy Constructor.
APInt(const APInt & that)266 APInt(const APInt& that)
267 : BitWidth(that.BitWidth), VAL(0) {
268 assert(BitWidth && "bitwidth too small");
269 if (isSingleWord())
270 VAL = that.VAL;
271 else
272 initSlowCase(that);
273 }
274
275 /// @brief Destructor.
~APInt()276 ~APInt() {
277 if (!isSingleWord())
278 delete [] pVal;
279 }
280
281 /// Default constructor that creates an uninitialized APInt. This is useful
282 /// for object deserialization (pair this with the static method Read).
APInt()283 explicit APInt() : BitWidth(1) {}
284
285 /// Profile - Used to insert APInt objects, or objects that contain APInt
286 /// objects, into FoldingSets.
287 void Profile(FoldingSetNodeID& id) const;
288
289 /// @}
290 /// @name Value Tests
291 /// @{
292 /// This tests the high bit of this APInt to determine if it is set.
293 /// @returns true if this APInt is negative, false otherwise
294 /// @brief Determine sign of this APInt.
isNegative()295 bool isNegative() const {
296 return (*this)[BitWidth - 1];
297 }
298
299 /// This tests the high bit of the APInt to determine if it is unset.
300 /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()301 bool isNonNegative() const {
302 return !isNegative();
303 }
304
305 /// This tests if the value of this APInt is positive (> 0). Note
306 /// that 0 is not a positive value.
307 /// @returns true if this APInt is positive.
308 /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()309 bool isStrictlyPositive() const {
310 return isNonNegative() && !!*this;
311 }
312
313 /// This checks to see if the value has all bits of the APInt are set or not.
314 /// @brief Determine if all bits are set
isAllOnesValue()315 bool isAllOnesValue() const {
316 return countPopulation() == BitWidth;
317 }
318
319 /// This checks to see if the value of this APInt is the maximum unsigned
320 /// value for the APInt's bit width.
321 /// @brief Determine if this is the largest unsigned value.
isMaxValue()322 bool isMaxValue() const {
323 return countPopulation() == BitWidth;
324 }
325
326 /// This checks to see if the value of this APInt is the maximum signed
327 /// value for the APInt's bit width.
328 /// @brief Determine if this is the largest signed value.
isMaxSignedValue()329 bool isMaxSignedValue() const {
330 return BitWidth == 1 ? VAL == 0 :
331 !isNegative() && countPopulation() == BitWidth - 1;
332 }
333
334 /// This checks to see if the value of this APInt is the minimum unsigned
335 /// value for the APInt's bit width.
336 /// @brief Determine if this is the smallest unsigned value.
isMinValue()337 bool isMinValue() const {
338 return !*this;
339 }
340
341 /// This checks to see if the value of this APInt is the minimum signed
342 /// value for the APInt's bit width.
343 /// @brief Determine if this is the smallest signed value.
isMinSignedValue()344 bool isMinSignedValue() const {
345 return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
346 }
347
348 /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)349 bool isIntN(unsigned N) const {
350 assert(N && "N == 0 ???");
351 if (N >= getBitWidth())
352 return true;
353
354 if (isSingleWord())
355 return isUIntN(N, VAL);
356 return APInt(N, makeArrayRef(pVal, getNumWords())).zext(getBitWidth())
357 == (*this);
358 }
359
360 /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)361 bool isSignedIntN(unsigned N) const {
362 assert(N && "N == 0 ???");
363 return getMinSignedBits() <= N;
364 }
365
366 /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()367 bool isPowerOf2() const {
368 if (isSingleWord())
369 return isPowerOf2_64(VAL);
370 return countPopulationSlowCase() == 1;
371 }
372
373 /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()374 bool isSignBit() const { return isMinSignedValue(); }
375
376 /// This converts the APInt to a boolean value as a test against zero.
377 /// @brief Boolean conversion function.
getBoolValue()378 bool getBoolValue() const {
379 return !!*this;
380 }
381
382 /// getLimitedValue - If this value is smaller than the specified limit,
383 /// return it, otherwise return the limit value. This causes the value
384 /// to saturate to the limit.
385 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
386 return (getActiveBits() > 64 || getZExtValue() > Limit) ?
387 Limit : getZExtValue();
388 }
389
390 /// @}
391 /// @name Value Generators
392 /// @{
393 /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)394 static APInt getMaxValue(unsigned numBits) {
395 return getAllOnesValue(numBits);
396 }
397
398 /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)399 static APInt getSignedMaxValue(unsigned numBits) {
400 APInt API = getAllOnesValue(numBits);
401 API.clearBit(numBits - 1);
402 return API;
403 }
404
405 /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)406 static APInt getMinValue(unsigned numBits) {
407 return APInt(numBits, 0);
408 }
409
410 /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)411 static APInt getSignedMinValue(unsigned numBits) {
412 APInt API(numBits, 0);
413 API.setBit(numBits - 1);
414 return API;
415 }
416
417 /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
418 /// it helps code readability when we want to get a SignBit.
419 /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)420 static APInt getSignBit(unsigned BitWidth) {
421 return getSignedMinValue(BitWidth);
422 }
423
424 /// @returns the all-ones value for an APInt of the specified bit-width.
425 /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)426 static APInt getAllOnesValue(unsigned numBits) {
427 return APInt(numBits, ~0ULL, true);
428 }
429
430 /// @returns the '0' value for an APInt of the specified bit-width.
431 /// @brief Get the '0' value.
getNullValue(unsigned numBits)432 static APInt getNullValue(unsigned numBits) {
433 return APInt(numBits, 0);
434 }
435
436 /// Get an APInt with the same BitWidth as this APInt, just zero mask
437 /// the low bits and right shift to the least significant bit.
438 /// @returns the high "numBits" bits of this APInt.
439 APInt getHiBits(unsigned numBits) const;
440
441 /// Get an APInt with the same BitWidth as this APInt, just zero mask
442 /// the high bits.
443 /// @returns the low "numBits" bits of this APInt.
444 APInt getLoBits(unsigned numBits) const;
445
446 /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)447 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
448 APInt Res(numBits, 0);
449 Res.setBit(BitNo);
450 return Res;
451 }
452
453 /// Constructs an APInt value that has a contiguous range of bits set. The
454 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
455 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
456 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
457 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
458 /// @param numBits the intended bit width of the result
459 /// @param loBit the index of the lowest bit set.
460 /// @param hiBit the index of the highest bit set.
461 /// @returns An APInt value with the requested bits set.
462 /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)463 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
464 assert(hiBit <= numBits && "hiBit out of range");
465 assert(loBit < numBits && "loBit out of range");
466 if (hiBit < loBit)
467 return getLowBitsSet(numBits, hiBit) |
468 getHighBitsSet(numBits, numBits-loBit);
469 return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
470 }
471
472 /// Constructs an APInt value that has the top hiBitsSet bits set.
473 /// @param numBits the bitwidth of the result
474 /// @param hiBitsSet the number of high-order bits set in the result.
475 /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)476 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
477 assert(hiBitsSet <= numBits && "Too many bits to set!");
478 // Handle a degenerate case, to avoid shifting by word size
479 if (hiBitsSet == 0)
480 return APInt(numBits, 0);
481 unsigned shiftAmt = numBits - hiBitsSet;
482 // For small values, return quickly
483 if (numBits <= APINT_BITS_PER_WORD)
484 return APInt(numBits, ~0ULL << shiftAmt);
485 return getAllOnesValue(numBits).shl(shiftAmt);
486 }
487
488 /// Constructs an APInt value that has the bottom loBitsSet bits set.
489 /// @param numBits the bitwidth of the result
490 /// @param loBitsSet the number of low-order bits set in the result.
491 /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)492 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
493 assert(loBitsSet <= numBits && "Too many bits to set!");
494 // Handle a degenerate case, to avoid shifting by word size
495 if (loBitsSet == 0)
496 return APInt(numBits, 0);
497 if (loBitsSet == APINT_BITS_PER_WORD)
498 return APInt(numBits, ~0ULL);
499 // For small values, return quickly.
500 if (numBits < APINT_BITS_PER_WORD)
501 return APInt(numBits, (1ULL << loBitsSet) - 1);
502 return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
503 }
504
505 /// The hash value is computed as the sum of the words and the bit width.
506 /// @returns A hash value computed from the sum of the APInt words.
507 /// @brief Get a hash value based on this APInt
508 uint64_t getHashValue() const;
509
510 /// This function returns a pointer to the internal storage of the APInt.
511 /// This is useful for writing out the APInt in binary form without any
512 /// conversions.
getRawData()513 const uint64_t* getRawData() const {
514 if (isSingleWord())
515 return &VAL;
516 return &pVal[0];
517 }
518
519 /// @}
520 /// @name Unary Operators
521 /// @{
522 /// @returns a new APInt value representing *this incremented by one
523 /// @brief Postfix increment operator.
524 const APInt operator++(int) {
525 APInt API(*this);
526 ++(*this);
527 return API;
528 }
529
530 /// @returns *this incremented by one
531 /// @brief Prefix increment operator.
532 APInt& operator++();
533
534 /// @returns a new APInt representing *this decremented by one.
535 /// @brief Postfix decrement operator.
536 const APInt operator--(int) {
537 APInt API(*this);
538 --(*this);
539 return API;
540 }
541
542 /// @returns *this decremented by one.
543 /// @brief Prefix decrement operator.
544 APInt& operator--();
545
546 /// Performs a bitwise complement operation on this APInt.
547 /// @returns an APInt that is the bitwise complement of *this
548 /// @brief Unary bitwise complement operator.
549 APInt operator~() const {
550 APInt Result(*this);
551 Result.flipAllBits();
552 return Result;
553 }
554
555 /// Negates *this using two's complement logic.
556 /// @returns An APInt value representing the negation of *this.
557 /// @brief Unary negation operator
558 APInt operator-() const {
559 return APInt(BitWidth, 0) - (*this);
560 }
561
562 /// Performs logical negation operation on this APInt.
563 /// @returns true if *this is zero, false otherwise.
564 /// @brief Logical negation operator.
565 bool operator!() const;
566
567 /// @}
568 /// @name Assignment Operators
569 /// @{
570 /// @returns *this after assignment of RHS.
571 /// @brief Copy assignment operator.
572 APInt& operator=(const APInt& RHS) {
573 // If the bitwidths are the same, we can avoid mucking with memory
574 if (isSingleWord() && RHS.isSingleWord()) {
575 VAL = RHS.VAL;
576 BitWidth = RHS.BitWidth;
577 return clearUnusedBits();
578 }
579
580 return AssignSlowCase(RHS);
581 }
582
583 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
584 /// the bit width, the excess bits are truncated. If the bit width is larger
585 /// than 64, the value is zero filled in the unspecified high order bits.
586 /// @returns *this after assignment of RHS value.
587 /// @brief Assignment operator.
588 APInt& operator=(uint64_t RHS);
589
590 /// Performs a bitwise AND operation on this APInt and RHS. The result is
591 /// assigned to *this.
592 /// @returns *this after ANDing with RHS.
593 /// @brief Bitwise AND assignment operator.
594 APInt& operator&=(const APInt& RHS);
595
596 /// Performs a bitwise OR operation on this APInt and RHS. The result is
597 /// assigned *this;
598 /// @returns *this after ORing with RHS.
599 /// @brief Bitwise OR assignment operator.
600 APInt& operator|=(const APInt& RHS);
601
602 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
603 /// logically zero-extended or truncated to match the bit-width of
604 /// the LHS.
605 ///
606 /// @brief Bitwise OR assignment operator.
607 APInt& operator|=(uint64_t RHS) {
608 if (isSingleWord()) {
609 VAL |= RHS;
610 clearUnusedBits();
611 } else {
612 pVal[0] |= RHS;
613 }
614 return *this;
615 }
616
617 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
618 /// assigned to *this.
619 /// @returns *this after XORing with RHS.
620 /// @brief Bitwise XOR assignment operator.
621 APInt& operator^=(const APInt& RHS);
622
623 /// Multiplies this APInt by RHS and assigns the result to *this.
624 /// @returns *this
625 /// @brief Multiplication assignment operator.
626 APInt& operator*=(const APInt& RHS);
627
628 /// Adds RHS to *this and assigns the result to *this.
629 /// @returns *this
630 /// @brief Addition assignment operator.
631 APInt& operator+=(const APInt& RHS);
632
633 /// Subtracts RHS from *this and assigns the result to *this.
634 /// @returns *this
635 /// @brief Subtraction assignment operator.
636 APInt& operator-=(const APInt& RHS);
637
638 /// Shifts *this left by shiftAmt and assigns the result to *this.
639 /// @returns *this after shifting left by shiftAmt
640 /// @brief Left-shift assignment function.
641 APInt& operator<<=(unsigned shiftAmt) {
642 *this = shl(shiftAmt);
643 return *this;
644 }
645
646 /// @}
647 /// @name Binary Operators
648 /// @{
649 /// Performs a bitwise AND operation on *this and RHS.
650 /// @returns An APInt value representing the bitwise AND of *this and RHS.
651 /// @brief Bitwise AND operator.
652 APInt operator&(const APInt& RHS) const {
653 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654 if (isSingleWord())
655 return APInt(getBitWidth(), VAL & RHS.VAL);
656 return AndSlowCase(RHS);
657 }
And(const APInt & RHS)658 APInt And(const APInt& RHS) const {
659 return this->operator&(RHS);
660 }
661
662 /// Performs a bitwise OR operation on *this and RHS.
663 /// @returns An APInt value representing the bitwise OR of *this and RHS.
664 /// @brief Bitwise OR operator.
665 APInt operator|(const APInt& RHS) const {
666 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
667 if (isSingleWord())
668 return APInt(getBitWidth(), VAL | RHS.VAL);
669 return OrSlowCase(RHS);
670 }
Or(const APInt & RHS)671 APInt Or(const APInt& RHS) const {
672 return this->operator|(RHS);
673 }
674
675 /// Performs a bitwise XOR operation on *this and RHS.
676 /// @returns An APInt value representing the bitwise XOR of *this and RHS.
677 /// @brief Bitwise XOR operator.
678 APInt operator^(const APInt& RHS) const {
679 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
680 if (isSingleWord())
681 return APInt(BitWidth, VAL ^ RHS.VAL);
682 return XorSlowCase(RHS);
683 }
Xor(const APInt & RHS)684 APInt Xor(const APInt& RHS) const {
685 return this->operator^(RHS);
686 }
687
688 /// Multiplies this APInt by RHS and returns the result.
689 /// @brief Multiplication operator.
690 APInt operator*(const APInt& RHS) const;
691
692 /// Adds RHS to this APInt and returns the result.
693 /// @brief Addition operator.
694 APInt operator+(const APInt& RHS) const;
695 APInt operator+(uint64_t RHS) const {
696 return (*this) + APInt(BitWidth, RHS);
697 }
698
699 /// Subtracts RHS from this APInt and returns the result.
700 /// @brief Subtraction operator.
701 APInt operator-(const APInt& RHS) const;
702 APInt operator-(uint64_t RHS) const {
703 return (*this) - APInt(BitWidth, RHS);
704 }
705
706 APInt operator<<(unsigned Bits) const {
707 return shl(Bits);
708 }
709
710 APInt operator<<(const APInt &Bits) const {
711 return shl(Bits);
712 }
713
714 /// Arithmetic right-shift this APInt by shiftAmt.
715 /// @brief Arithmetic right-shift function.
716 APInt ashr(unsigned shiftAmt) const;
717
718 /// Logical right-shift this APInt by shiftAmt.
719 /// @brief Logical right-shift function.
720 APInt lshr(unsigned shiftAmt) const;
721
722 /// Left-shift this APInt by shiftAmt.
723 /// @brief Left-shift function.
shl(unsigned shiftAmt)724 APInt shl(unsigned shiftAmt) const {
725 assert(shiftAmt <= BitWidth && "Invalid shift amount");
726 if (isSingleWord()) {
727 if (shiftAmt == BitWidth)
728 return APInt(BitWidth, 0); // avoid undefined shift results
729 return APInt(BitWidth, VAL << shiftAmt);
730 }
731 return shlSlowCase(shiftAmt);
732 }
733
734 /// @brief Rotate left by rotateAmt.
735 APInt rotl(unsigned rotateAmt) const;
736
737 /// @brief Rotate right by rotateAmt.
738 APInt rotr(unsigned rotateAmt) const;
739
740 /// Arithmetic right-shift this APInt by shiftAmt.
741 /// @brief Arithmetic right-shift function.
742 APInt ashr(const APInt &shiftAmt) const;
743
744 /// Logical right-shift this APInt by shiftAmt.
745 /// @brief Logical right-shift function.
746 APInt lshr(const APInt &shiftAmt) const;
747
748 /// Left-shift this APInt by shiftAmt.
749 /// @brief Left-shift function.
750 APInt shl(const APInt &shiftAmt) const;
751
752 /// @brief Rotate left by rotateAmt.
753 APInt rotl(const APInt &rotateAmt) const;
754
755 /// @brief Rotate right by rotateAmt.
756 APInt rotr(const APInt &rotateAmt) const;
757
758 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
759 /// RHS are treated as unsigned quantities for purposes of this division.
760 /// @returns a new APInt value containing the division result
761 /// @brief Unsigned division operation.
762 APInt udiv(const APInt &RHS) const;
763
764 /// Signed divide this APInt by APInt RHS.
765 /// @brief Signed division function for APInt.
sdiv(const APInt & RHS)766 APInt sdiv(const APInt &RHS) const {
767 if (isNegative())
768 if (RHS.isNegative())
769 return (-(*this)).udiv(-RHS);
770 else
771 return -((-(*this)).udiv(RHS));
772 else if (RHS.isNegative())
773 return -(this->udiv(-RHS));
774 return this->udiv(RHS);
775 }
776
777 /// Perform an unsigned remainder operation on this APInt with RHS being the
778 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
779 /// of this operation. Note that this is a true remainder operation and not
780 /// a modulo operation because the sign follows the sign of the dividend
781 /// which is *this.
782 /// @returns a new APInt value containing the remainder result
783 /// @brief Unsigned remainder operation.
784 APInt urem(const APInt &RHS) const;
785
786 /// Signed remainder operation on APInt.
787 /// @brief Function for signed remainder operation.
srem(const APInt & RHS)788 APInt srem(const APInt &RHS) const {
789 if (isNegative())
790 if (RHS.isNegative())
791 return -((-(*this)).urem(-RHS));
792 else
793 return -((-(*this)).urem(RHS));
794 else if (RHS.isNegative())
795 return this->urem(-RHS);
796 return this->urem(RHS);
797 }
798
799 /// Sometimes it is convenient to divide two APInt values and obtain both the
800 /// quotient and remainder. This function does both operations in the same
801 /// computation making it a little more efficient. The pair of input arguments
802 /// may overlap with the pair of output arguments. It is safe to call
803 /// udivrem(X, Y, X, Y), for example.
804 /// @brief Dual division/remainder interface.
805 static void udivrem(const APInt &LHS, const APInt &RHS,
806 APInt &Quotient, APInt &Remainder);
807
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)808 static void sdivrem(const APInt &LHS, const APInt &RHS,
809 APInt &Quotient, APInt &Remainder) {
810 if (LHS.isNegative()) {
811 if (RHS.isNegative())
812 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
813 else
814 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
815 Quotient = -Quotient;
816 Remainder = -Remainder;
817 } else if (RHS.isNegative()) {
818 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
819 Quotient = -Quotient;
820 } else {
821 APInt::udivrem(LHS, RHS, Quotient, Remainder);
822 }
823 }
824
825
826 // Operations that return overflow indicators.
827 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
828 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
829 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
830 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
831 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
832 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
833 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
834 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
835
836 /// @returns the bit value at bitPosition
837 /// @brief Array-indexing support.
838 bool operator[](unsigned bitPosition) const;
839
840 /// @}
841 /// @name Comparison Operators
842 /// @{
843 /// Compares this APInt with RHS for the validity of the equality
844 /// relationship.
845 /// @brief Equality operator.
846 bool operator==(const APInt& RHS) const {
847 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
848 if (isSingleWord())
849 return VAL == RHS.VAL;
850 return EqualSlowCase(RHS);
851 }
852
853 /// Compares this APInt with a uint64_t for the validity of the equality
854 /// relationship.
855 /// @returns true if *this == Val
856 /// @brief Equality operator.
857 bool operator==(uint64_t Val) const {
858 if (isSingleWord())
859 return VAL == Val;
860 return EqualSlowCase(Val);
861 }
862
863 /// Compares this APInt with RHS for the validity of the equality
864 /// relationship.
865 /// @returns true if *this == Val
866 /// @brief Equality comparison.
eq(const APInt & RHS)867 bool eq(const APInt &RHS) const {
868 return (*this) == RHS;
869 }
870
871 /// Compares this APInt with RHS for the validity of the inequality
872 /// relationship.
873 /// @returns true if *this != Val
874 /// @brief Inequality operator.
875 bool operator!=(const APInt& RHS) const {
876 return !((*this) == RHS);
877 }
878
879 /// Compares this APInt with a uint64_t for the validity of the inequality
880 /// relationship.
881 /// @returns true if *this != Val
882 /// @brief Inequality operator.
883 bool operator!=(uint64_t Val) const {
884 return !((*this) == Val);
885 }
886
887 /// Compares this APInt with RHS for the validity of the inequality
888 /// relationship.
889 /// @returns true if *this != Val
890 /// @brief Inequality comparison
ne(const APInt & RHS)891 bool ne(const APInt &RHS) const {
892 return !((*this) == RHS);
893 }
894
895 /// Regards both *this and RHS as unsigned quantities and compares them for
896 /// the validity of the less-than relationship.
897 /// @returns true if *this < RHS when both are considered unsigned.
898 /// @brief Unsigned less than comparison
899 bool ult(const APInt &RHS) const;
900
901 /// Regards both *this as an unsigned quantity and compares it with RHS for
902 /// the validity of the less-than relationship.
903 /// @returns true if *this < RHS when considered unsigned.
904 /// @brief Unsigned less than comparison
ult(uint64_t RHS)905 bool ult(uint64_t RHS) const {
906 return ult(APInt(getBitWidth(), RHS));
907 }
908
909 /// Regards both *this and RHS as signed quantities and compares them for
910 /// validity of the less-than relationship.
911 /// @returns true if *this < RHS when both are considered signed.
912 /// @brief Signed less than comparison
913 bool slt(const APInt& RHS) const;
914
915 /// Regards both *this as a signed quantity and compares it with RHS for
916 /// the validity of the less-than relationship.
917 /// @returns true if *this < RHS when considered signed.
918 /// @brief Signed less than comparison
slt(uint64_t RHS)919 bool slt(uint64_t RHS) const {
920 return slt(APInt(getBitWidth(), RHS));
921 }
922
923 /// Regards both *this and RHS as unsigned quantities and compares them for
924 /// validity of the less-or-equal relationship.
925 /// @returns true if *this <= RHS when both are considered unsigned.
926 /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)927 bool ule(const APInt& RHS) const {
928 return ult(RHS) || eq(RHS);
929 }
930
931 /// Regards both *this as an unsigned quantity and compares it with RHS for
932 /// the validity of the less-or-equal relationship.
933 /// @returns true if *this <= RHS when considered unsigned.
934 /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)935 bool ule(uint64_t RHS) const {
936 return ule(APInt(getBitWidth(), RHS));
937 }
938
939 /// Regards both *this and RHS as signed quantities and compares them for
940 /// validity of the less-or-equal relationship.
941 /// @returns true if *this <= RHS when both are considered signed.
942 /// @brief Signed less or equal comparison
sle(const APInt & RHS)943 bool sle(const APInt& RHS) const {
944 return slt(RHS) || eq(RHS);
945 }
946
947 /// Regards both *this as a signed quantity and compares it with RHS for
948 /// the validity of the less-or-equal relationship.
949 /// @returns true if *this <= RHS when considered signed.
950 /// @brief Signed less or equal comparison
sle(uint64_t RHS)951 bool sle(uint64_t RHS) const {
952 return sle(APInt(getBitWidth(), RHS));
953 }
954
955 /// Regards both *this and RHS as unsigned quantities and compares them for
956 /// the validity of the greater-than relationship.
957 /// @returns true if *this > RHS when both are considered unsigned.
958 /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)959 bool ugt(const APInt& RHS) const {
960 return !ult(RHS) && !eq(RHS);
961 }
962
963 /// Regards both *this as an unsigned quantity and compares it with RHS for
964 /// the validity of the greater-than relationship.
965 /// @returns true if *this > RHS when considered unsigned.
966 /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)967 bool ugt(uint64_t RHS) const {
968 return ugt(APInt(getBitWidth(), RHS));
969 }
970
971 /// Regards both *this and RHS as signed quantities and compares them for
972 /// the validity of the greater-than relationship.
973 /// @returns true if *this > RHS when both are considered signed.
974 /// @brief Signed greather than comparison
sgt(const APInt & RHS)975 bool sgt(const APInt& RHS) const {
976 return !slt(RHS) && !eq(RHS);
977 }
978
979 /// Regards both *this as a signed quantity and compares it with RHS for
980 /// the validity of the greater-than relationship.
981 /// @returns true if *this > RHS when considered signed.
982 /// @brief Signed greater than comparison
sgt(uint64_t RHS)983 bool sgt(uint64_t RHS) const {
984 return sgt(APInt(getBitWidth(), RHS));
985 }
986
987 /// Regards both *this and RHS as unsigned quantities and compares them for
988 /// validity of the greater-or-equal relationship.
989 /// @returns true if *this >= RHS when both are considered unsigned.
990 /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)991 bool uge(const APInt& RHS) const {
992 return !ult(RHS);
993 }
994
995 /// Regards both *this as an unsigned quantity and compares it with RHS for
996 /// the validity of the greater-or-equal relationship.
997 /// @returns true if *this >= RHS when considered unsigned.
998 /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)999 bool uge(uint64_t RHS) const {
1000 return uge(APInt(getBitWidth(), RHS));
1001 }
1002
1003 /// Regards both *this and RHS as signed quantities and compares them for
1004 /// validity of the greater-or-equal relationship.
1005 /// @returns true if *this >= RHS when both are considered signed.
1006 /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1007 bool sge(const APInt& RHS) const {
1008 return !slt(RHS);
1009 }
1010
1011 /// Regards both *this as a signed quantity and compares it with RHS for
1012 /// the validity of the greater-or-equal relationship.
1013 /// @returns true if *this >= RHS when considered signed.
1014 /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1015 bool sge(uint64_t RHS) const {
1016 return sge(APInt(getBitWidth(), RHS));
1017 }
1018
1019
1020
1021
1022 /// This operation tests if there are any pairs of corresponding bits
1023 /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1024 bool intersects(const APInt &RHS) const {
1025 return (*this & RHS) != 0;
1026 }
1027
1028 /// @}
1029 /// @name Resizing Operators
1030 /// @{
1031 /// Truncate the APInt to a specified width. It is an error to specify a width
1032 /// that is greater than or equal to the current width.
1033 /// @brief Truncate to new width.
1034 APInt trunc(unsigned width) const;
1035
1036 /// This operation sign extends the APInt to a new width. If the high order
1037 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1038 /// It is an error to specify a width that is less than or equal to the
1039 /// current width.
1040 /// @brief Sign extend to a new width.
1041 APInt sext(unsigned width) const;
1042
1043 /// This operation zero extends the APInt to a new width. The high order bits
1044 /// are filled with 0 bits. It is an error to specify a width that is less
1045 /// than or equal to the current width.
1046 /// @brief Zero extend to a new width.
1047 APInt zext(unsigned width) const;
1048
1049 /// Make this APInt have the bit width given by \p width. The value is sign
1050 /// extended, truncated, or left alone to make it that width.
1051 /// @brief Sign extend or truncate to width
1052 APInt sextOrTrunc(unsigned width) const;
1053
1054 /// Make this APInt have the bit width given by \p width. The value is zero
1055 /// extended, truncated, or left alone to make it that width.
1056 /// @brief Zero extend or truncate to width
1057 APInt zextOrTrunc(unsigned width) const;
1058
1059 /// @}
1060 /// @name Bit Manipulation Operators
1061 /// @{
1062 /// @brief Set every bit to 1.
setAllBits()1063 void setAllBits() {
1064 if (isSingleWord())
1065 VAL = ~0ULL;
1066 else {
1067 // Set all the bits in all the words.
1068 for (unsigned i = 0; i < getNumWords(); ++i)
1069 pVal[i] = ~0ULL;
1070 }
1071 // Clear the unused ones
1072 clearUnusedBits();
1073 }
1074
1075 /// Set the given bit to 1 whose position is given as "bitPosition".
1076 /// @brief Set a given bit to 1.
1077 void setBit(unsigned bitPosition);
1078
1079 /// @brief Set every bit to 0.
clearAllBits()1080 void clearAllBits() {
1081 if (isSingleWord())
1082 VAL = 0;
1083 else
1084 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1085 }
1086
1087 /// Set the given bit to 0 whose position is given as "bitPosition".
1088 /// @brief Set a given bit to 0.
1089 void clearBit(unsigned bitPosition);
1090
1091 /// @brief Toggle every bit to its opposite value.
flipAllBits()1092 void flipAllBits() {
1093 if (isSingleWord())
1094 VAL ^= ~0ULL;
1095 else {
1096 for (unsigned i = 0; i < getNumWords(); ++i)
1097 pVal[i] ^= ~0ULL;
1098 }
1099 clearUnusedBits();
1100 }
1101
1102 /// Toggle a given bit to its opposite value whose position is given
1103 /// as "bitPosition".
1104 /// @brief Toggles a given bit to its opposite value.
1105 void flipBit(unsigned bitPosition);
1106
1107 /// @}
1108 /// @name Value Characterization Functions
1109 /// @{
1110
1111 /// @returns the total number of bits.
getBitWidth()1112 unsigned getBitWidth() const {
1113 return BitWidth;
1114 }
1115
1116 /// Here one word's bitwidth equals to that of uint64_t.
1117 /// @returns the number of words to hold the integer value of this APInt.
1118 /// @brief Get the number of words.
getNumWords()1119 unsigned getNumWords() const {
1120 return getNumWords(BitWidth);
1121 }
1122
1123 /// Here one word's bitwidth equals to that of uint64_t.
1124 /// @returns the number of words to hold the integer value with a
1125 /// given bit width.
1126 /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1127 static unsigned getNumWords(unsigned BitWidth) {
1128 return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1129 }
1130
1131 /// This function returns the number of active bits which is defined as the
1132 /// bit width minus the number of leading zeros. This is used in several
1133 /// computations to see how "wide" the value is.
1134 /// @brief Compute the number of active bits in the value
getActiveBits()1135 unsigned getActiveBits() const {
1136 return BitWidth - countLeadingZeros();
1137 }
1138
1139 /// This function returns the number of active words in the value of this
1140 /// APInt. This is used in conjunction with getActiveData to extract the raw
1141 /// value of the APInt.
getActiveWords()1142 unsigned getActiveWords() const {
1143 return whichWord(getActiveBits()-1) + 1;
1144 }
1145
1146 /// Computes the minimum bit width for this APInt while considering it to be
1147 /// a signed (and probably negative) value. If the value is not negative,
1148 /// this function returns the same value as getActiveBits()+1. Otherwise, it
1149 /// returns the smallest bit width that will retain the negative value. For
1150 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1151 /// for -1, this function will always return 1.
1152 /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1153 unsigned getMinSignedBits() const {
1154 if (isNegative())
1155 return BitWidth - countLeadingOnes() + 1;
1156 return getActiveBits()+1;
1157 }
1158
1159 /// This method attempts to return the value of this APInt as a zero extended
1160 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1161 /// uint64_t. Otherwise an assertion will result.
1162 /// @brief Get zero extended value
getZExtValue()1163 uint64_t getZExtValue() const {
1164 if (isSingleWord())
1165 return VAL;
1166 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1167 return pVal[0];
1168 }
1169
1170 /// This method attempts to return the value of this APInt as a sign extended
1171 /// int64_t. The bit width must be <= 64 or the value must fit within an
1172 /// int64_t. Otherwise an assertion will result.
1173 /// @brief Get sign extended value
getSExtValue()1174 int64_t getSExtValue() const {
1175 if (isSingleWord())
1176 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1177 (APINT_BITS_PER_WORD - BitWidth);
1178 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1179 return int64_t(pVal[0]);
1180 }
1181
1182 /// This method determines how many bits are required to hold the APInt
1183 /// equivalent of the string given by \arg str.
1184 /// @brief Get bits required for string value.
1185 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1186
1187 /// countLeadingZeros - This function is an APInt version of the
1188 /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1189 /// of zeros from the most significant bit to the first one bit.
1190 /// @returns BitWidth if the value is zero.
1191 /// @returns the number of zeros from the most significant bit to the first
1192 /// one bits.
countLeadingZeros()1193 unsigned countLeadingZeros() const {
1194 if (isSingleWord()) {
1195 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1196 return CountLeadingZeros_64(VAL) - unusedBits;
1197 }
1198 return countLeadingZerosSlowCase();
1199 }
1200
1201 /// countLeadingOnes - This function is an APInt version of the
1202 /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1203 /// of ones from the most significant bit to the first zero bit.
1204 /// @returns 0 if the high order bit is not set
1205 /// @returns the number of 1 bits from the most significant to the least
1206 /// @brief Count the number of leading one bits.
1207 unsigned countLeadingOnes() const;
1208
1209 /// Computes the number of leading bits of this APInt that are equal to its
1210 /// sign bit.
getNumSignBits()1211 unsigned getNumSignBits() const {
1212 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1213 }
1214
1215 /// countTrailingZeros - This function is an APInt version of the
1216 /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1217 /// the number of zeros from the least significant bit to the first set bit.
1218 /// @returns BitWidth if the value is zero.
1219 /// @returns the number of zeros from the least significant bit to the first
1220 /// one bit.
1221 /// @brief Count the number of trailing zero bits.
1222 unsigned countTrailingZeros() const;
1223
1224 /// countTrailingOnes - This function is an APInt version of the
1225 /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1226 /// the number of ones from the least significant bit to the first zero bit.
1227 /// @returns BitWidth if the value is all ones.
1228 /// @returns the number of ones from the least significant bit to the first
1229 /// zero bit.
1230 /// @brief Count the number of trailing one bits.
countTrailingOnes()1231 unsigned countTrailingOnes() const {
1232 if (isSingleWord())
1233 return CountTrailingOnes_64(VAL);
1234 return countTrailingOnesSlowCase();
1235 }
1236
1237 /// countPopulation - This function is an APInt version of the
1238 /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1239 /// of 1 bits in the APInt value.
1240 /// @returns 0 if the value is zero.
1241 /// @returns the number of set bits.
1242 /// @brief Count the number of bits set.
countPopulation()1243 unsigned countPopulation() const {
1244 if (isSingleWord())
1245 return CountPopulation_64(VAL);
1246 return countPopulationSlowCase();
1247 }
1248
1249 /// @}
1250 /// @name Conversion Functions
1251 /// @{
1252 void print(raw_ostream &OS, bool isSigned) const;
1253
1254 /// toString - Converts an APInt to a string and append it to Str. Str is
1255 /// commonly a SmallString.
1256 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1257 bool formatAsCLiteral = false) const;
1258
1259 /// Considers the APInt to be unsigned and converts it into a string in the
1260 /// radix given. The radix can be 2, 8, 10 16, or 36.
1261 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1262 toString(Str, Radix, false, false);
1263 }
1264
1265 /// Considers the APInt to be signed and converts it into a string in the
1266 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1267 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1268 toString(Str, Radix, true, false);
1269 }
1270
1271 /// toString - This returns the APInt as a std::string. Note that this is an
1272 /// inefficient method. It is better to pass in a SmallVector/SmallString
1273 /// to the methods above to avoid thrashing the heap for the string.
1274 std::string toString(unsigned Radix, bool Signed) const;
1275
1276
1277 /// @returns a byte-swapped representation of this APInt Value.
1278 APInt byteSwap() const;
1279
1280 /// @brief Converts this APInt to a double value.
1281 double roundToDouble(bool isSigned) const;
1282
1283 /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1284 double roundToDouble() const {
1285 return roundToDouble(false);
1286 }
1287
1288 /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1289 double signedRoundToDouble() const {
1290 return roundToDouble(true);
1291 }
1292
1293 /// The conversion does not do a translation from integer to double, it just
1294 /// re-interprets the bits as a double. Note that it is valid to do this on
1295 /// any bit width. Exactly 64 bits will be translated.
1296 /// @brief Converts APInt bits to a double
bitsToDouble()1297 double bitsToDouble() const {
1298 union {
1299 uint64_t I;
1300 double D;
1301 } T;
1302 T.I = (isSingleWord() ? VAL : pVal[0]);
1303 return T.D;
1304 }
1305
1306 /// The conversion does not do a translation from integer to float, it just
1307 /// re-interprets the bits as a float. Note that it is valid to do this on
1308 /// any bit width. Exactly 32 bits will be translated.
1309 /// @brief Converts APInt bits to a double
bitsToFloat()1310 float bitsToFloat() const {
1311 union {
1312 unsigned I;
1313 float F;
1314 } T;
1315 T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1316 return T.F;
1317 }
1318
1319 /// The conversion does not do a translation from double to integer, it just
1320 /// re-interprets the bits of the double.
1321 /// @brief Converts a double to APInt bits.
doubleToBits(double V)1322 static APInt doubleToBits(double V) {
1323 union {
1324 uint64_t I;
1325 double D;
1326 } T;
1327 T.D = V;
1328 return APInt(sizeof T * CHAR_BIT, T.I);
1329 }
1330
1331 /// The conversion does not do a translation from float to integer, it just
1332 /// re-interprets the bits of the float.
1333 /// @brief Converts a float to APInt bits.
floatToBits(float V)1334 static APInt floatToBits(float V) {
1335 union {
1336 unsigned I;
1337 float F;
1338 } T;
1339 T.F = V;
1340 return APInt(sizeof T * CHAR_BIT, T.I);
1341 }
1342
1343 /// @}
1344 /// @name Mathematics Operations
1345 /// @{
1346
1347 /// @returns the floor log base 2 of this APInt.
logBase2()1348 unsigned logBase2() const {
1349 return BitWidth - 1 - countLeadingZeros();
1350 }
1351
1352 /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1353 unsigned ceilLogBase2() const {
1354 return BitWidth - (*this - 1).countLeadingZeros();
1355 }
1356
1357 /// @returns the log base 2 of this APInt if its an exact power of two, -1
1358 /// otherwise
exactLogBase2()1359 int32_t exactLogBase2() const {
1360 if (!isPowerOf2())
1361 return -1;
1362 return logBase2();
1363 }
1364
1365 /// @brief Compute the square root
1366 APInt sqrt() const;
1367
1368 /// If *this is < 0 then return -(*this), otherwise *this;
1369 /// @brief Get the absolute value;
abs()1370 APInt abs() const {
1371 if (isNegative())
1372 return -(*this);
1373 return *this;
1374 }
1375
1376 /// @returns the multiplicative inverse for a given modulo.
1377 APInt multiplicativeInverse(const APInt& modulo) const;
1378
1379 /// @}
1380 /// @name Support for division by constant
1381 /// @{
1382
1383 /// Calculate the magic number for signed division by a constant.
1384 struct ms;
1385 ms magic() const;
1386
1387 /// Calculate the magic number for unsigned division by a constant.
1388 struct mu;
1389 mu magicu(unsigned LeadingZeros = 0) const;
1390
1391 /// @}
1392 /// @name Building-block Operations for APInt and APFloat
1393 /// @{
1394
1395 // These building block operations operate on a representation of
1396 // arbitrary precision, two's-complement, bignum integer values.
1397 // They should be sufficient to implement APInt and APFloat bignum
1398 // requirements. Inputs are generally a pointer to the base of an
1399 // array of integer parts, representing an unsigned bignum, and a
1400 // count of how many parts there are.
1401
1402 /// Sets the least significant part of a bignum to the input value,
1403 /// and zeroes out higher parts. */
1404 static void tcSet(integerPart *, integerPart, unsigned int);
1405
1406 /// Assign one bignum to another.
1407 static void tcAssign(integerPart *, const integerPart *, unsigned int);
1408
1409 /// Returns true if a bignum is zero, false otherwise.
1410 static bool tcIsZero(const integerPart *, unsigned int);
1411
1412 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1413 static int tcExtractBit(const integerPart *, unsigned int bit);
1414
1415 /// Copy the bit vector of width srcBITS from SRC, starting at bit
1416 /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1417 /// becomes the least significant bit of DST. All high bits above
1418 /// srcBITS in DST are zero-filled.
1419 static void tcExtract(integerPart *, unsigned int dstCount,
1420 const integerPart *,
1421 unsigned int srcBits, unsigned int srcLSB);
1422
1423 /// Set the given bit of a bignum. Zero-based.
1424 static void tcSetBit(integerPart *, unsigned int bit);
1425
1426 /// Clear the given bit of a bignum. Zero-based.
1427 static void tcClearBit(integerPart *, unsigned int bit);
1428
1429 /// Returns the bit number of the least or most significant set bit
1430 /// of a number. If the input number has no bits set -1U is
1431 /// returned.
1432 static unsigned int tcLSB(const integerPart *, unsigned int);
1433 static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1434
1435 /// Negate a bignum in-place.
1436 static void tcNegate(integerPart *, unsigned int);
1437
1438 /// DST += RHS + CARRY where CARRY is zero or one. Returns the
1439 /// carry flag.
1440 static integerPart tcAdd(integerPart *, const integerPart *,
1441 integerPart carry, unsigned);
1442
1443 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the
1444 /// carry flag.
1445 static integerPart tcSubtract(integerPart *, const integerPart *,
1446 integerPart carry, unsigned);
1447
1448 /// DST += SRC * MULTIPLIER + PART if add is true
1449 /// DST = SRC * MULTIPLIER + PART if add is false
1450 ///
1451 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
1452 /// they must start at the same point, i.e. DST == SRC.
1453 ///
1454 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1455 /// returned. Otherwise DST is filled with the least significant
1456 /// DSTPARTS parts of the result, and if all of the omitted higher
1457 /// parts were zero return zero, otherwise overflow occurred and
1458 /// return one.
1459 static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1460 integerPart multiplier, integerPart carry,
1461 unsigned int srcParts, unsigned int dstParts,
1462 bool add);
1463
1464 /// DST = LHS * RHS, where DST has the same width as the operands
1465 /// and is filled with the least significant parts of the result.
1466 /// Returns one if overflow occurred, otherwise zero. DST must be
1467 /// disjoint from both operands.
1468 static int tcMultiply(integerPart *, const integerPart *,
1469 const integerPart *, unsigned);
1470
1471 /// DST = LHS * RHS, where DST has width the sum of the widths of
1472 /// the operands. No overflow occurs. DST must be disjoint from
1473 /// both operands. Returns the number of parts required to hold the
1474 /// result.
1475 static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1476 const integerPart *, unsigned, unsigned);
1477
1478 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1479 /// Otherwise set LHS to LHS / RHS with the fractional part
1480 /// discarded, set REMAINDER to the remainder, return zero. i.e.
1481 ///
1482 /// OLD_LHS = RHS * LHS + REMAINDER
1483 ///
1484 /// SCRATCH is a bignum of the same size as the operands and result
1485 /// for use by the routine; its contents need not be initialized
1486 /// and are destroyed. LHS, REMAINDER and SCRATCH must be
1487 /// distinct.
1488 static int tcDivide(integerPart *lhs, const integerPart *rhs,
1489 integerPart *remainder, integerPart *scratch,
1490 unsigned int parts);
1491
1492 /// Shift a bignum left COUNT bits. Shifted in bits are zero.
1493 /// There are no restrictions on COUNT.
1494 static void tcShiftLeft(integerPart *, unsigned int parts,
1495 unsigned int count);
1496
1497 /// Shift a bignum right COUNT bits. Shifted in bits are zero.
1498 /// There are no restrictions on COUNT.
1499 static void tcShiftRight(integerPart *, unsigned int parts,
1500 unsigned int count);
1501
1502 /// The obvious AND, OR and XOR and complement operations.
1503 static void tcAnd(integerPart *, const integerPart *, unsigned int);
1504 static void tcOr(integerPart *, const integerPart *, unsigned int);
1505 static void tcXor(integerPart *, const integerPart *, unsigned int);
1506 static void tcComplement(integerPart *, unsigned int);
1507
1508 /// Comparison (unsigned) of two bignums.
1509 static int tcCompare(const integerPart *, const integerPart *,
1510 unsigned int);
1511
1512 /// Increment a bignum in-place. Return the carry flag.
1513 static integerPart tcIncrement(integerPart *, unsigned int);
1514
1515 /// Set the least significant BITS and clear the rest.
1516 static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1517 unsigned int bits);
1518
1519 /// @brief debug method
1520 void dump() const;
1521
1522 /// @}
1523 };
1524
1525 /// Magic data for optimising signed division by a constant.
1526 struct APInt::ms {
1527 APInt m; ///< magic number
1528 unsigned s; ///< shift amount
1529 };
1530
1531 /// Magic data for optimising unsigned division by a constant.
1532 struct APInt::mu {
1533 APInt m; ///< magic number
1534 bool a; ///< add indicator
1535 unsigned s; ///< shift amount
1536 };
1537
1538 inline bool operator==(uint64_t V1, const APInt& V2) {
1539 return V2 == V1;
1540 }
1541
1542 inline bool operator!=(uint64_t V1, const APInt& V2) {
1543 return V2 != V1;
1544 }
1545
1546 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1547 I.print(OS, true);
1548 return OS;
1549 }
1550
1551 namespace APIntOps {
1552
1553 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1554 inline APInt smin(const APInt &A, const APInt &B) {
1555 return A.slt(B) ? A : B;
1556 }
1557
1558 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1559 inline APInt smax(const APInt &A, const APInt &B) {
1560 return A.sgt(B) ? A : B;
1561 }
1562
1563 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1564 inline APInt umin(const APInt &A, const APInt &B) {
1565 return A.ult(B) ? A : B;
1566 }
1567
1568 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1569 inline APInt umax(const APInt &A, const APInt &B) {
1570 return A.ugt(B) ? A : B;
1571 }
1572
1573 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1574 inline bool isIntN(unsigned N, const APInt& APIVal) {
1575 return APIVal.isIntN(N);
1576 }
1577
1578 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1579 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1580 return APIVal.isSignedIntN(N);
1581 }
1582
1583 /// @returns true if the argument APInt value is a sequence of ones
1584 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1585 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1586 return numBits <= APIVal.getBitWidth() &&
1587 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1588 }
1589
1590 /// @returns true if the argument APInt value contains a sequence of ones
1591 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1592 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1593 return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1594 }
1595
1596 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1597 inline APInt byteSwap(const APInt& APIVal) {
1598 return APIVal.byteSwap();
1599 }
1600
1601 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1602 inline unsigned logBase2(const APInt& APIVal) {
1603 return APIVal.logBase2();
1604 }
1605
1606 /// GreatestCommonDivisor - This function returns the greatest common
1607 /// divisor of the two APInt values using Euclid's algorithm.
1608 /// @returns the greatest common divisor of Val1 and Val2
1609 /// @brief Compute GCD of two APInt values.
1610 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1611
1612 /// Treats the APInt as an unsigned value for conversion purposes.
1613 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1614 inline double RoundAPIntToDouble(const APInt& APIVal) {
1615 return APIVal.roundToDouble();
1616 }
1617
1618 /// Treats the APInt as a signed value for conversion purposes.
1619 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1620 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1621 return APIVal.signedRoundToDouble();
1622 }
1623
1624 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1625 inline float RoundAPIntToFloat(const APInt& APIVal) {
1626 return float(RoundAPIntToDouble(APIVal));
1627 }
1628
1629 /// Treast the APInt as a signed value for conversion purposes.
1630 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1631 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1632 return float(APIVal.signedRoundToDouble());
1633 }
1634
1635 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1636 /// @brief Converts the given double value into a APInt.
1637 APInt RoundDoubleToAPInt(double Double, unsigned width);
1638
1639 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1640 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1641 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1642 return RoundDoubleToAPInt(double(Float), width);
1643 }
1644
1645 /// Arithmetic right-shift the APInt by shiftAmt.
1646 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1647 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1648 return LHS.ashr(shiftAmt);
1649 }
1650
1651 /// Logical right-shift the APInt by shiftAmt.
1652 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1653 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1654 return LHS.lshr(shiftAmt);
1655 }
1656
1657 /// Left-shift the APInt by shiftAmt.
1658 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1659 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1660 return LHS.shl(shiftAmt);
1661 }
1662
1663 /// Signed divide APInt LHS by APInt RHS.
1664 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1665 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1666 return LHS.sdiv(RHS);
1667 }
1668
1669 /// Unsigned divide APInt LHS by APInt RHS.
1670 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1671 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1672 return LHS.udiv(RHS);
1673 }
1674
1675 /// Signed remainder operation on APInt.
1676 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1677 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1678 return LHS.srem(RHS);
1679 }
1680
1681 /// Unsigned remainder operation on APInt.
1682 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1683 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1684 return LHS.urem(RHS);
1685 }
1686
1687 /// Performs multiplication on APInt values.
1688 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1689 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1690 return LHS * RHS;
1691 }
1692
1693 /// Performs addition on APInt values.
1694 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1695 inline APInt add(const APInt& LHS, const APInt& RHS) {
1696 return LHS + RHS;
1697 }
1698
1699 /// Performs subtraction on APInt values.
1700 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1701 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1702 return LHS - RHS;
1703 }
1704
1705 /// Performs bitwise AND operation on APInt LHS and
1706 /// APInt RHS.
1707 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1708 inline APInt And(const APInt& LHS, const APInt& RHS) {
1709 return LHS & RHS;
1710 }
1711
1712 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1713 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1714 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1715 return LHS | RHS;
1716 }
1717
1718 /// Performs bitwise XOR operation on APInt.
1719 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1720 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1721 return LHS ^ RHS;
1722 }
1723
1724 /// Performs a bitwise complement operation on APInt.
1725 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1726 inline APInt Not(const APInt& APIVal) {
1727 return ~APIVal;
1728 }
1729
1730 } // End of APIntOps namespace
1731
1732 } // End of llvm namespace
1733
1734 #endif
1735