1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integral
11 // constant values and operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_APINT_H
16 #define LLVM_APINT_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <string>
24 
25 namespace llvm {
26   class Serializer;
27   class Deserializer;
28   class FoldingSetNodeID;
29   class raw_ostream;
30   class StringRef;
31 
32   template<typename T>
33   class SmallVectorImpl;
34 
35   // An unsigned host type used as a single part of a multi-part
36   // bignum.
37   typedef uint64_t integerPart;
38 
39   const unsigned int host_char_bit = 8;
40   const unsigned int integerPartWidth = host_char_bit *
41     static_cast<unsigned int>(sizeof(integerPart));
42 
43 //===----------------------------------------------------------------------===//
44 //                              APInt Class
45 //===----------------------------------------------------------------------===//
46 
47 /// APInt - This class represents arbitrary precision constant integral values.
48 /// It is a functional replacement for common case unsigned integer type like
49 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
50 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
51 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
52 /// and methods to manipulate integer values of any bit-width. It supports both
53 /// the typical integer arithmetic and comparison operations as well as bitwise
54 /// manipulation.
55 ///
56 /// The class has several invariants worth noting:
57 ///   * All bit, byte, and word positions are zero-based.
58 ///   * Once the bit width is set, it doesn't change except by the Truncate,
59 ///     SignExtend, or ZeroExtend operations.
60 ///   * All binary operators must be on APInt instances of the same bit width.
61 ///     Attempting to use these operators on instances with different bit
62 ///     widths will yield an assertion.
63 ///   * The value is stored canonically as an unsigned value. For operations
64 ///     where it makes a difference, there are both signed and unsigned variants
65 ///     of the operation. For example, sdiv and udiv. However, because the bit
66 ///     widths must be the same, operations such as Mul and Add produce the same
67 ///     results regardless of whether the values are interpreted as signed or
68 ///     not.
69 ///   * In general, the class tries to follow the style of computation that LLVM
70 ///     uses in its IR. This simplifies its use for LLVM.
71 ///
72 /// @brief Class for arbitrary precision integers.
73 class APInt {
74   unsigned BitWidth;      ///< The number of bits in this APInt.
75 
76   /// This union is used to store the integer value. When the
77   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
78   union {
79     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
80     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
81   };
82 
83   /// This enum is used to hold the constants we needed for APInt.
84   enum {
85     /// Bits in a word
86     APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) *
87                           CHAR_BIT,
88     /// Byte size of a word
89     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
90   };
91 
92   /// This constructor is used only internally for speed of construction of
93   /// temporaries. It is unsafe for general use so it is not public.
94   /// @brief Fast internal constructor
APInt(uint64_t * val,unsigned bits)95   APInt(uint64_t* val, unsigned bits) : BitWidth(bits), pVal(val) { }
96 
97   /// @returns true if the number of bits <= 64, false otherwise.
98   /// @brief Determine if this APInt just has one word to store value.
isSingleWord()99   bool isSingleWord() const {
100     return BitWidth <= APINT_BITS_PER_WORD;
101   }
102 
103   /// @returns the word position for the specified bit position.
104   /// @brief Determine which word a bit is in.
whichWord(unsigned bitPosition)105   static unsigned whichWord(unsigned bitPosition) {
106     return bitPosition / APINT_BITS_PER_WORD;
107   }
108 
109   /// @returns the bit position in a word for the specified bit position
110   /// in the APInt.
111   /// @brief Determine which bit in a word a bit is in.
whichBit(unsigned bitPosition)112   static unsigned whichBit(unsigned bitPosition) {
113     return bitPosition % APINT_BITS_PER_WORD;
114   }
115 
116   /// This method generates and returns a uint64_t (word) mask for a single
117   /// bit at a specific bit position. This is used to mask the bit in the
118   /// corresponding word.
119   /// @returns a uint64_t with only bit at "whichBit(bitPosition)" set
120   /// @brief Get a single bit mask.
maskBit(unsigned bitPosition)121   static uint64_t maskBit(unsigned bitPosition) {
122     return 1ULL << whichBit(bitPosition);
123   }
124 
125   /// This method is used internally to clear the to "N" bits in the high order
126   /// word that are not used by the APInt. This is needed after the most
127   /// significant word is assigned a value to ensure that those bits are
128   /// zero'd out.
129   /// @brief Clear unused high order bits
clearUnusedBits()130   APInt& clearUnusedBits() {
131     // Compute how many bits are used in the final word
132     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
133     if (wordBits == 0)
134       // If all bits are used, we want to leave the value alone. This also
135       // avoids the undefined behavior of >> when the shift is the same size as
136       // the word size (64).
137       return *this;
138 
139     // Mask out the high bits.
140     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
141     if (isSingleWord())
142       VAL &= mask;
143     else
144       pVal[getNumWords() - 1] &= mask;
145     return *this;
146   }
147 
148   /// @returns the corresponding word for the specified bit position.
149   /// @brief Get the word corresponding to a bit position
getWord(unsigned bitPosition)150   uint64_t getWord(unsigned bitPosition) const {
151     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
152   }
153 
154   /// Converts a string into a number.  The string must be non-empty
155   /// and well-formed as a number of the given base. The bit-width
156   /// must be sufficient to hold the result.
157   ///
158   /// This is used by the constructors that take string arguments.
159   ///
160   /// StringRef::getAsInteger is superficially similar but (1) does
161   /// not assume that the string is well-formed and (2) grows the
162   /// result to hold the input.
163   ///
164   /// @param radix 2, 8, 10, 16, or 36
165   /// @brief Convert a char array into an APInt
166   void fromString(unsigned numBits, StringRef str, uint8_t radix);
167 
168   /// This is used by the toString method to divide by the radix. It simply
169   /// provides a more convenient form of divide for internal use since KnuthDiv
170   /// has specific constraints on its inputs. If those constraints are not met
171   /// then it provides a simpler form of divide.
172   /// @brief An internal division function for dividing APInts.
173   static void divide(const APInt LHS, unsigned lhsWords,
174                      const APInt &RHS, unsigned rhsWords,
175                      APInt *Quotient, APInt *Remainder);
176 
177   /// out-of-line slow case for inline constructor
178   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
179 
180   /// shared code between two array constructors
181   void initFromArray(ArrayRef<uint64_t> array);
182 
183   /// out-of-line slow case for inline copy constructor
184   void initSlowCase(const APInt& that);
185 
186   /// out-of-line slow case for shl
187   APInt shlSlowCase(unsigned shiftAmt) const;
188 
189   /// out-of-line slow case for operator&
190   APInt AndSlowCase(const APInt& RHS) const;
191 
192   /// out-of-line slow case for operator|
193   APInt OrSlowCase(const APInt& RHS) const;
194 
195   /// out-of-line slow case for operator^
196   APInt XorSlowCase(const APInt& RHS) const;
197 
198   /// out-of-line slow case for operator=
199   APInt& AssignSlowCase(const APInt& RHS);
200 
201   /// out-of-line slow case for operator==
202   bool EqualSlowCase(const APInt& RHS) const;
203 
204   /// out-of-line slow case for operator==
205   bool EqualSlowCase(uint64_t Val) const;
206 
207   /// out-of-line slow case for countLeadingZeros
208   unsigned countLeadingZerosSlowCase() const;
209 
210   /// out-of-line slow case for countTrailingOnes
211   unsigned countTrailingOnesSlowCase() const;
212 
213   /// out-of-line slow case for countPopulation
214   unsigned countPopulationSlowCase() const;
215 
216 public:
217   /// @name Constructors
218   /// @{
219   /// If isSigned is true then val is treated as if it were a signed value
220   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
221   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
222   /// the range of val are zero filled).
223   /// @param numBits the bit width of the constructed APInt
224   /// @param val the initial value of the APInt
225   /// @param isSigned how to treat signedness of val
226   /// @brief Create a new APInt of numBits width, initialized as val.
227   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)228     : BitWidth(numBits), VAL(0) {
229     assert(BitWidth && "bitwidth too small");
230     if (isSingleWord())
231       VAL = val;
232     else
233       initSlowCase(numBits, val, isSigned);
234     clearUnusedBits();
235   }
236 
237   /// Note that bigVal.size() can be smaller or larger than the corresponding
238   /// bit width but any extraneous bits will be dropped.
239   /// @param numBits the bit width of the constructed APInt
240   /// @param bigVal a sequence of words to form the initial value of the APInt
241   /// @brief Construct an APInt of numBits width, initialized as bigVal[].
242   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
243   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
244   /// deprecated because this constructor is prone to ambiguity with the
245   /// APInt(unsigned, uint64_t, bool) constructor.
246   ///
247   /// If this overload is ever deleted, care should be taken to prevent calls
248   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
249   /// constructor.
250   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
251 
252   /// This constructor interprets the string \arg str in the given radix. The
253   /// interpretation stops when the first character that is not suitable for the
254   /// radix is encountered, or the end of the string. Acceptable radix values
255   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
256   /// string to require more bits than numBits.
257   ///
258   /// @param numBits the bit width of the constructed APInt
259   /// @param str the string to be interpreted
260   /// @param radix the radix to use for the conversion
261   /// @brief Construct an APInt from a string representation.
262   APInt(unsigned numBits, StringRef str, uint8_t radix);
263 
264   /// Simply makes *this a copy of that.
265   /// @brief Copy Constructor.
APInt(const APInt & that)266   APInt(const APInt& that)
267     : BitWidth(that.BitWidth), VAL(0) {
268     assert(BitWidth && "bitwidth too small");
269     if (isSingleWord())
270       VAL = that.VAL;
271     else
272       initSlowCase(that);
273   }
274 
275   /// @brief Destructor.
~APInt()276   ~APInt() {
277     if (!isSingleWord())
278       delete [] pVal;
279   }
280 
281   /// Default constructor that creates an uninitialized APInt.  This is useful
282   ///  for object deserialization (pair this with the static method Read).
APInt()283   explicit APInt() : BitWidth(1) {}
284 
285   /// Profile - Used to insert APInt objects, or objects that contain APInt
286   ///  objects, into FoldingSets.
287   void Profile(FoldingSetNodeID& id) const;
288 
289   /// @}
290   /// @name Value Tests
291   /// @{
292   /// This tests the high bit of this APInt to determine if it is set.
293   /// @returns true if this APInt is negative, false otherwise
294   /// @brief Determine sign of this APInt.
isNegative()295   bool isNegative() const {
296     return (*this)[BitWidth - 1];
297   }
298 
299   /// This tests the high bit of the APInt to determine if it is unset.
300   /// @brief Determine if this APInt Value is non-negative (>= 0)
isNonNegative()301   bool isNonNegative() const {
302     return !isNegative();
303   }
304 
305   /// This tests if the value of this APInt is positive (> 0). Note
306   /// that 0 is not a positive value.
307   /// @returns true if this APInt is positive.
308   /// @brief Determine if this APInt Value is positive.
isStrictlyPositive()309   bool isStrictlyPositive() const {
310     return isNonNegative() && !!*this;
311   }
312 
313   /// This checks to see if the value has all bits of the APInt are set or not.
314   /// @brief Determine if all bits are set
isAllOnesValue()315   bool isAllOnesValue() const {
316     return countPopulation() == BitWidth;
317   }
318 
319   /// This checks to see if the value of this APInt is the maximum unsigned
320   /// value for the APInt's bit width.
321   /// @brief Determine if this is the largest unsigned value.
isMaxValue()322   bool isMaxValue() const {
323     return countPopulation() == BitWidth;
324   }
325 
326   /// This checks to see if the value of this APInt is the maximum signed
327   /// value for the APInt's bit width.
328   /// @brief Determine if this is the largest signed value.
isMaxSignedValue()329   bool isMaxSignedValue() const {
330     return BitWidth == 1 ? VAL == 0 :
331                           !isNegative() && countPopulation() == BitWidth - 1;
332   }
333 
334   /// This checks to see if the value of this APInt is the minimum unsigned
335   /// value for the APInt's bit width.
336   /// @brief Determine if this is the smallest unsigned value.
isMinValue()337   bool isMinValue() const {
338     return !*this;
339   }
340 
341   /// This checks to see if the value of this APInt is the minimum signed
342   /// value for the APInt's bit width.
343   /// @brief Determine if this is the smallest signed value.
isMinSignedValue()344   bool isMinSignedValue() const {
345     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
346   }
347 
348   /// @brief Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)349   bool isIntN(unsigned N) const {
350     assert(N && "N == 0 ???");
351     if (N >= getBitWidth())
352       return true;
353 
354     if (isSingleWord())
355       return isUIntN(N, VAL);
356     return APInt(N, makeArrayRef(pVal, getNumWords())).zext(getBitWidth())
357       == (*this);
358   }
359 
360   /// @brief Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)361   bool isSignedIntN(unsigned N) const {
362     assert(N && "N == 0 ???");
363     return getMinSignedBits() <= N;
364   }
365 
366   /// @returns true if the argument APInt value is a power of two > 0.
isPowerOf2()367   bool isPowerOf2() const {
368     if (isSingleWord())
369       return isPowerOf2_64(VAL);
370     return countPopulationSlowCase() == 1;
371   }
372 
373   /// isSignBit - Return true if this is the value returned by getSignBit.
isSignBit()374   bool isSignBit() const { return isMinSignedValue(); }
375 
376   /// This converts the APInt to a boolean value as a test against zero.
377   /// @brief Boolean conversion function.
getBoolValue()378   bool getBoolValue() const {
379     return !!*this;
380   }
381 
382   /// getLimitedValue - If this value is smaller than the specified limit,
383   /// return it, otherwise return the limit value.  This causes the value
384   /// to saturate to the limit.
385   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
386     return (getActiveBits() > 64 || getZExtValue() > Limit) ?
387       Limit :  getZExtValue();
388   }
389 
390   /// @}
391   /// @name Value Generators
392   /// @{
393   /// @brief Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)394   static APInt getMaxValue(unsigned numBits) {
395     return getAllOnesValue(numBits);
396   }
397 
398   /// @brief Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)399   static APInt getSignedMaxValue(unsigned numBits) {
400     APInt API = getAllOnesValue(numBits);
401     API.clearBit(numBits - 1);
402     return API;
403   }
404 
405   /// @brief Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)406   static APInt getMinValue(unsigned numBits) {
407     return APInt(numBits, 0);
408   }
409 
410   /// @brief Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)411   static APInt getSignedMinValue(unsigned numBits) {
412     APInt API(numBits, 0);
413     API.setBit(numBits - 1);
414     return API;
415   }
416 
417   /// getSignBit - This is just a wrapper function of getSignedMinValue(), and
418   /// it helps code readability when we want to get a SignBit.
419   /// @brief Get the SignBit for a specific bit width.
getSignBit(unsigned BitWidth)420   static APInt getSignBit(unsigned BitWidth) {
421     return getSignedMinValue(BitWidth);
422   }
423 
424   /// @returns the all-ones value for an APInt of the specified bit-width.
425   /// @brief Get the all-ones value.
getAllOnesValue(unsigned numBits)426   static APInt getAllOnesValue(unsigned numBits) {
427     return APInt(numBits, ~0ULL, true);
428   }
429 
430   /// @returns the '0' value for an APInt of the specified bit-width.
431   /// @brief Get the '0' value.
getNullValue(unsigned numBits)432   static APInt getNullValue(unsigned numBits) {
433     return APInt(numBits, 0);
434   }
435 
436   /// Get an APInt with the same BitWidth as this APInt, just zero mask
437   /// the low bits and right shift to the least significant bit.
438   /// @returns the high "numBits" bits of this APInt.
439   APInt getHiBits(unsigned numBits) const;
440 
441   /// Get an APInt with the same BitWidth as this APInt, just zero mask
442   /// the high bits.
443   /// @returns the low "numBits" bits of this APInt.
444   APInt getLoBits(unsigned numBits) const;
445 
446   /// getOneBitSet - Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)447   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
448     APInt Res(numBits, 0);
449     Res.setBit(BitNo);
450     return Res;
451   }
452 
453   /// Constructs an APInt value that has a contiguous range of bits set. The
454   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
455   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
456   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
457   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
458   /// @param numBits the intended bit width of the result
459   /// @param loBit the index of the lowest bit set.
460   /// @param hiBit the index of the highest bit set.
461   /// @returns An APInt value with the requested bits set.
462   /// @brief Get a value with a block of bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)463   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
464     assert(hiBit <= numBits && "hiBit out of range");
465     assert(loBit < numBits && "loBit out of range");
466     if (hiBit < loBit)
467       return getLowBitsSet(numBits, hiBit) |
468              getHighBitsSet(numBits, numBits-loBit);
469     return getLowBitsSet(numBits, hiBit-loBit).shl(loBit);
470   }
471 
472   /// Constructs an APInt value that has the top hiBitsSet bits set.
473   /// @param numBits the bitwidth of the result
474   /// @param hiBitsSet the number of high-order bits set in the result.
475   /// @brief Get a value with high bits set
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)476   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
477     assert(hiBitsSet <= numBits && "Too many bits to set!");
478     // Handle a degenerate case, to avoid shifting by word size
479     if (hiBitsSet == 0)
480       return APInt(numBits, 0);
481     unsigned shiftAmt = numBits - hiBitsSet;
482     // For small values, return quickly
483     if (numBits <= APINT_BITS_PER_WORD)
484       return APInt(numBits, ~0ULL << shiftAmt);
485     return getAllOnesValue(numBits).shl(shiftAmt);
486   }
487 
488   /// Constructs an APInt value that has the bottom loBitsSet bits set.
489   /// @param numBits the bitwidth of the result
490   /// @param loBitsSet the number of low-order bits set in the result.
491   /// @brief Get a value with low bits set
getLowBitsSet(unsigned numBits,unsigned loBitsSet)492   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
493     assert(loBitsSet <= numBits && "Too many bits to set!");
494     // Handle a degenerate case, to avoid shifting by word size
495     if (loBitsSet == 0)
496       return APInt(numBits, 0);
497     if (loBitsSet == APINT_BITS_PER_WORD)
498       return APInt(numBits, ~0ULL);
499     // For small values, return quickly.
500     if (numBits < APINT_BITS_PER_WORD)
501       return APInt(numBits, (1ULL << loBitsSet) - 1);
502     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
503   }
504 
505   /// The hash value is computed as the sum of the words and the bit width.
506   /// @returns A hash value computed from the sum of the APInt words.
507   /// @brief Get a hash value based on this APInt
508   uint64_t getHashValue() const;
509 
510   /// This function returns a pointer to the internal storage of the APInt.
511   /// This is useful for writing out the APInt in binary form without any
512   /// conversions.
getRawData()513   const uint64_t* getRawData() const {
514     if (isSingleWord())
515       return &VAL;
516     return &pVal[0];
517   }
518 
519   /// @}
520   /// @name Unary Operators
521   /// @{
522   /// @returns a new APInt value representing *this incremented by one
523   /// @brief Postfix increment operator.
524   const APInt operator++(int) {
525     APInt API(*this);
526     ++(*this);
527     return API;
528   }
529 
530   /// @returns *this incremented by one
531   /// @brief Prefix increment operator.
532   APInt& operator++();
533 
534   /// @returns a new APInt representing *this decremented by one.
535   /// @brief Postfix decrement operator.
536   const APInt operator--(int) {
537     APInt API(*this);
538     --(*this);
539     return API;
540   }
541 
542   /// @returns *this decremented by one.
543   /// @brief Prefix decrement operator.
544   APInt& operator--();
545 
546   /// Performs a bitwise complement operation on this APInt.
547   /// @returns an APInt that is the bitwise complement of *this
548   /// @brief Unary bitwise complement operator.
549   APInt operator~() const {
550     APInt Result(*this);
551     Result.flipAllBits();
552     return Result;
553   }
554 
555   /// Negates *this using two's complement logic.
556   /// @returns An APInt value representing the negation of *this.
557   /// @brief Unary negation operator
558   APInt operator-() const {
559     return APInt(BitWidth, 0) - (*this);
560   }
561 
562   /// Performs logical negation operation on this APInt.
563   /// @returns true if *this is zero, false otherwise.
564   /// @brief Logical negation operator.
565   bool operator!() const;
566 
567   /// @}
568   /// @name Assignment Operators
569   /// @{
570   /// @returns *this after assignment of RHS.
571   /// @brief Copy assignment operator.
572   APInt& operator=(const APInt& RHS) {
573     // If the bitwidths are the same, we can avoid mucking with memory
574     if (isSingleWord() && RHS.isSingleWord()) {
575       VAL = RHS.VAL;
576       BitWidth = RHS.BitWidth;
577       return clearUnusedBits();
578     }
579 
580     return AssignSlowCase(RHS);
581   }
582 
583   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
584   /// the bit width, the excess bits are truncated. If the bit width is larger
585   /// than 64, the value is zero filled in the unspecified high order bits.
586   /// @returns *this after assignment of RHS value.
587   /// @brief Assignment operator.
588   APInt& operator=(uint64_t RHS);
589 
590   /// Performs a bitwise AND operation on this APInt and RHS. The result is
591   /// assigned to *this.
592   /// @returns *this after ANDing with RHS.
593   /// @brief Bitwise AND assignment operator.
594   APInt& operator&=(const APInt& RHS);
595 
596   /// Performs a bitwise OR operation on this APInt and RHS. The result is
597   /// assigned *this;
598   /// @returns *this after ORing with RHS.
599   /// @brief Bitwise OR assignment operator.
600   APInt& operator|=(const APInt& RHS);
601 
602   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
603   /// logically zero-extended or truncated to match the bit-width of
604   /// the LHS.
605   ///
606   /// @brief Bitwise OR assignment operator.
607   APInt& operator|=(uint64_t RHS) {
608     if (isSingleWord()) {
609       VAL |= RHS;
610       clearUnusedBits();
611     } else {
612       pVal[0] |= RHS;
613     }
614     return *this;
615   }
616 
617   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
618   /// assigned to *this.
619   /// @returns *this after XORing with RHS.
620   /// @brief Bitwise XOR assignment operator.
621   APInt& operator^=(const APInt& RHS);
622 
623   /// Multiplies this APInt by RHS and assigns the result to *this.
624   /// @returns *this
625   /// @brief Multiplication assignment operator.
626   APInt& operator*=(const APInt& RHS);
627 
628   /// Adds RHS to *this and assigns the result to *this.
629   /// @returns *this
630   /// @brief Addition assignment operator.
631   APInt& operator+=(const APInt& RHS);
632 
633   /// Subtracts RHS from *this and assigns the result to *this.
634   /// @returns *this
635   /// @brief Subtraction assignment operator.
636   APInt& operator-=(const APInt& RHS);
637 
638   /// Shifts *this left by shiftAmt and assigns the result to *this.
639   /// @returns *this after shifting left by shiftAmt
640   /// @brief Left-shift assignment function.
641   APInt& operator<<=(unsigned shiftAmt) {
642     *this = shl(shiftAmt);
643     return *this;
644   }
645 
646   /// @}
647   /// @name Binary Operators
648   /// @{
649   /// Performs a bitwise AND operation on *this and RHS.
650   /// @returns An APInt value representing the bitwise AND of *this and RHS.
651   /// @brief Bitwise AND operator.
652   APInt operator&(const APInt& RHS) const {
653     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654     if (isSingleWord())
655       return APInt(getBitWidth(), VAL & RHS.VAL);
656     return AndSlowCase(RHS);
657   }
And(const APInt & RHS)658   APInt And(const APInt& RHS) const {
659     return this->operator&(RHS);
660   }
661 
662   /// Performs a bitwise OR operation on *this and RHS.
663   /// @returns An APInt value representing the bitwise OR of *this and RHS.
664   /// @brief Bitwise OR operator.
665   APInt operator|(const APInt& RHS) const {
666     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
667     if (isSingleWord())
668       return APInt(getBitWidth(), VAL | RHS.VAL);
669     return OrSlowCase(RHS);
670   }
Or(const APInt & RHS)671   APInt Or(const APInt& RHS) const {
672     return this->operator|(RHS);
673   }
674 
675   /// Performs a bitwise XOR operation on *this and RHS.
676   /// @returns An APInt value representing the bitwise XOR of *this and RHS.
677   /// @brief Bitwise XOR operator.
678   APInt operator^(const APInt& RHS) const {
679     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
680     if (isSingleWord())
681       return APInt(BitWidth, VAL ^ RHS.VAL);
682     return XorSlowCase(RHS);
683   }
Xor(const APInt & RHS)684   APInt Xor(const APInt& RHS) const {
685     return this->operator^(RHS);
686   }
687 
688   /// Multiplies this APInt by RHS and returns the result.
689   /// @brief Multiplication operator.
690   APInt operator*(const APInt& RHS) const;
691 
692   /// Adds RHS to this APInt and returns the result.
693   /// @brief Addition operator.
694   APInt operator+(const APInt& RHS) const;
695   APInt operator+(uint64_t RHS) const {
696     return (*this) + APInt(BitWidth, RHS);
697   }
698 
699   /// Subtracts RHS from this APInt and returns the result.
700   /// @brief Subtraction operator.
701   APInt operator-(const APInt& RHS) const;
702   APInt operator-(uint64_t RHS) const {
703     return (*this) - APInt(BitWidth, RHS);
704   }
705 
706   APInt operator<<(unsigned Bits) const {
707     return shl(Bits);
708   }
709 
710   APInt operator<<(const APInt &Bits) const {
711     return shl(Bits);
712   }
713 
714   /// Arithmetic right-shift this APInt by shiftAmt.
715   /// @brief Arithmetic right-shift function.
716   APInt ashr(unsigned shiftAmt) const;
717 
718   /// Logical right-shift this APInt by shiftAmt.
719   /// @brief Logical right-shift function.
720   APInt lshr(unsigned shiftAmt) const;
721 
722   /// Left-shift this APInt by shiftAmt.
723   /// @brief Left-shift function.
shl(unsigned shiftAmt)724   APInt shl(unsigned shiftAmt) const {
725     assert(shiftAmt <= BitWidth && "Invalid shift amount");
726     if (isSingleWord()) {
727       if (shiftAmt == BitWidth)
728         return APInt(BitWidth, 0); // avoid undefined shift results
729       return APInt(BitWidth, VAL << shiftAmt);
730     }
731     return shlSlowCase(shiftAmt);
732   }
733 
734   /// @brief Rotate left by rotateAmt.
735   APInt rotl(unsigned rotateAmt) const;
736 
737   /// @brief Rotate right by rotateAmt.
738   APInt rotr(unsigned rotateAmt) const;
739 
740   /// Arithmetic right-shift this APInt by shiftAmt.
741   /// @brief Arithmetic right-shift function.
742   APInt ashr(const APInt &shiftAmt) const;
743 
744   /// Logical right-shift this APInt by shiftAmt.
745   /// @brief Logical right-shift function.
746   APInt lshr(const APInt &shiftAmt) const;
747 
748   /// Left-shift this APInt by shiftAmt.
749   /// @brief Left-shift function.
750   APInt shl(const APInt &shiftAmt) const;
751 
752   /// @brief Rotate left by rotateAmt.
753   APInt rotl(const APInt &rotateAmt) const;
754 
755   /// @brief Rotate right by rotateAmt.
756   APInt rotr(const APInt &rotateAmt) const;
757 
758   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
759   /// RHS are treated as unsigned quantities for purposes of this division.
760   /// @returns a new APInt value containing the division result
761   /// @brief Unsigned division operation.
762   APInt udiv(const APInt &RHS) const;
763 
764   /// Signed divide this APInt by APInt RHS.
765   /// @brief Signed division function for APInt.
sdiv(const APInt & RHS)766   APInt sdiv(const APInt &RHS) const {
767     if (isNegative())
768       if (RHS.isNegative())
769         return (-(*this)).udiv(-RHS);
770       else
771         return -((-(*this)).udiv(RHS));
772     else if (RHS.isNegative())
773       return -(this->udiv(-RHS));
774     return this->udiv(RHS);
775   }
776 
777   /// Perform an unsigned remainder operation on this APInt with RHS being the
778   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
779   /// of this operation. Note that this is a true remainder operation and not
780   /// a modulo operation because the sign follows the sign of the dividend
781   /// which is *this.
782   /// @returns a new APInt value containing the remainder result
783   /// @brief Unsigned remainder operation.
784   APInt urem(const APInt &RHS) const;
785 
786   /// Signed remainder operation on APInt.
787   /// @brief Function for signed remainder operation.
srem(const APInt & RHS)788   APInt srem(const APInt &RHS) const {
789     if (isNegative())
790       if (RHS.isNegative())
791         return -((-(*this)).urem(-RHS));
792       else
793         return -((-(*this)).urem(RHS));
794     else if (RHS.isNegative())
795       return this->urem(-RHS);
796     return this->urem(RHS);
797   }
798 
799   /// Sometimes it is convenient to divide two APInt values and obtain both the
800   /// quotient and remainder. This function does both operations in the same
801   /// computation making it a little more efficient. The pair of input arguments
802   /// may overlap with the pair of output arguments. It is safe to call
803   /// udivrem(X, Y, X, Y), for example.
804   /// @brief Dual division/remainder interface.
805   static void udivrem(const APInt &LHS, const APInt &RHS,
806                       APInt &Quotient, APInt &Remainder);
807 
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)808   static void sdivrem(const APInt &LHS, const APInt &RHS,
809                       APInt &Quotient, APInt &Remainder) {
810     if (LHS.isNegative()) {
811       if (RHS.isNegative())
812         APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
813       else
814         APInt::udivrem(-LHS, RHS, Quotient, Remainder);
815       Quotient = -Quotient;
816       Remainder = -Remainder;
817     } else if (RHS.isNegative()) {
818       APInt::udivrem(LHS, -RHS, Quotient, Remainder);
819       Quotient = -Quotient;
820     } else {
821       APInt::udivrem(LHS, RHS, Quotient, Remainder);
822     }
823   }
824 
825 
826   // Operations that return overflow indicators.
827   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
828   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
829   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
830   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
831   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
832   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
833   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
834   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
835 
836   /// @returns the bit value at bitPosition
837   /// @brief Array-indexing support.
838   bool operator[](unsigned bitPosition) const;
839 
840   /// @}
841   /// @name Comparison Operators
842   /// @{
843   /// Compares this APInt with RHS for the validity of the equality
844   /// relationship.
845   /// @brief Equality operator.
846   bool operator==(const APInt& RHS) const {
847     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
848     if (isSingleWord())
849       return VAL == RHS.VAL;
850     return EqualSlowCase(RHS);
851   }
852 
853   /// Compares this APInt with a uint64_t for the validity of the equality
854   /// relationship.
855   /// @returns true if *this == Val
856   /// @brief Equality operator.
857   bool operator==(uint64_t Val) const {
858     if (isSingleWord())
859       return VAL == Val;
860     return EqualSlowCase(Val);
861   }
862 
863   /// Compares this APInt with RHS for the validity of the equality
864   /// relationship.
865   /// @returns true if *this == Val
866   /// @brief Equality comparison.
eq(const APInt & RHS)867   bool eq(const APInt &RHS) const {
868     return (*this) == RHS;
869   }
870 
871   /// Compares this APInt with RHS for the validity of the inequality
872   /// relationship.
873   /// @returns true if *this != Val
874   /// @brief Inequality operator.
875   bool operator!=(const APInt& RHS) const {
876     return !((*this) == RHS);
877   }
878 
879   /// Compares this APInt with a uint64_t for the validity of the inequality
880   /// relationship.
881   /// @returns true if *this != Val
882   /// @brief Inequality operator.
883   bool operator!=(uint64_t Val) const {
884     return !((*this) == Val);
885   }
886 
887   /// Compares this APInt with RHS for the validity of the inequality
888   /// relationship.
889   /// @returns true if *this != Val
890   /// @brief Inequality comparison
ne(const APInt & RHS)891   bool ne(const APInt &RHS) const {
892     return !((*this) == RHS);
893   }
894 
895   /// Regards both *this and RHS as unsigned quantities and compares them for
896   /// the validity of the less-than relationship.
897   /// @returns true if *this < RHS when both are considered unsigned.
898   /// @brief Unsigned less than comparison
899   bool ult(const APInt &RHS) const;
900 
901   /// Regards both *this as an unsigned quantity and compares it with RHS for
902   /// the validity of the less-than relationship.
903   /// @returns true if *this < RHS when considered unsigned.
904   /// @brief Unsigned less than comparison
ult(uint64_t RHS)905   bool ult(uint64_t RHS) const {
906     return ult(APInt(getBitWidth(), RHS));
907   }
908 
909   /// Regards both *this and RHS as signed quantities and compares them for
910   /// validity of the less-than relationship.
911   /// @returns true if *this < RHS when both are considered signed.
912   /// @brief Signed less than comparison
913   bool slt(const APInt& RHS) const;
914 
915   /// Regards both *this as a signed quantity and compares it with RHS for
916   /// the validity of the less-than relationship.
917   /// @returns true if *this < RHS when considered signed.
918   /// @brief Signed less than comparison
slt(uint64_t RHS)919   bool slt(uint64_t RHS) const {
920     return slt(APInt(getBitWidth(), RHS));
921   }
922 
923   /// Regards both *this and RHS as unsigned quantities and compares them for
924   /// validity of the less-or-equal relationship.
925   /// @returns true if *this <= RHS when both are considered unsigned.
926   /// @brief Unsigned less or equal comparison
ule(const APInt & RHS)927   bool ule(const APInt& RHS) const {
928     return ult(RHS) || eq(RHS);
929   }
930 
931   /// Regards both *this as an unsigned quantity and compares it with RHS for
932   /// the validity of the less-or-equal relationship.
933   /// @returns true if *this <= RHS when considered unsigned.
934   /// @brief Unsigned less or equal comparison
ule(uint64_t RHS)935   bool ule(uint64_t RHS) const {
936     return ule(APInt(getBitWidth(), RHS));
937   }
938 
939   /// Regards both *this and RHS as signed quantities and compares them for
940   /// validity of the less-or-equal relationship.
941   /// @returns true if *this <= RHS when both are considered signed.
942   /// @brief Signed less or equal comparison
sle(const APInt & RHS)943   bool sle(const APInt& RHS) const {
944     return slt(RHS) || eq(RHS);
945   }
946 
947   /// Regards both *this as a signed quantity and compares it with RHS for
948   /// the validity of the less-or-equal relationship.
949   /// @returns true if *this <= RHS when considered signed.
950   /// @brief Signed less or equal comparison
sle(uint64_t RHS)951   bool sle(uint64_t RHS) const {
952     return sle(APInt(getBitWidth(), RHS));
953   }
954 
955   /// Regards both *this and RHS as unsigned quantities and compares them for
956   /// the validity of the greater-than relationship.
957   /// @returns true if *this > RHS when both are considered unsigned.
958   /// @brief Unsigned greather than comparison
ugt(const APInt & RHS)959   bool ugt(const APInt& RHS) const {
960     return !ult(RHS) && !eq(RHS);
961   }
962 
963   /// Regards both *this as an unsigned quantity and compares it with RHS for
964   /// the validity of the greater-than relationship.
965   /// @returns true if *this > RHS when considered unsigned.
966   /// @brief Unsigned greater than comparison
ugt(uint64_t RHS)967   bool ugt(uint64_t RHS) const {
968     return ugt(APInt(getBitWidth(), RHS));
969   }
970 
971   /// Regards both *this and RHS as signed quantities and compares them for
972   /// the validity of the greater-than relationship.
973   /// @returns true if *this > RHS when both are considered signed.
974   /// @brief Signed greather than comparison
sgt(const APInt & RHS)975   bool sgt(const APInt& RHS) const {
976     return !slt(RHS) && !eq(RHS);
977   }
978 
979   /// Regards both *this as a signed quantity and compares it with RHS for
980   /// the validity of the greater-than relationship.
981   /// @returns true if *this > RHS when considered signed.
982   /// @brief Signed greater than comparison
sgt(uint64_t RHS)983   bool sgt(uint64_t RHS) const {
984     return sgt(APInt(getBitWidth(), RHS));
985   }
986 
987   /// Regards both *this and RHS as unsigned quantities and compares them for
988   /// validity of the greater-or-equal relationship.
989   /// @returns true if *this >= RHS when both are considered unsigned.
990   /// @brief Unsigned greater or equal comparison
uge(const APInt & RHS)991   bool uge(const APInt& RHS) const {
992     return !ult(RHS);
993   }
994 
995   /// Regards both *this as an unsigned quantity and compares it with RHS for
996   /// the validity of the greater-or-equal relationship.
997   /// @returns true if *this >= RHS when considered unsigned.
998   /// @brief Unsigned greater or equal comparison
uge(uint64_t RHS)999   bool uge(uint64_t RHS) const {
1000     return uge(APInt(getBitWidth(), RHS));
1001   }
1002 
1003   /// Regards both *this and RHS as signed quantities and compares them for
1004   /// validity of the greater-or-equal relationship.
1005   /// @returns true if *this >= RHS when both are considered signed.
1006   /// @brief Signed greather or equal comparison
sge(const APInt & RHS)1007   bool sge(const APInt& RHS) const {
1008     return !slt(RHS);
1009   }
1010 
1011   /// Regards both *this as a signed quantity and compares it with RHS for
1012   /// the validity of the greater-or-equal relationship.
1013   /// @returns true if *this >= RHS when considered signed.
1014   /// @brief Signed greater or equal comparison
sge(uint64_t RHS)1015   bool sge(uint64_t RHS) const {
1016     return sge(APInt(getBitWidth(), RHS));
1017   }
1018 
1019 
1020 
1021 
1022   /// This operation tests if there are any pairs of corresponding bits
1023   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1024   bool intersects(const APInt &RHS) const {
1025     return (*this & RHS) != 0;
1026   }
1027 
1028   /// @}
1029   /// @name Resizing Operators
1030   /// @{
1031   /// Truncate the APInt to a specified width. It is an error to specify a width
1032   /// that is greater than or equal to the current width.
1033   /// @brief Truncate to new width.
1034   APInt trunc(unsigned width) const;
1035 
1036   /// This operation sign extends the APInt to a new width. If the high order
1037   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1038   /// It is an error to specify a width that is less than or equal to the
1039   /// current width.
1040   /// @brief Sign extend to a new width.
1041   APInt sext(unsigned width) const;
1042 
1043   /// This operation zero extends the APInt to a new width. The high order bits
1044   /// are filled with 0 bits.  It is an error to specify a width that is less
1045   /// than or equal to the current width.
1046   /// @brief Zero extend to a new width.
1047   APInt zext(unsigned width) const;
1048 
1049   /// Make this APInt have the bit width given by \p width. The value is sign
1050   /// extended, truncated, or left alone to make it that width.
1051   /// @brief Sign extend or truncate to width
1052   APInt sextOrTrunc(unsigned width) const;
1053 
1054   /// Make this APInt have the bit width given by \p width. The value is zero
1055   /// extended, truncated, or left alone to make it that width.
1056   /// @brief Zero extend or truncate to width
1057   APInt zextOrTrunc(unsigned width) const;
1058 
1059   /// @}
1060   /// @name Bit Manipulation Operators
1061   /// @{
1062   /// @brief Set every bit to 1.
setAllBits()1063   void setAllBits() {
1064     if (isSingleWord())
1065       VAL = ~0ULL;
1066     else {
1067       // Set all the bits in all the words.
1068       for (unsigned i = 0; i < getNumWords(); ++i)
1069         pVal[i] = ~0ULL;
1070     }
1071     // Clear the unused ones
1072     clearUnusedBits();
1073   }
1074 
1075   /// Set the given bit to 1 whose position is given as "bitPosition".
1076   /// @brief Set a given bit to 1.
1077   void setBit(unsigned bitPosition);
1078 
1079   /// @brief Set every bit to 0.
clearAllBits()1080   void clearAllBits() {
1081     if (isSingleWord())
1082       VAL = 0;
1083     else
1084       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
1085   }
1086 
1087   /// Set the given bit to 0 whose position is given as "bitPosition".
1088   /// @brief Set a given bit to 0.
1089   void clearBit(unsigned bitPosition);
1090 
1091   /// @brief Toggle every bit to its opposite value.
flipAllBits()1092   void flipAllBits() {
1093     if (isSingleWord())
1094       VAL ^= ~0ULL;
1095     else {
1096       for (unsigned i = 0; i < getNumWords(); ++i)
1097         pVal[i] ^= ~0ULL;
1098     }
1099     clearUnusedBits();
1100   }
1101 
1102   /// Toggle a given bit to its opposite value whose position is given
1103   /// as "bitPosition".
1104   /// @brief Toggles a given bit to its opposite value.
1105   void flipBit(unsigned bitPosition);
1106 
1107   /// @}
1108   /// @name Value Characterization Functions
1109   /// @{
1110 
1111   /// @returns the total number of bits.
getBitWidth()1112   unsigned getBitWidth() const {
1113     return BitWidth;
1114   }
1115 
1116   /// Here one word's bitwidth equals to that of uint64_t.
1117   /// @returns the number of words to hold the integer value of this APInt.
1118   /// @brief Get the number of words.
getNumWords()1119   unsigned getNumWords() const {
1120     return getNumWords(BitWidth);
1121   }
1122 
1123   /// Here one word's bitwidth equals to that of uint64_t.
1124   /// @returns the number of words to hold the integer value with a
1125   /// given bit width.
1126   /// @brief Get the number of words.
getNumWords(unsigned BitWidth)1127   static unsigned getNumWords(unsigned BitWidth) {
1128     return (BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1129   }
1130 
1131   /// This function returns the number of active bits which is defined as the
1132   /// bit width minus the number of leading zeros. This is used in several
1133   /// computations to see how "wide" the value is.
1134   /// @brief Compute the number of active bits in the value
getActiveBits()1135   unsigned getActiveBits() const {
1136     return BitWidth - countLeadingZeros();
1137   }
1138 
1139   /// This function returns the number of active words in the value of this
1140   /// APInt. This is used in conjunction with getActiveData to extract the raw
1141   /// value of the APInt.
getActiveWords()1142   unsigned getActiveWords() const {
1143     return whichWord(getActiveBits()-1) + 1;
1144   }
1145 
1146   /// Computes the minimum bit width for this APInt while considering it to be
1147   /// a signed (and probably negative) value. If the value is not negative,
1148   /// this function returns the same value as getActiveBits()+1. Otherwise, it
1149   /// returns the smallest bit width that will retain the negative value. For
1150   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1151   /// for -1, this function will always return 1.
1152   /// @brief Get the minimum bit size for this signed APInt
getMinSignedBits()1153   unsigned getMinSignedBits() const {
1154     if (isNegative())
1155       return BitWidth - countLeadingOnes() + 1;
1156     return getActiveBits()+1;
1157   }
1158 
1159   /// This method attempts to return the value of this APInt as a zero extended
1160   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1161   /// uint64_t. Otherwise an assertion will result.
1162   /// @brief Get zero extended value
getZExtValue()1163   uint64_t getZExtValue() const {
1164     if (isSingleWord())
1165       return VAL;
1166     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1167     return pVal[0];
1168   }
1169 
1170   /// This method attempts to return the value of this APInt as a sign extended
1171   /// int64_t. The bit width must be <= 64 or the value must fit within an
1172   /// int64_t. Otherwise an assertion will result.
1173   /// @brief Get sign extended value
getSExtValue()1174   int64_t getSExtValue() const {
1175     if (isSingleWord())
1176       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
1177                      (APINT_BITS_PER_WORD - BitWidth);
1178     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1179     return int64_t(pVal[0]);
1180   }
1181 
1182   /// This method determines how many bits are required to hold the APInt
1183   /// equivalent of the string given by \arg str.
1184   /// @brief Get bits required for string value.
1185   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1186 
1187   /// countLeadingZeros - This function is an APInt version of the
1188   /// countLeadingZeros_{32,64} functions in MathExtras.h. It counts the number
1189   /// of zeros from the most significant bit to the first one bit.
1190   /// @returns BitWidth if the value is zero.
1191   /// @returns the number of zeros from the most significant bit to the first
1192   /// one bits.
countLeadingZeros()1193   unsigned countLeadingZeros() const {
1194     if (isSingleWord()) {
1195       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1196       return CountLeadingZeros_64(VAL) - unusedBits;
1197     }
1198     return countLeadingZerosSlowCase();
1199   }
1200 
1201   /// countLeadingOnes - This function is an APInt version of the
1202   /// countLeadingOnes_{32,64} functions in MathExtras.h. It counts the number
1203   /// of ones from the most significant bit to the first zero bit.
1204   /// @returns 0 if the high order bit is not set
1205   /// @returns the number of 1 bits from the most significant to the least
1206   /// @brief Count the number of leading one bits.
1207   unsigned countLeadingOnes() const;
1208 
1209   /// Computes the number of leading bits of this APInt that are equal to its
1210   /// sign bit.
getNumSignBits()1211   unsigned getNumSignBits() const {
1212     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1213   }
1214 
1215   /// countTrailingZeros - This function is an APInt version of the
1216   /// countTrailingZeros_{32,64} functions in MathExtras.h. It counts
1217   /// the number of zeros from the least significant bit to the first set bit.
1218   /// @returns BitWidth if the value is zero.
1219   /// @returns the number of zeros from the least significant bit to the first
1220   /// one bit.
1221   /// @brief Count the number of trailing zero bits.
1222   unsigned countTrailingZeros() const;
1223 
1224   /// countTrailingOnes - This function is an APInt version of the
1225   /// countTrailingOnes_{32,64} functions in MathExtras.h. It counts
1226   /// the number of ones from the least significant bit to the first zero bit.
1227   /// @returns BitWidth if the value is all ones.
1228   /// @returns the number of ones from the least significant bit to the first
1229   /// zero bit.
1230   /// @brief Count the number of trailing one bits.
countTrailingOnes()1231   unsigned countTrailingOnes() const {
1232     if (isSingleWord())
1233       return CountTrailingOnes_64(VAL);
1234     return countTrailingOnesSlowCase();
1235   }
1236 
1237   /// countPopulation - This function is an APInt version of the
1238   /// countPopulation_{32,64} functions in MathExtras.h. It counts the number
1239   /// of 1 bits in the APInt value.
1240   /// @returns 0 if the value is zero.
1241   /// @returns the number of set bits.
1242   /// @brief Count the number of bits set.
countPopulation()1243   unsigned countPopulation() const {
1244     if (isSingleWord())
1245       return CountPopulation_64(VAL);
1246     return countPopulationSlowCase();
1247   }
1248 
1249   /// @}
1250   /// @name Conversion Functions
1251   /// @{
1252   void print(raw_ostream &OS, bool isSigned) const;
1253 
1254   /// toString - Converts an APInt to a string and append it to Str.  Str is
1255   /// commonly a SmallString.
1256   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1257                 bool formatAsCLiteral = false) const;
1258 
1259   /// Considers the APInt to be unsigned and converts it into a string in the
1260   /// radix given. The radix can be 2, 8, 10 16, or 36.
1261   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1262     toString(Str, Radix, false, false);
1263   }
1264 
1265   /// Considers the APInt to be signed and converts it into a string in the
1266   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1267   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1268     toString(Str, Radix, true, false);
1269   }
1270 
1271   /// toString - This returns the APInt as a std::string.  Note that this is an
1272   /// inefficient method.  It is better to pass in a SmallVector/SmallString
1273   /// to the methods above to avoid thrashing the heap for the string.
1274   std::string toString(unsigned Radix, bool Signed) const;
1275 
1276 
1277   /// @returns a byte-swapped representation of this APInt Value.
1278   APInt byteSwap() const;
1279 
1280   /// @brief Converts this APInt to a double value.
1281   double roundToDouble(bool isSigned) const;
1282 
1283   /// @brief Converts this unsigned APInt to a double value.
roundToDouble()1284   double roundToDouble() const {
1285     return roundToDouble(false);
1286   }
1287 
1288   /// @brief Converts this signed APInt to a double value.
signedRoundToDouble()1289   double signedRoundToDouble() const {
1290     return roundToDouble(true);
1291   }
1292 
1293   /// The conversion does not do a translation from integer to double, it just
1294   /// re-interprets the bits as a double. Note that it is valid to do this on
1295   /// any bit width. Exactly 64 bits will be translated.
1296   /// @brief Converts APInt bits to a double
bitsToDouble()1297   double bitsToDouble() const {
1298     union {
1299       uint64_t I;
1300       double D;
1301     } T;
1302     T.I = (isSingleWord() ? VAL : pVal[0]);
1303     return T.D;
1304   }
1305 
1306   /// The conversion does not do a translation from integer to float, it just
1307   /// re-interprets the bits as a float. Note that it is valid to do this on
1308   /// any bit width. Exactly 32 bits will be translated.
1309   /// @brief Converts APInt bits to a double
bitsToFloat()1310   float bitsToFloat() const {
1311     union {
1312       unsigned I;
1313       float F;
1314     } T;
1315     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
1316     return T.F;
1317   }
1318 
1319   /// The conversion does not do a translation from double to integer, it just
1320   /// re-interprets the bits of the double.
1321   /// @brief Converts a double to APInt bits.
doubleToBits(double V)1322   static APInt doubleToBits(double V) {
1323     union {
1324       uint64_t I;
1325       double D;
1326     } T;
1327     T.D = V;
1328     return APInt(sizeof T * CHAR_BIT, T.I);
1329   }
1330 
1331   /// The conversion does not do a translation from float to integer, it just
1332   /// re-interprets the bits of the float.
1333   /// @brief Converts a float to APInt bits.
floatToBits(float V)1334   static APInt floatToBits(float V) {
1335     union {
1336       unsigned I;
1337       float F;
1338     } T;
1339     T.F = V;
1340     return APInt(sizeof T * CHAR_BIT, T.I);
1341   }
1342 
1343   /// @}
1344   /// @name Mathematics Operations
1345   /// @{
1346 
1347   /// @returns the floor log base 2 of this APInt.
logBase2()1348   unsigned logBase2() const {
1349     return BitWidth - 1 - countLeadingZeros();
1350   }
1351 
1352   /// @returns the ceil log base 2 of this APInt.
ceilLogBase2()1353   unsigned ceilLogBase2() const {
1354     return BitWidth - (*this - 1).countLeadingZeros();
1355   }
1356 
1357   /// @returns the log base 2 of this APInt if its an exact power of two, -1
1358   /// otherwise
exactLogBase2()1359   int32_t exactLogBase2() const {
1360     if (!isPowerOf2())
1361       return -1;
1362     return logBase2();
1363   }
1364 
1365   /// @brief Compute the square root
1366   APInt sqrt() const;
1367 
1368   /// If *this is < 0 then return -(*this), otherwise *this;
1369   /// @brief Get the absolute value;
abs()1370   APInt abs() const {
1371     if (isNegative())
1372       return -(*this);
1373     return *this;
1374   }
1375 
1376   /// @returns the multiplicative inverse for a given modulo.
1377   APInt multiplicativeInverse(const APInt& modulo) const;
1378 
1379   /// @}
1380   /// @name Support for division by constant
1381   /// @{
1382 
1383   /// Calculate the magic number for signed division by a constant.
1384   struct ms;
1385   ms magic() const;
1386 
1387   /// Calculate the magic number for unsigned division by a constant.
1388   struct mu;
1389   mu magicu(unsigned LeadingZeros = 0) const;
1390 
1391   /// @}
1392   /// @name Building-block Operations for APInt and APFloat
1393   /// @{
1394 
1395   // These building block operations operate on a representation of
1396   // arbitrary precision, two's-complement, bignum integer values.
1397   // They should be sufficient to implement APInt and APFloat bignum
1398   // requirements.  Inputs are generally a pointer to the base of an
1399   // array of integer parts, representing an unsigned bignum, and a
1400   // count of how many parts there are.
1401 
1402   /// Sets the least significant part of a bignum to the input value,
1403   /// and zeroes out higher parts.  */
1404   static void tcSet(integerPart *, integerPart, unsigned int);
1405 
1406   /// Assign one bignum to another.
1407   static void tcAssign(integerPart *, const integerPart *, unsigned int);
1408 
1409   /// Returns true if a bignum is zero, false otherwise.
1410   static bool tcIsZero(const integerPart *, unsigned int);
1411 
1412   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1413   static int tcExtractBit(const integerPart *, unsigned int bit);
1414 
1415   /// Copy the bit vector of width srcBITS from SRC, starting at bit
1416   /// srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB
1417   /// becomes the least significant bit of DST.  All high bits above
1418   /// srcBITS in DST are zero-filled.
1419   static void tcExtract(integerPart *, unsigned int dstCount,
1420                         const integerPart *,
1421                         unsigned int srcBits, unsigned int srcLSB);
1422 
1423   /// Set the given bit of a bignum.  Zero-based.
1424   static void tcSetBit(integerPart *, unsigned int bit);
1425 
1426   /// Clear the given bit of a bignum.  Zero-based.
1427   static void tcClearBit(integerPart *, unsigned int bit);
1428 
1429   /// Returns the bit number of the least or most significant set bit
1430   /// of a number.  If the input number has no bits set -1U is
1431   /// returned.
1432   static unsigned int tcLSB(const integerPart *, unsigned int);
1433   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
1434 
1435   /// Negate a bignum in-place.
1436   static void tcNegate(integerPart *, unsigned int);
1437 
1438   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the
1439   /// carry flag.
1440   static integerPart tcAdd(integerPart *, const integerPart *,
1441                            integerPart carry, unsigned);
1442 
1443   /// DST -= RHS + CARRY where CARRY is zero or one.  Returns the
1444   /// carry flag.
1445   static integerPart tcSubtract(integerPart *, const integerPart *,
1446                                 integerPart carry, unsigned);
1447 
1448   ///  DST += SRC * MULTIPLIER + PART   if add is true
1449   ///  DST  = SRC * MULTIPLIER + PART   if add is false
1450   ///
1451   ///  Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
1452   ///  they must start at the same point, i.e. DST == SRC.
1453   ///
1454   ///  If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is
1455   ///  returned.  Otherwise DST is filled with the least significant
1456   ///  DSTPARTS parts of the result, and if all of the omitted higher
1457   ///  parts were zero return zero, otherwise overflow occurred and
1458   ///  return one.
1459   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
1460                             integerPart multiplier, integerPart carry,
1461                             unsigned int srcParts, unsigned int dstParts,
1462                             bool add);
1463 
1464   /// DST = LHS * RHS, where DST has the same width as the operands
1465   /// and is filled with the least significant parts of the result.
1466   /// Returns one if overflow occurred, otherwise zero.  DST must be
1467   /// disjoint from both operands.
1468   static int tcMultiply(integerPart *, const integerPart *,
1469                         const integerPart *, unsigned);
1470 
1471   /// DST = LHS * RHS, where DST has width the sum of the widths of
1472   /// the operands.  No overflow occurs.  DST must be disjoint from
1473   /// both operands. Returns the number of parts required to hold the
1474   /// result.
1475   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
1476                                      const integerPart *, unsigned, unsigned);
1477 
1478   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1479   /// Otherwise set LHS to LHS / RHS with the fractional part
1480   /// discarded, set REMAINDER to the remainder, return zero.  i.e.
1481   ///
1482   ///  OLD_LHS = RHS * LHS + REMAINDER
1483   ///
1484   ///  SCRATCH is a bignum of the same size as the operands and result
1485   ///  for use by the routine; its contents need not be initialized
1486   ///  and are destroyed.  LHS, REMAINDER and SCRATCH must be
1487   ///  distinct.
1488   static int tcDivide(integerPart *lhs, const integerPart *rhs,
1489                       integerPart *remainder, integerPart *scratch,
1490                       unsigned int parts);
1491 
1492   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.
1493   /// There are no restrictions on COUNT.
1494   static void tcShiftLeft(integerPart *, unsigned int parts,
1495                           unsigned int count);
1496 
1497   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.
1498   /// There are no restrictions on COUNT.
1499   static void tcShiftRight(integerPart *, unsigned int parts,
1500                            unsigned int count);
1501 
1502   /// The obvious AND, OR and XOR and complement operations.
1503   static void tcAnd(integerPart *, const integerPart *, unsigned int);
1504   static void tcOr(integerPart *, const integerPart *, unsigned int);
1505   static void tcXor(integerPart *, const integerPart *, unsigned int);
1506   static void tcComplement(integerPart *, unsigned int);
1507 
1508   /// Comparison (unsigned) of two bignums.
1509   static int tcCompare(const integerPart *, const integerPart *,
1510                        unsigned int);
1511 
1512   /// Increment a bignum in-place.  Return the carry flag.
1513   static integerPart tcIncrement(integerPart *, unsigned int);
1514 
1515   /// Set the least significant BITS and clear the rest.
1516   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
1517                                         unsigned int bits);
1518 
1519   /// @brief debug method
1520   void dump() const;
1521 
1522   /// @}
1523 };
1524 
1525 /// Magic data for optimising signed division by a constant.
1526 struct APInt::ms {
1527   APInt m;  ///< magic number
1528   unsigned s;  ///< shift amount
1529 };
1530 
1531 /// Magic data for optimising unsigned division by a constant.
1532 struct APInt::mu {
1533   APInt m;     ///< magic number
1534   bool a;      ///< add indicator
1535   unsigned s;  ///< shift amount
1536 };
1537 
1538 inline bool operator==(uint64_t V1, const APInt& V2) {
1539   return V2 == V1;
1540 }
1541 
1542 inline bool operator!=(uint64_t V1, const APInt& V2) {
1543   return V2 != V1;
1544 }
1545 
1546 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
1547   I.print(OS, true);
1548   return OS;
1549 }
1550 
1551 namespace APIntOps {
1552 
1553 /// @brief Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)1554 inline APInt smin(const APInt &A, const APInt &B) {
1555   return A.slt(B) ? A : B;
1556 }
1557 
1558 /// @brief Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)1559 inline APInt smax(const APInt &A, const APInt &B) {
1560   return A.sgt(B) ? A : B;
1561 }
1562 
1563 /// @brief Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)1564 inline APInt umin(const APInt &A, const APInt &B) {
1565   return A.ult(B) ? A : B;
1566 }
1567 
1568 /// @brief Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)1569 inline APInt umax(const APInt &A, const APInt &B) {
1570   return A.ugt(B) ? A : B;
1571 }
1572 
1573 /// @brief Check if the specified APInt has a N-bits unsigned integer value.
isIntN(unsigned N,const APInt & APIVal)1574 inline bool isIntN(unsigned N, const APInt& APIVal) {
1575   return APIVal.isIntN(N);
1576 }
1577 
1578 /// @brief Check if the specified APInt has a N-bits signed integer value.
isSignedIntN(unsigned N,const APInt & APIVal)1579 inline bool isSignedIntN(unsigned N, const APInt& APIVal) {
1580   return APIVal.isSignedIntN(N);
1581 }
1582 
1583 /// @returns true if the argument APInt value is a sequence of ones
1584 /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits,const APInt & APIVal)1585 inline bool isMask(unsigned numBits, const APInt& APIVal) {
1586   return numBits <= APIVal.getBitWidth() &&
1587     APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
1588 }
1589 
1590 /// @returns true if the argument APInt value contains a sequence of ones
1591 /// with the remainder zero.
isShiftedMask(unsigned numBits,const APInt & APIVal)1592 inline bool isShiftedMask(unsigned numBits, const APInt& APIVal) {
1593   return isMask(numBits, (APIVal - APInt(numBits,1)) | APIVal);
1594 }
1595 
1596 /// @returns a byte-swapped representation of the specified APInt Value.
byteSwap(const APInt & APIVal)1597 inline APInt byteSwap(const APInt& APIVal) {
1598   return APIVal.byteSwap();
1599 }
1600 
1601 /// @returns the floor log base 2 of the specified APInt value.
logBase2(const APInt & APIVal)1602 inline unsigned logBase2(const APInt& APIVal) {
1603   return APIVal.logBase2();
1604 }
1605 
1606 /// GreatestCommonDivisor - This function returns the greatest common
1607 /// divisor of the two APInt values using Euclid's algorithm.
1608 /// @returns the greatest common divisor of Val1 and Val2
1609 /// @brief Compute GCD of two APInt values.
1610 APInt GreatestCommonDivisor(const APInt& Val1, const APInt& Val2);
1611 
1612 /// Treats the APInt as an unsigned value for conversion purposes.
1613 /// @brief Converts the given APInt to a double value.
RoundAPIntToDouble(const APInt & APIVal)1614 inline double RoundAPIntToDouble(const APInt& APIVal) {
1615   return APIVal.roundToDouble();
1616 }
1617 
1618 /// Treats the APInt as a signed value for conversion purposes.
1619 /// @brief Converts the given APInt to a double value.
RoundSignedAPIntToDouble(const APInt & APIVal)1620 inline double RoundSignedAPIntToDouble(const APInt& APIVal) {
1621   return APIVal.signedRoundToDouble();
1622 }
1623 
1624 /// @brief Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)1625 inline float RoundAPIntToFloat(const APInt& APIVal) {
1626   return float(RoundAPIntToDouble(APIVal));
1627 }
1628 
1629 /// Treast the APInt as a signed value for conversion purposes.
1630 /// @brief Converts the given APInt to a float value.
RoundSignedAPIntToFloat(const APInt & APIVal)1631 inline float RoundSignedAPIntToFloat(const APInt& APIVal) {
1632   return float(APIVal.signedRoundToDouble());
1633 }
1634 
1635 /// RoundDoubleToAPInt - This function convert a double value to an APInt value.
1636 /// @brief Converts the given double value into a APInt.
1637 APInt RoundDoubleToAPInt(double Double, unsigned width);
1638 
1639 /// RoundFloatToAPInt - Converts a float value into an APInt value.
1640 /// @brief Converts a float value into a APInt.
RoundFloatToAPInt(float Float,unsigned width)1641 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
1642   return RoundDoubleToAPInt(double(Float), width);
1643 }
1644 
1645 /// Arithmetic right-shift the APInt by shiftAmt.
1646 /// @brief Arithmetic right-shift function.
ashr(const APInt & LHS,unsigned shiftAmt)1647 inline APInt ashr(const APInt& LHS, unsigned shiftAmt) {
1648   return LHS.ashr(shiftAmt);
1649 }
1650 
1651 /// Logical right-shift the APInt by shiftAmt.
1652 /// @brief Logical right-shift function.
lshr(const APInt & LHS,unsigned shiftAmt)1653 inline APInt lshr(const APInt& LHS, unsigned shiftAmt) {
1654   return LHS.lshr(shiftAmt);
1655 }
1656 
1657 /// Left-shift the APInt by shiftAmt.
1658 /// @brief Left-shift function.
shl(const APInt & LHS,unsigned shiftAmt)1659 inline APInt shl(const APInt& LHS, unsigned shiftAmt) {
1660   return LHS.shl(shiftAmt);
1661 }
1662 
1663 /// Signed divide APInt LHS by APInt RHS.
1664 /// @brief Signed division function for APInt.
sdiv(const APInt & LHS,const APInt & RHS)1665 inline APInt sdiv(const APInt& LHS, const APInt& RHS) {
1666   return LHS.sdiv(RHS);
1667 }
1668 
1669 /// Unsigned divide APInt LHS by APInt RHS.
1670 /// @brief Unsigned division function for APInt.
udiv(const APInt & LHS,const APInt & RHS)1671 inline APInt udiv(const APInt& LHS, const APInt& RHS) {
1672   return LHS.udiv(RHS);
1673 }
1674 
1675 /// Signed remainder operation on APInt.
1676 /// @brief Function for signed remainder operation.
srem(const APInt & LHS,const APInt & RHS)1677 inline APInt srem(const APInt& LHS, const APInt& RHS) {
1678   return LHS.srem(RHS);
1679 }
1680 
1681 /// Unsigned remainder operation on APInt.
1682 /// @brief Function for unsigned remainder operation.
urem(const APInt & LHS,const APInt & RHS)1683 inline APInt urem(const APInt& LHS, const APInt& RHS) {
1684   return LHS.urem(RHS);
1685 }
1686 
1687 /// Performs multiplication on APInt values.
1688 /// @brief Function for multiplication operation.
mul(const APInt & LHS,const APInt & RHS)1689 inline APInt mul(const APInt& LHS, const APInt& RHS) {
1690   return LHS * RHS;
1691 }
1692 
1693 /// Performs addition on APInt values.
1694 /// @brief Function for addition operation.
add(const APInt & LHS,const APInt & RHS)1695 inline APInt add(const APInt& LHS, const APInt& RHS) {
1696   return LHS + RHS;
1697 }
1698 
1699 /// Performs subtraction on APInt values.
1700 /// @brief Function for subtraction operation.
sub(const APInt & LHS,const APInt & RHS)1701 inline APInt sub(const APInt& LHS, const APInt& RHS) {
1702   return LHS - RHS;
1703 }
1704 
1705 /// Performs bitwise AND operation on APInt LHS and
1706 /// APInt RHS.
1707 /// @brief Bitwise AND function for APInt.
And(const APInt & LHS,const APInt & RHS)1708 inline APInt And(const APInt& LHS, const APInt& RHS) {
1709   return LHS & RHS;
1710 }
1711 
1712 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
1713 /// @brief Bitwise OR function for APInt.
Or(const APInt & LHS,const APInt & RHS)1714 inline APInt Or(const APInt& LHS, const APInt& RHS) {
1715   return LHS | RHS;
1716 }
1717 
1718 /// Performs bitwise XOR operation on APInt.
1719 /// @brief Bitwise XOR function for APInt.
Xor(const APInt & LHS,const APInt & RHS)1720 inline APInt Xor(const APInt& LHS, const APInt& RHS) {
1721   return LHS ^ RHS;
1722 }
1723 
1724 /// Performs a bitwise complement operation on APInt.
1725 /// @brief Bitwise complement function.
Not(const APInt & APIVal)1726 inline APInt Not(const APInt& APIVal) {
1727   return ~APIVal;
1728 }
1729 
1730 } // End of APIntOps namespace
1731 
1732 } // End of llvm namespace
1733 
1734 #endif
1735