1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SmallVector class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16
17 #include "llvm/Support/type_traits.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cstddef>
21 #include <cstdlib>
22 #include <cstring>
23 #include <iterator>
24 #include <memory>
25
26 #ifdef _MSC_VER
27 namespace std {
28 #if _MSC_VER <= 1310
29 // Work around flawed VC++ implementation of std::uninitialized_copy. Define
30 // additional overloads so that elements with pointer types are recognized as
31 // scalars and not objects, causing bizarre type conversion errors.
32 template<class T1, class T2>
_Ptr_cat(T1 **,T2 **)33 inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
34 _Scalar_ptr_iterator_tag _Cat;
35 return _Cat;
36 }
37
38 template<class T1, class T2>
_Ptr_cat(T1 * const *,T2 **)39 inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
40 _Scalar_ptr_iterator_tag _Cat;
41 return _Cat;
42 }
43 #else
44 // FIXME: It is not clear if the problem is fixed in VS 2005. What is clear
45 // is that the above hack won't work if it wasn't fixed.
46 #endif
47 }
48 #endif
49
50 namespace llvm {
51
52 /// SmallVectorBase - This is all the non-templated stuff common to all
53 /// SmallVectors.
54 class SmallVectorBase {
55 protected:
56 void *BeginX, *EndX, *CapacityX;
57
58 // Allocate raw space for N elements of type T. If T has a ctor or dtor, we
59 // don't want it to be automatically run, so we need to represent the space as
60 // something else. An array of char would work great, but might not be
61 // aligned sufficiently. Instead we use some number of union instances for
62 // the space, which guarantee maximal alignment.
63 union U {
64 double D;
65 long double LD;
66 long long L;
67 void *P;
68 } FirstEl;
69 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
70
71 protected:
SmallVectorBase(size_t Size)72 SmallVectorBase(size_t Size)
73 : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
74
75 /// isSmall - Return true if this is a smallvector which has not had dynamic
76 /// memory allocated for it.
isSmall()77 bool isSmall() const {
78 return BeginX == static_cast<const void*>(&FirstEl);
79 }
80
81 /// grow_pod - This is an implementation of the grow() method which only works
82 /// on POD-like data types and is out of line to reduce code duplication.
83 void grow_pod(size_t MinSizeInBytes, size_t TSize);
84
85 public:
86 /// size_in_bytes - This returns size()*sizeof(T).
size_in_bytes()87 size_t size_in_bytes() const {
88 return size_t((char*)EndX - (char*)BeginX);
89 }
90
91 /// capacity_in_bytes - This returns capacity()*sizeof(T).
capacity_in_bytes()92 size_t capacity_in_bytes() const {
93 return size_t((char*)CapacityX - (char*)BeginX);
94 }
95
empty()96 bool empty() const { return BeginX == EndX; }
97 };
98
99
100 template <typename T>
101 class SmallVectorTemplateCommon : public SmallVectorBase {
102 protected:
setEnd(T * P)103 void setEnd(T *P) { this->EndX = P; }
104 public:
SmallVectorTemplateCommon(size_t Size)105 SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
106
107 typedef size_t size_type;
108 typedef ptrdiff_t difference_type;
109 typedef T value_type;
110 typedef T *iterator;
111 typedef const T *const_iterator;
112
113 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
114 typedef std::reverse_iterator<iterator> reverse_iterator;
115
116 typedef T &reference;
117 typedef const T &const_reference;
118 typedef T *pointer;
119 typedef const T *const_pointer;
120
121 // forward iterator creation methods.
begin()122 iterator begin() { return (iterator)this->BeginX; }
begin()123 const_iterator begin() const { return (const_iterator)this->BeginX; }
end()124 iterator end() { return (iterator)this->EndX; }
end()125 const_iterator end() const { return (const_iterator)this->EndX; }
126 protected:
capacity_ptr()127 iterator capacity_ptr() { return (iterator)this->CapacityX; }
capacity_ptr()128 const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
129 public:
130
131 // reverse iterator creation methods.
rbegin()132 reverse_iterator rbegin() { return reverse_iterator(end()); }
rbegin()133 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
rend()134 reverse_iterator rend() { return reverse_iterator(begin()); }
rend()135 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
136
size()137 size_type size() const { return end()-begin(); }
max_size()138 size_type max_size() const { return size_type(-1) / sizeof(T); }
139
140 /// capacity - Return the total number of elements in the currently allocated
141 /// buffer.
capacity()142 size_t capacity() const { return capacity_ptr() - begin(); }
143
144 /// data - Return a pointer to the vector's buffer, even if empty().
data()145 pointer data() { return pointer(begin()); }
146 /// data - Return a pointer to the vector's buffer, even if empty().
data()147 const_pointer data() const { return const_pointer(begin()); }
148
149 reference operator[](unsigned idx) {
150 assert(begin() + idx < end());
151 return begin()[idx];
152 }
153 const_reference operator[](unsigned idx) const {
154 assert(begin() + idx < end());
155 return begin()[idx];
156 }
157
front()158 reference front() {
159 return begin()[0];
160 }
front()161 const_reference front() const {
162 return begin()[0];
163 }
164
back()165 reference back() {
166 return end()[-1];
167 }
back()168 const_reference back() const {
169 return end()[-1];
170 }
171 };
172
173 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
174 /// implementations that are designed to work with non-POD-like T's.
175 template <typename T, bool isPodLike>
176 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
177 public:
SmallVectorTemplateBase(size_t Size)178 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
179
destroy_range(T * S,T * E)180 static void destroy_range(T *S, T *E) {
181 while (S != E) {
182 --E;
183 E->~T();
184 }
185 }
186
187 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
188 /// starting with "Dest", constructing elements into it as needed.
189 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)190 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
191 std::uninitialized_copy(I, E, Dest);
192 }
193
194 /// grow - double the size of the allocated memory, guaranteeing space for at
195 /// least one more element or MinSize if specified.
196 void grow(size_t MinSize = 0);
197 };
198
199 // Define this out-of-line to dissuade the C++ compiler from inlining it.
200 template <typename T, bool isPodLike>
grow(size_t MinSize)201 void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
202 size_t CurCapacity = this->capacity();
203 size_t CurSize = this->size();
204 size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero.
205 if (NewCapacity < MinSize)
206 NewCapacity = MinSize;
207 T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
208
209 // Copy the elements over.
210 this->uninitialized_copy(this->begin(), this->end(), NewElts);
211
212 // Destroy the original elements.
213 destroy_range(this->begin(), this->end());
214
215 // If this wasn't grown from the inline copy, deallocate the old space.
216 if (!this->isSmall())
217 free(this->begin());
218
219 this->setEnd(NewElts+CurSize);
220 this->BeginX = NewElts;
221 this->CapacityX = this->begin()+NewCapacity;
222 }
223
224
225 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
226 /// implementations that are designed to work with POD-like T's.
227 template <typename T>
228 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
229 public:
SmallVectorTemplateBase(size_t Size)230 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
231
232 // No need to do a destroy loop for POD's.
destroy_range(T *,T *)233 static void destroy_range(T *, T *) {}
234
235 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
236 /// starting with "Dest", constructing elements into it as needed.
237 template<typename It1, typename It2>
uninitialized_copy(It1 I,It1 E,It2 Dest)238 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
239 // Arbitrary iterator types; just use the basic implementation.
240 std::uninitialized_copy(I, E, Dest);
241 }
242
243 /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
244 /// starting with "Dest", constructing elements into it as needed.
245 template<typename T1, typename T2>
uninitialized_copy(T1 * I,T1 * E,T2 * Dest)246 static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
247 // Use memcpy for PODs iterated by pointers (which includes SmallVector
248 // iterators): std::uninitialized_copy optimizes to memmove, but we can
249 // use memcpy here.
250 memcpy(Dest, I, (E-I)*sizeof(T));
251 }
252
253 /// grow - double the size of the allocated memory, guaranteeing space for at
254 /// least one more element or MinSize if specified.
255 void grow(size_t MinSize = 0) {
256 this->grow_pod(MinSize*sizeof(T), sizeof(T));
257 }
258 };
259
260
261 /// SmallVectorImpl - This class consists of common code factored out of the
262 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
263 /// template parameter.
264 template <typename T>
265 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
266 typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
267
268 SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
269 public:
270 typedef typename SuperClass::iterator iterator;
271 typedef typename SuperClass::size_type size_type;
272
273 // Default ctor - Initialize to empty.
SmallVectorImpl(unsigned N)274 explicit SmallVectorImpl(unsigned N)
275 : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
276 }
277
~SmallVectorImpl()278 ~SmallVectorImpl() {
279 // Destroy the constructed elements in the vector.
280 this->destroy_range(this->begin(), this->end());
281
282 // If this wasn't grown from the inline copy, deallocate the old space.
283 if (!this->isSmall())
284 free(this->begin());
285 }
286
287
clear()288 void clear() {
289 this->destroy_range(this->begin(), this->end());
290 this->EndX = this->BeginX;
291 }
292
resize(unsigned N)293 void resize(unsigned N) {
294 if (N < this->size()) {
295 this->destroy_range(this->begin()+N, this->end());
296 this->setEnd(this->begin()+N);
297 } else if (N > this->size()) {
298 if (this->capacity() < N)
299 this->grow(N);
300 this->construct_range(this->end(), this->begin()+N, T());
301 this->setEnd(this->begin()+N);
302 }
303 }
304
resize(unsigned N,const T & NV)305 void resize(unsigned N, const T &NV) {
306 if (N < this->size()) {
307 this->destroy_range(this->begin()+N, this->end());
308 this->setEnd(this->begin()+N);
309 } else if (N > this->size()) {
310 if (this->capacity() < N)
311 this->grow(N);
312 construct_range(this->end(), this->begin()+N, NV);
313 this->setEnd(this->begin()+N);
314 }
315 }
316
reserve(unsigned N)317 void reserve(unsigned N) {
318 if (this->capacity() < N)
319 this->grow(N);
320 }
321
push_back(const T & Elt)322 void push_back(const T &Elt) {
323 if (this->EndX < this->CapacityX) {
324 Retry:
325 new (this->end()) T(Elt);
326 this->setEnd(this->end()+1);
327 return;
328 }
329 this->grow();
330 goto Retry;
331 }
332
pop_back()333 void pop_back() {
334 this->setEnd(this->end()-1);
335 this->end()->~T();
336 }
337
pop_back_val()338 T pop_back_val() {
339 T Result = this->back();
340 pop_back();
341 return Result;
342 }
343
344 void swap(SmallVectorImpl &RHS);
345
346 /// append - Add the specified range to the end of the SmallVector.
347 ///
348 template<typename in_iter>
append(in_iter in_start,in_iter in_end)349 void append(in_iter in_start, in_iter in_end) {
350 size_type NumInputs = std::distance(in_start, in_end);
351 // Grow allocated space if needed.
352 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
353 this->grow(this->size()+NumInputs);
354
355 // Copy the new elements over.
356 // TODO: NEED To compile time dispatch on whether in_iter is a random access
357 // iterator to use the fast uninitialized_copy.
358 std::uninitialized_copy(in_start, in_end, this->end());
359 this->setEnd(this->end() + NumInputs);
360 }
361
362 /// append - Add the specified range to the end of the SmallVector.
363 ///
append(size_type NumInputs,const T & Elt)364 void append(size_type NumInputs, const T &Elt) {
365 // Grow allocated space if needed.
366 if (NumInputs > size_type(this->capacity_ptr()-this->end()))
367 this->grow(this->size()+NumInputs);
368
369 // Copy the new elements over.
370 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
371 this->setEnd(this->end() + NumInputs);
372 }
373
assign(unsigned NumElts,const T & Elt)374 void assign(unsigned NumElts, const T &Elt) {
375 clear();
376 if (this->capacity() < NumElts)
377 this->grow(NumElts);
378 this->setEnd(this->begin()+NumElts);
379 construct_range(this->begin(), this->end(), Elt);
380 }
381
erase(iterator I)382 iterator erase(iterator I) {
383 iterator N = I;
384 // Shift all elts down one.
385 std::copy(I+1, this->end(), I);
386 // Drop the last elt.
387 pop_back();
388 return(N);
389 }
390
erase(iterator S,iterator E)391 iterator erase(iterator S, iterator E) {
392 iterator N = S;
393 // Shift all elts down.
394 iterator I = std::copy(E, this->end(), S);
395 // Drop the last elts.
396 this->destroy_range(I, this->end());
397 this->setEnd(I);
398 return(N);
399 }
400
insert(iterator I,const T & Elt)401 iterator insert(iterator I, const T &Elt) {
402 if (I == this->end()) { // Important special case for empty vector.
403 push_back(Elt);
404 return this->end()-1;
405 }
406
407 if (this->EndX < this->CapacityX) {
408 Retry:
409 new (this->end()) T(this->back());
410 this->setEnd(this->end()+1);
411 // Push everything else over.
412 std::copy_backward(I, this->end()-1, this->end());
413
414 // If we just moved the element we're inserting, be sure to update
415 // the reference.
416 const T *EltPtr = &Elt;
417 if (I <= EltPtr && EltPtr < this->EndX)
418 ++EltPtr;
419
420 *I = *EltPtr;
421 return I;
422 }
423 size_t EltNo = I-this->begin();
424 this->grow();
425 I = this->begin()+EltNo;
426 goto Retry;
427 }
428
insert(iterator I,size_type NumToInsert,const T & Elt)429 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
430 if (I == this->end()) { // Important special case for empty vector.
431 append(NumToInsert, Elt);
432 return this->end()-1;
433 }
434
435 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
436 size_t InsertElt = I - this->begin();
437
438 // Ensure there is enough space.
439 reserve(static_cast<unsigned>(this->size() + NumToInsert));
440
441 // Uninvalidate the iterator.
442 I = this->begin()+InsertElt;
443
444 // If there are more elements between the insertion point and the end of the
445 // range than there are being inserted, we can use a simple approach to
446 // insertion. Since we already reserved space, we know that this won't
447 // reallocate the vector.
448 if (size_t(this->end()-I) >= NumToInsert) {
449 T *OldEnd = this->end();
450 append(this->end()-NumToInsert, this->end());
451
452 // Copy the existing elements that get replaced.
453 std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
454
455 std::fill_n(I, NumToInsert, Elt);
456 return I;
457 }
458
459 // Otherwise, we're inserting more elements than exist already, and we're
460 // not inserting at the end.
461
462 // Copy over the elements that we're about to overwrite.
463 T *OldEnd = this->end();
464 this->setEnd(this->end() + NumToInsert);
465 size_t NumOverwritten = OldEnd-I;
466 this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
467
468 // Replace the overwritten part.
469 std::fill_n(I, NumOverwritten, Elt);
470
471 // Insert the non-overwritten middle part.
472 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
473 return I;
474 }
475
476 template<typename ItTy>
insert(iterator I,ItTy From,ItTy To)477 iterator insert(iterator I, ItTy From, ItTy To) {
478 if (I == this->end()) { // Important special case for empty vector.
479 append(From, To);
480 return this->end()-1;
481 }
482
483 size_t NumToInsert = std::distance(From, To);
484 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
485 size_t InsertElt = I - this->begin();
486
487 // Ensure there is enough space.
488 reserve(static_cast<unsigned>(this->size() + NumToInsert));
489
490 // Uninvalidate the iterator.
491 I = this->begin()+InsertElt;
492
493 // If there are more elements between the insertion point and the end of the
494 // range than there are being inserted, we can use a simple approach to
495 // insertion. Since we already reserved space, we know that this won't
496 // reallocate the vector.
497 if (size_t(this->end()-I) >= NumToInsert) {
498 T *OldEnd = this->end();
499 append(this->end()-NumToInsert, this->end());
500
501 // Copy the existing elements that get replaced.
502 std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
503
504 std::copy(From, To, I);
505 return I;
506 }
507
508 // Otherwise, we're inserting more elements than exist already, and we're
509 // not inserting at the end.
510
511 // Copy over the elements that we're about to overwrite.
512 T *OldEnd = this->end();
513 this->setEnd(this->end() + NumToInsert);
514 size_t NumOverwritten = OldEnd-I;
515 this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
516
517 // Replace the overwritten part.
518 for (; NumOverwritten > 0; --NumOverwritten) {
519 *I = *From;
520 ++I; ++From;
521 }
522
523 // Insert the non-overwritten middle part.
524 this->uninitialized_copy(From, To, OldEnd);
525 return I;
526 }
527
528 const SmallVectorImpl
529 &operator=(const SmallVectorImpl &RHS);
530
531 bool operator==(const SmallVectorImpl &RHS) const {
532 if (this->size() != RHS.size()) return false;
533 return std::equal(this->begin(), this->end(), RHS.begin());
534 }
535 bool operator!=(const SmallVectorImpl &RHS) const {
536 return !(*this == RHS);
537 }
538
539 bool operator<(const SmallVectorImpl &RHS) const {
540 return std::lexicographical_compare(this->begin(), this->end(),
541 RHS.begin(), RHS.end());
542 }
543
544 /// set_size - Set the array size to \arg N, which the current array must have
545 /// enough capacity for.
546 ///
547 /// This does not construct or destroy any elements in the vector.
548 ///
549 /// Clients can use this in conjunction with capacity() to write past the end
550 /// of the buffer when they know that more elements are available, and only
551 /// update the size later. This avoids the cost of value initializing elements
552 /// which will only be overwritten.
set_size(unsigned N)553 void set_size(unsigned N) {
554 assert(N <= this->capacity());
555 this->setEnd(this->begin() + N);
556 }
557
558 private:
construct_range(T * S,T * E,const T & Elt)559 static void construct_range(T *S, T *E, const T &Elt) {
560 for (; S != E; ++S)
561 new (S) T(Elt);
562 }
563 };
564
565
566 template <typename T>
swap(SmallVectorImpl<T> & RHS)567 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
568 if (this == &RHS) return;
569
570 // We can only avoid copying elements if neither vector is small.
571 if (!this->isSmall() && !RHS.isSmall()) {
572 std::swap(this->BeginX, RHS.BeginX);
573 std::swap(this->EndX, RHS.EndX);
574 std::swap(this->CapacityX, RHS.CapacityX);
575 return;
576 }
577 if (RHS.size() > this->capacity())
578 this->grow(RHS.size());
579 if (this->size() > RHS.capacity())
580 RHS.grow(this->size());
581
582 // Swap the shared elements.
583 size_t NumShared = this->size();
584 if (NumShared > RHS.size()) NumShared = RHS.size();
585 for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
586 std::swap((*this)[i], RHS[i]);
587
588 // Copy over the extra elts.
589 if (this->size() > RHS.size()) {
590 size_t EltDiff = this->size() - RHS.size();
591 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
592 RHS.setEnd(RHS.end()+EltDiff);
593 this->destroy_range(this->begin()+NumShared, this->end());
594 this->setEnd(this->begin()+NumShared);
595 } else if (RHS.size() > this->size()) {
596 size_t EltDiff = RHS.size() - this->size();
597 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
598 this->setEnd(this->end() + EltDiff);
599 this->destroy_range(RHS.begin()+NumShared, RHS.end());
600 RHS.setEnd(RHS.begin()+NumShared);
601 }
602 }
603
604 template <typename T>
605 const SmallVectorImpl<T> &SmallVectorImpl<T>::
606 operator=(const SmallVectorImpl<T> &RHS) {
607 // Avoid self-assignment.
608 if (this == &RHS) return *this;
609
610 // If we already have sufficient space, assign the common elements, then
611 // destroy any excess.
612 size_t RHSSize = RHS.size();
613 size_t CurSize = this->size();
614 if (CurSize >= RHSSize) {
615 // Assign common elements.
616 iterator NewEnd;
617 if (RHSSize)
618 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
619 else
620 NewEnd = this->begin();
621
622 // Destroy excess elements.
623 this->destroy_range(NewEnd, this->end());
624
625 // Trim.
626 this->setEnd(NewEnd);
627 return *this;
628 }
629
630 // If we have to grow to have enough elements, destroy the current elements.
631 // This allows us to avoid copying them during the grow.
632 if (this->capacity() < RHSSize) {
633 // Destroy current elements.
634 this->destroy_range(this->begin(), this->end());
635 this->setEnd(this->begin());
636 CurSize = 0;
637 this->grow(RHSSize);
638 } else if (CurSize) {
639 // Otherwise, use assignment for the already-constructed elements.
640 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
641 }
642
643 // Copy construct the new elements in place.
644 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
645 this->begin()+CurSize);
646
647 // Set end.
648 this->setEnd(this->begin()+RHSSize);
649 return *this;
650 }
651
652
653 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
654 /// for the case when the array is small. It contains some number of elements
655 /// in-place, which allows it to avoid heap allocation when the actual number of
656 /// elements is below that threshold. This allows normal "small" cases to be
657 /// fast without losing generality for large inputs.
658 ///
659 /// Note that this does not attempt to be exception safe.
660 ///
661 template <typename T, unsigned N>
662 class SmallVector : public SmallVectorImpl<T> {
663 /// InlineElts - These are 'N-1' elements that are stored inline in the body
664 /// of the vector. The extra '1' element is stored in SmallVectorImpl.
665 typedef typename SmallVectorImpl<T>::U U;
666 enum {
667 // MinUs - The number of U's require to cover N T's.
668 MinUs = (static_cast<unsigned int>(sizeof(T))*N +
669 static_cast<unsigned int>(sizeof(U)) - 1) /
670 static_cast<unsigned int>(sizeof(U)),
671
672 // NumInlineEltsElts - The number of elements actually in this array. There
673 // is already one in the parent class, and we have to round up to avoid
674 // having a zero-element array.
675 NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
676
677 // NumTsAvailable - The number of T's we actually have space for, which may
678 // be more than N due to rounding.
679 NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
680 static_cast<unsigned int>(sizeof(T))
681 };
682 U InlineElts[NumInlineEltsElts];
683 public:
SmallVector()684 SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
685 }
686
687 explicit SmallVector(unsigned Size, const T &Value = T())
688 : SmallVectorImpl<T>(NumTsAvailable) {
689 this->reserve(Size);
690 while (Size--)
691 this->push_back(Value);
692 }
693
694 template<typename ItTy>
SmallVector(ItTy S,ItTy E)695 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
696 this->append(S, E);
697 }
698
SmallVector(const SmallVector & RHS)699 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
700 if (!RHS.empty())
701 SmallVectorImpl<T>::operator=(RHS);
702 }
703
704 const SmallVector &operator=(const SmallVector &RHS) {
705 SmallVectorImpl<T>::operator=(RHS);
706 return *this;
707 }
708
709 };
710
711 /// Specialize SmallVector at N=0. This specialization guarantees
712 /// that it can be instantiated at an incomplete T if none of its
713 /// members are required.
714 template <typename T>
715 class SmallVector<T,0> : public SmallVectorImpl<T> {
716 public:
SmallVector()717 SmallVector() : SmallVectorImpl<T>(0) {}
718
719 explicit SmallVector(unsigned Size, const T &Value = T())
720 : SmallVectorImpl<T>(0) {
721 this->reserve(Size);
722 while (Size--)
723 this->push_back(Value);
724 }
725
726 template<typename ItTy>
SmallVector(ItTy S,ItTy E)727 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(0) {
728 this->append(S, E);
729 }
730
SmallVector(const SmallVector & RHS)731 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(0) {
732 SmallVectorImpl<T>::operator=(RHS);
733 }
734
735 SmallVector &operator=(const SmallVectorImpl<T> &RHS) {
736 return SmallVectorImpl<T>::operator=(RHS);
737 }
738
739 };
740
741 template<typename T, unsigned N>
capacity_in_bytes(const SmallVector<T,N> & X)742 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
743 return X.capacity_in_bytes();
744 }
745
746 } // End llvm namespace
747
748 namespace std {
749 /// Implement std::swap in terms of SmallVector swap.
750 template<typename T>
751 inline void
swap(llvm::SmallVectorImpl<T> & LHS,llvm::SmallVectorImpl<T> & RHS)752 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
753 LHS.swap(RHS);
754 }
755
756 /// Implement std::swap in terms of SmallVector swap.
757 template<typename T, unsigned N>
758 inline void
swap(llvm::SmallVector<T,N> & LHS,llvm::SmallVector<T,N> & RHS)759 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
760 LHS.swap(RHS);
761 }
762 }
763
764 #endif
765