1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
11 // post order iterator.  This should work over any graph type that has a
12 // GraphTraits specialization.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include <set>
22 #include <vector>
23 
24 namespace llvm {
25 
26 template<class SetType, bool External>   // Non-external set
27 class po_iterator_storage {
28 public:
29   SetType Visited;
30 };
31 
32 /// DFSetTraits - Allow the SetType used to record depth-first search results to
33 /// optionally record node postorder.
34 template<class SetType>
35 struct DFSetTraits {
finishPostorderDFSetTraits36   static void finishPostorder(
37     typename SetType::iterator::value_type, SetType &) {}
38 };
39 
40 template<class SetType>
41 class po_iterator_storage<SetType, true> {
42 public:
po_iterator_storage(SetType & VSet)43   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage & S)44   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
45   SetType &Visited;
46 };
47 
48 template<class GraphT,
49   class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
50   bool ExtStorage = false,
51   class GT = GraphTraits<GraphT> >
52 class po_iterator : public std::iterator<std::forward_iterator_tag,
53                                          typename GT::NodeType, ptrdiff_t>,
54                     public po_iterator_storage<SetType, ExtStorage> {
55   typedef std::iterator<std::forward_iterator_tag,
56                         typename GT::NodeType, ptrdiff_t> super;
57   typedef typename GT::NodeType          NodeType;
58   typedef typename GT::ChildIteratorType ChildItTy;
59 
60   // VisitStack - Used to maintain the ordering.  Top = current block
61   // First element is basic block pointer, second is the 'next child' to visit
62   std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
63 
traverseChild()64   void traverseChild() {
65     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
66       NodeType *BB = *VisitStack.back().second++;
67       if (this->Visited.insert(BB)) {  // If the block is not visited...
68         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
69       }
70     }
71   }
72 
po_iterator(NodeType * BB)73   inline po_iterator(NodeType *BB) {
74     this->Visited.insert(BB);
75     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
76     traverseChild();
77   }
po_iterator()78   inline po_iterator() {} // End is when stack is empty.
79 
po_iterator(NodeType * BB,SetType & S)80   inline po_iterator(NodeType *BB, SetType &S) :
81     po_iterator_storage<SetType, ExtStorage>(S) {
82     if (this->Visited.insert(BB)) {
83       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
84       traverseChild();
85     }
86   }
87 
po_iterator(SetType & S)88   inline po_iterator(SetType &S) :
89       po_iterator_storage<SetType, ExtStorage>(S) {
90   } // End is when stack is empty.
91 public:
92   typedef typename super::pointer pointer;
93   typedef po_iterator<GraphT, SetType, ExtStorage, GT> _Self;
94 
95   // Provide static "constructors"...
begin(GraphT G)96   static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
end(GraphT G)97   static inline _Self end  (GraphT G) { return _Self(); }
98 
begin(GraphT G,SetType & S)99   static inline _Self begin(GraphT G, SetType &S) {
100     return _Self(GT::getEntryNode(G), S);
101   }
end(GraphT G,SetType & S)102   static inline _Self end  (GraphT G, SetType &S) { return _Self(S); }
103 
104   inline bool operator==(const _Self& x) const {
105     return VisitStack == x.VisitStack;
106   }
107   inline bool operator!=(const _Self& x) const { return !operator==(x); }
108 
109   inline pointer operator*() const {
110     return VisitStack.back().first;
111   }
112 
113   // This is a nonstandard operator-> that dereferences the pointer an extra
114   // time... so that you can actually call methods ON the BasicBlock, because
115   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
116   //
117   inline NodeType *operator->() const { return operator*(); }
118 
119   inline _Self& operator++() {   // Preincrement
120     DFSetTraits<SetType>::finishPostorder(VisitStack.back().first,
121                                           this->Visited);
122     VisitStack.pop_back();
123     if (!VisitStack.empty())
124       traverseChild();
125     return *this;
126   }
127 
128   inline _Self operator++(int) { // Postincrement
129     _Self tmp = *this; ++*this; return tmp;
130   }
131 };
132 
133 // Provide global constructors that automatically figure out correct types...
134 //
135 template <class T>
po_begin(T G)136 po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
137 template <class T>
po_end(T G)138 po_iterator<T> po_end  (T G) { return po_iterator<T>::end(G); }
139 
140 // Provide global definitions of external postorder iterators...
141 template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
142 struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iteratorpo_ext_iterator143   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
144   po_iterator<T, SetType, true>(V) {}
145 };
146 
147 template<class T, class SetType>
po_ext_begin(T G,SetType & S)148 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
149   return po_ext_iterator<T, SetType>::begin(G, S);
150 }
151 
152 template<class T, class SetType>
po_ext_end(T G,SetType & S)153 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
154   return po_ext_iterator<T, SetType>::end(G, S);
155 }
156 
157 // Provide global definitions of inverse post order iterators...
158 template <class T,
159           class SetType = std::set<typename GraphTraits<T>::NodeType*>,
160           bool External = false>
161 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
ipo_iteratoripo_iterator162   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
163      po_iterator<Inverse<T>, SetType, External> (V) {}
164 };
165 
166 template <class T>
167 ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
168   return ipo_iterator<T>::begin(G, Reverse);
169 }
170 
171 template <class T>
ipo_end(T G)172 ipo_iterator<T> ipo_end(T G){
173   return ipo_iterator<T>::end(G);
174 }
175 
176 //Provide global definitions of external inverse postorder iterators...
177 template <class T,
178           class SetType = std::set<typename GraphTraits<T>::NodeType*> >
179 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iteratoripo_ext_iterator180   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
181     ipo_iterator<T, SetType, true>(&V) {}
ipo_ext_iteratoripo_ext_iterator182   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
183     ipo_iterator<T, SetType, true>(&V) {}
184 };
185 
186 template <class T, class SetType>
ipo_ext_begin(T G,SetType & S)187 ipo_ext_iterator<T, SetType> ipo_ext_begin(T G, SetType &S) {
188   return ipo_ext_iterator<T, SetType>::begin(G, S);
189 }
190 
191 template <class T, class SetType>
ipo_ext_end(T G,SetType & S)192 ipo_ext_iterator<T, SetType> ipo_ext_end(T G, SetType &S) {
193   return ipo_ext_iterator<T, SetType>::end(G, S);
194 }
195 
196 //===--------------------------------------------------------------------===//
197 // Reverse Post Order CFG iterator code
198 //===--------------------------------------------------------------------===//
199 //
200 // This is used to visit basic blocks in a method in reverse post order.  This
201 // class is awkward to use because I don't know a good incremental algorithm to
202 // computer RPO from a graph.  Because of this, the construction of the
203 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
204 // with a postorder iterator to build the data structures).  The moral of this
205 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
206 //
207 // This class should be used like this:
208 // {
209 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
210 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
211 //      ...
212 //   }
213 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
214 //      ...
215 //   }
216 // }
217 //
218 
219 template<class GraphT, class GT = GraphTraits<GraphT> >
220 class ReversePostOrderTraversal {
221   typedef typename GT::NodeType NodeType;
222   std::vector<NodeType*> Blocks;       // Block list in normal PO order
Initialize(NodeType * BB)223   inline void Initialize(NodeType *BB) {
224     copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
225   }
226 public:
227   typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
228 
ReversePostOrderTraversal(GraphT G)229   inline ReversePostOrderTraversal(GraphT G) {
230     Initialize(GT::getEntryNode(G));
231   }
232 
233   // Because we want a reverse post order, use reverse iterators from the vector
begin()234   inline rpo_iterator begin() { return Blocks.rbegin(); }
end()235   inline rpo_iterator end()   { return Blocks.rend(); }
236 };
237 
238 } // End llvm namespace
239 
240 #endif
241