1 //==-- llvm/ADT/ilist.h - Intrusive Linked List Template ---------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines classes to implement an intrusive doubly linked list class 11 // (i.e. each node of the list must contain a next and previous field for the 12 // list. 13 // 14 // The ilist_traits trait class is used to gain access to the next and previous 15 // fields of the node type that the list is instantiated with. If it is not 16 // specialized, the list defaults to using the getPrev(), getNext() method calls 17 // to get the next and previous pointers. 18 // 19 // The ilist class itself, should be a plug in replacement for list, assuming 20 // that the nodes contain next/prev pointers. This list replacement does not 21 // provide a constant time size() method, so be careful to use empty() when you 22 // really want to know if it's empty. 23 // 24 // The ilist class is implemented by allocating a 'tail' node when the list is 25 // created (using ilist_traits<>::createSentinel()). This tail node is 26 // absolutely required because the user must be able to compute end()-1. Because 27 // of this, users of the direct next/prev links will see an extra link on the 28 // end of the list, which should be ignored. 29 // 30 // Requirements for a user of this list: 31 // 32 // 1. The user must provide {g|s}et{Next|Prev} methods, or specialize 33 // ilist_traits to provide an alternate way of getting and setting next and 34 // prev links. 35 // 36 //===----------------------------------------------------------------------===// 37 38 #ifndef LLVM_ADT_ILIST_H 39 #define LLVM_ADT_ILIST_H 40 41 #include <algorithm> 42 #include <cassert> 43 #include <cstddef> 44 #include <iterator> 45 46 namespace llvm { 47 48 template<typename NodeTy, typename Traits> class iplist; 49 template<typename NodeTy> class ilist_iterator; 50 51 /// ilist_nextprev_traits - A fragment for template traits for intrusive list 52 /// that provides default next/prev implementations for common operations. 53 /// 54 template<typename NodeTy> 55 struct ilist_nextprev_traits { getPrevilist_nextprev_traits56 static NodeTy *getPrev(NodeTy *N) { return N->getPrev(); } getNextilist_nextprev_traits57 static NodeTy *getNext(NodeTy *N) { return N->getNext(); } getPrevilist_nextprev_traits58 static const NodeTy *getPrev(const NodeTy *N) { return N->getPrev(); } getNextilist_nextprev_traits59 static const NodeTy *getNext(const NodeTy *N) { return N->getNext(); } 60 setPrevilist_nextprev_traits61 static void setPrev(NodeTy *N, NodeTy *Prev) { N->setPrev(Prev); } setNextilist_nextprev_traits62 static void setNext(NodeTy *N, NodeTy *Next) { N->setNext(Next); } 63 }; 64 65 template<typename NodeTy> 66 struct ilist_traits; 67 68 /// ilist_sentinel_traits - A fragment for template traits for intrusive list 69 /// that provides default sentinel implementations for common operations. 70 /// 71 /// ilist_sentinel_traits implements a lazy dynamic sentinel allocation 72 /// strategy. The sentinel is stored in the prev field of ilist's Head. 73 /// 74 template<typename NodeTy> 75 struct ilist_sentinel_traits { 76 /// createSentinel - create the dynamic sentinel createSentinelilist_sentinel_traits77 static NodeTy *createSentinel() { return new NodeTy(); } 78 79 /// destroySentinel - deallocate the dynamic sentinel destroySentinelilist_sentinel_traits80 static void destroySentinel(NodeTy *N) { delete N; } 81 82 /// provideInitialHead - when constructing an ilist, provide a starting 83 /// value for its Head 84 /// @return null node to indicate that it needs to be allocated later provideInitialHeadilist_sentinel_traits85 static NodeTy *provideInitialHead() { return 0; } 86 87 /// ensureHead - make sure that Head is either already 88 /// initialized or assigned a fresh sentinel 89 /// @return the sentinel ensureHeadilist_sentinel_traits90 static NodeTy *ensureHead(NodeTy *&Head) { 91 if (!Head) { 92 Head = ilist_traits<NodeTy>::createSentinel(); 93 ilist_traits<NodeTy>::noteHead(Head, Head); 94 ilist_traits<NodeTy>::setNext(Head, 0); 95 return Head; 96 } 97 return ilist_traits<NodeTy>::getPrev(Head); 98 } 99 100 /// noteHead - stash the sentinel into its default location noteHeadilist_sentinel_traits101 static void noteHead(NodeTy *NewHead, NodeTy *Sentinel) { 102 ilist_traits<NodeTy>::setPrev(NewHead, Sentinel); 103 } 104 }; 105 106 /// ilist_node_traits - A fragment for template traits for intrusive list 107 /// that provides default node related operations. 108 /// 109 template<typename NodeTy> 110 struct ilist_node_traits { createNodeilist_node_traits111 static NodeTy *createNode(const NodeTy &V) { return new NodeTy(V); } deleteNodeilist_node_traits112 static void deleteNode(NodeTy *V) { delete V; } 113 addNodeToListilist_node_traits114 void addNodeToList(NodeTy *) {} removeNodeFromListilist_node_traits115 void removeNodeFromList(NodeTy *) {} transferNodesFromListilist_node_traits116 void transferNodesFromList(ilist_node_traits & /*SrcTraits*/, 117 ilist_iterator<NodeTy> /*first*/, 118 ilist_iterator<NodeTy> /*last*/) {} 119 }; 120 121 /// ilist_default_traits - Default template traits for intrusive list. 122 /// By inheriting from this, you can easily use default implementations 123 /// for all common operations. 124 /// 125 template<typename NodeTy> 126 struct ilist_default_traits : public ilist_nextprev_traits<NodeTy>, 127 public ilist_sentinel_traits<NodeTy>, 128 public ilist_node_traits<NodeTy> { 129 }; 130 131 // Template traits for intrusive list. By specializing this template class, you 132 // can change what next/prev fields are used to store the links... 133 template<typename NodeTy> 134 struct ilist_traits : public ilist_default_traits<NodeTy> {}; 135 136 // Const traits are the same as nonconst traits... 137 template<typename Ty> 138 struct ilist_traits<const Ty> : public ilist_traits<Ty> {}; 139 140 //===----------------------------------------------------------------------===// 141 // ilist_iterator<Node> - Iterator for intrusive list. 142 // 143 template<typename NodeTy> 144 class ilist_iterator 145 : public std::iterator<std::bidirectional_iterator_tag, NodeTy, ptrdiff_t> { 146 147 public: 148 typedef ilist_traits<NodeTy> Traits; 149 typedef std::iterator<std::bidirectional_iterator_tag, 150 NodeTy, ptrdiff_t> super; 151 152 typedef typename super::value_type value_type; 153 typedef typename super::difference_type difference_type; 154 typedef typename super::pointer pointer; 155 typedef typename super::reference reference; 156 private: 157 pointer NodePtr; 158 159 // ilist_iterator is not a random-access iterator, but it has an 160 // implicit conversion to pointer-type, which is. Declare (but 161 // don't define) these functions as private to help catch 162 // accidental misuse. 163 void operator[](difference_type) const; 164 void operator+(difference_type) const; 165 void operator-(difference_type) const; 166 void operator+=(difference_type) const; 167 void operator-=(difference_type) const; 168 template<class T> void operator<(T) const; 169 template<class T> void operator<=(T) const; 170 template<class T> void operator>(T) const; 171 template<class T> void operator>=(T) const; 172 template<class T> void operator-(T) const; 173 public: 174 175 ilist_iterator(pointer NP) : NodePtr(NP) {} 176 ilist_iterator(reference NR) : NodePtr(&NR) {} 177 ilist_iterator() : NodePtr(0) {} 178 179 // This is templated so that we can allow constructing a const iterator from 180 // a nonconst iterator... 181 template<class node_ty> 182 ilist_iterator(const ilist_iterator<node_ty> &RHS) 183 : NodePtr(RHS.getNodePtrUnchecked()) {} 184 185 // This is templated so that we can allow assigning to a const iterator from 186 // a nonconst iterator... 187 template<class node_ty> 188 const ilist_iterator &operator=(const ilist_iterator<node_ty> &RHS) { 189 NodePtr = RHS.getNodePtrUnchecked(); 190 return *this; 191 } 192 193 // Accessors... 194 operator pointer() const { 195 return NodePtr; 196 } 197 198 reference operator*() const { 199 return *NodePtr; 200 } 201 pointer operator->() const { return &operator*(); } 202 203 // Comparison operators 204 bool operator==(const ilist_iterator &RHS) const { 205 return NodePtr == RHS.NodePtr; 206 } 207 bool operator!=(const ilist_iterator &RHS) const { 208 return NodePtr != RHS.NodePtr; 209 } 210 211 // Increment and decrement operators... 212 ilist_iterator &operator--() { // predecrement - Back up 213 NodePtr = Traits::getPrev(NodePtr); 214 assert(NodePtr && "--'d off the beginning of an ilist!"); 215 return *this; 216 } 217 ilist_iterator &operator++() { // preincrement - Advance 218 NodePtr = Traits::getNext(NodePtr); 219 return *this; 220 } 221 ilist_iterator operator--(int) { // postdecrement operators... 222 ilist_iterator tmp = *this; 223 --*this; 224 return tmp; 225 } 226 ilist_iterator operator++(int) { // postincrement operators... 227 ilist_iterator tmp = *this; 228 ++*this; 229 return tmp; 230 } 231 232 // Internal interface, do not use... 233 pointer getNodePtrUnchecked() const { return NodePtr; } 234 }; 235 236 // do not implement. this is to catch errors when people try to use 237 // them as random access iterators 238 template<typename T> 239 void operator-(int, ilist_iterator<T>); 240 template<typename T> 241 void operator-(ilist_iterator<T>,int); 242 243 template<typename T> 244 void operator+(int, ilist_iterator<T>); 245 template<typename T> 246 void operator+(ilist_iterator<T>,int); 247 248 // operator!=/operator== - Allow mixed comparisons without dereferencing 249 // the iterator, which could very likely be pointing to end(). 250 template<typename T> 251 bool operator!=(const T* LHS, const ilist_iterator<const T> &RHS) { 252 return LHS != RHS.getNodePtrUnchecked(); 253 } 254 template<typename T> 255 bool operator==(const T* LHS, const ilist_iterator<const T> &RHS) { 256 return LHS == RHS.getNodePtrUnchecked(); 257 } 258 template<typename T> 259 bool operator!=(T* LHS, const ilist_iterator<T> &RHS) { 260 return LHS != RHS.getNodePtrUnchecked(); 261 } 262 template<typename T> 263 bool operator==(T* LHS, const ilist_iterator<T> &RHS) { 264 return LHS == RHS.getNodePtrUnchecked(); 265 } 266 267 268 // Allow ilist_iterators to convert into pointers to a node automatically when 269 // used by the dyn_cast, cast, isa mechanisms... 270 271 template<typename From> struct simplify_type; 272 273 template<typename NodeTy> struct simplify_type<ilist_iterator<NodeTy> > { 274 typedef NodeTy* SimpleType; 275 276 static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) { 277 return &*Node; 278 } 279 }; 280 template<typename NodeTy> struct simplify_type<const ilist_iterator<NodeTy> > { 281 typedef NodeTy* SimpleType; 282 283 static SimpleType getSimplifiedValue(const ilist_iterator<NodeTy> &Node) { 284 return &*Node; 285 } 286 }; 287 288 289 //===----------------------------------------------------------------------===// 290 // 291 /// iplist - The subset of list functionality that can safely be used on nodes 292 /// of polymorphic types, i.e. a heterogeneous list with a common base class that 293 /// holds the next/prev pointers. The only state of the list itself is a single 294 /// pointer to the head of the list. 295 /// 296 /// This list can be in one of three interesting states: 297 /// 1. The list may be completely unconstructed. In this case, the head 298 /// pointer is null. When in this form, any query for an iterator (e.g. 299 /// begin() or end()) causes the list to transparently change to state #2. 300 /// 2. The list may be empty, but contain a sentinel for the end iterator. This 301 /// sentinel is created by the Traits::createSentinel method and is a link 302 /// in the list. When the list is empty, the pointer in the iplist points 303 /// to the sentinel. Once the sentinel is constructed, it 304 /// is not destroyed until the list is. 305 /// 3. The list may contain actual objects in it, which are stored as a doubly 306 /// linked list of nodes. One invariant of the list is that the predecessor 307 /// of the first node in the list always points to the last node in the list, 308 /// and the successor pointer for the sentinel (which always stays at the 309 /// end of the list) is always null. 310 /// 311 template<typename NodeTy, typename Traits=ilist_traits<NodeTy> > 312 class iplist : public Traits { 313 mutable NodeTy *Head; 314 315 // Use the prev node pointer of 'head' as the tail pointer. This is really a 316 // circularly linked list where we snip the 'next' link from the sentinel node 317 // back to the first node in the list (to preserve assertions about going off 318 // the end of the list). 319 NodeTy *getTail() { return this->ensureHead(Head); } 320 const NodeTy *getTail() const { return this->ensureHead(Head); } 321 void setTail(NodeTy *N) const { this->noteHead(Head, N); } 322 323 /// CreateLazySentinel - This method verifies whether the sentinel for the 324 /// list has been created and lazily makes it if not. 325 void CreateLazySentinel() const { 326 this->ensureHead(Head); 327 } 328 329 static bool op_less(NodeTy &L, NodeTy &R) { return L < R; } 330 static bool op_equal(NodeTy &L, NodeTy &R) { return L == R; } 331 332 // No fundamental reason why iplist can't be copyable, but the default 333 // copy/copy-assign won't do. 334 iplist(const iplist &); // do not implement 335 void operator=(const iplist &); // do not implement 336 337 public: 338 typedef NodeTy *pointer; 339 typedef const NodeTy *const_pointer; 340 typedef NodeTy &reference; 341 typedef const NodeTy &const_reference; 342 typedef NodeTy value_type; 343 typedef ilist_iterator<NodeTy> iterator; 344 typedef ilist_iterator<const NodeTy> const_iterator; 345 typedef size_t size_type; 346 typedef ptrdiff_t difference_type; 347 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 348 typedef std::reverse_iterator<iterator> reverse_iterator; 349 350 iplist() : Head(this->provideInitialHead()) {} 351 ~iplist() { 352 if (!Head) return; 353 clear(); 354 Traits::destroySentinel(getTail()); 355 } 356 357 // Iterator creation methods. 358 iterator begin() { 359 CreateLazySentinel(); 360 return iterator(Head); 361 } 362 const_iterator begin() const { 363 CreateLazySentinel(); 364 return const_iterator(Head); 365 } 366 iterator end() { 367 CreateLazySentinel(); 368 return iterator(getTail()); 369 } 370 const_iterator end() const { 371 CreateLazySentinel(); 372 return const_iterator(getTail()); 373 } 374 375 // reverse iterator creation methods. 376 reverse_iterator rbegin() { return reverse_iterator(end()); } 377 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } 378 reverse_iterator rend() { return reverse_iterator(begin()); } 379 const_reverse_iterator rend() const { return const_reverse_iterator(begin());} 380 381 382 // Miscellaneous inspection routines. 383 size_type max_size() const { return size_type(-1); } 384 bool empty() const { return Head == 0 || Head == getTail(); } 385 386 // Front and back accessor functions... 387 reference front() { 388 assert(!empty() && "Called front() on empty list!"); 389 return *Head; 390 } 391 const_reference front() const { 392 assert(!empty() && "Called front() on empty list!"); 393 return *Head; 394 } 395 reference back() { 396 assert(!empty() && "Called back() on empty list!"); 397 return *this->getPrev(getTail()); 398 } 399 const_reference back() const { 400 assert(!empty() && "Called back() on empty list!"); 401 return *this->getPrev(getTail()); 402 } 403 404 void swap(iplist &RHS) { 405 assert(0 && "Swap does not use list traits callback correctly yet!"); 406 std::swap(Head, RHS.Head); 407 } 408 409 iterator insert(iterator where, NodeTy *New) { 410 NodeTy *CurNode = where.getNodePtrUnchecked(); 411 NodeTy *PrevNode = this->getPrev(CurNode); 412 this->setNext(New, CurNode); 413 this->setPrev(New, PrevNode); 414 415 if (CurNode != Head) // Is PrevNode off the beginning of the list? 416 this->setNext(PrevNode, New); 417 else 418 Head = New; 419 this->setPrev(CurNode, New); 420 421 this->addNodeToList(New); // Notify traits that we added a node... 422 return New; 423 } 424 425 iterator insertAfter(iterator where, NodeTy *New) { 426 if (empty()) 427 return insert(begin(), New); 428 else 429 return insert(++where, New); 430 } 431 432 NodeTy *remove(iterator &IT) { 433 assert(IT != end() && "Cannot remove end of list!"); 434 NodeTy *Node = &*IT; 435 NodeTy *NextNode = this->getNext(Node); 436 NodeTy *PrevNode = this->getPrev(Node); 437 438 if (Node != Head) // Is PrevNode off the beginning of the list? 439 this->setNext(PrevNode, NextNode); 440 else 441 Head = NextNode; 442 this->setPrev(NextNode, PrevNode); 443 IT = NextNode; 444 this->removeNodeFromList(Node); // Notify traits that we removed a node... 445 446 // Set the next/prev pointers of the current node to null. This isn't 447 // strictly required, but this catches errors where a node is removed from 448 // an ilist (and potentially deleted) with iterators still pointing at it. 449 // When those iterators are incremented or decremented, they will assert on 450 // the null next/prev pointer instead of "usually working". 451 this->setNext(Node, 0); 452 this->setPrev(Node, 0); 453 return Node; 454 } 455 456 NodeTy *remove(const iterator &IT) { 457 iterator MutIt = IT; 458 return remove(MutIt); 459 } 460 461 // erase - remove a node from the controlled sequence... and delete it. 462 iterator erase(iterator where) { 463 this->deleteNode(remove(where)); 464 return where; 465 } 466 467 468 private: 469 // transfer - The heart of the splice function. Move linked list nodes from 470 // [first, last) into position. 471 // 472 void transfer(iterator position, iplist &L2, iterator first, iterator last) { 473 assert(first != last && "Should be checked by callers"); 474 475 if (position != last) { 476 // Note: we have to be careful about the case when we move the first node 477 // in the list. This node is the list sentinel node and we can't move it. 478 NodeTy *ThisSentinel = getTail(); 479 setTail(0); 480 NodeTy *L2Sentinel = L2.getTail(); 481 L2.setTail(0); 482 483 // Remove [first, last) from its old position. 484 NodeTy *First = &*first, *Prev = this->getPrev(First); 485 NodeTy *Next = last.getNodePtrUnchecked(), *Last = this->getPrev(Next); 486 if (Prev) 487 this->setNext(Prev, Next); 488 else 489 L2.Head = Next; 490 this->setPrev(Next, Prev); 491 492 // Splice [first, last) into its new position. 493 NodeTy *PosNext = position.getNodePtrUnchecked(); 494 NodeTy *PosPrev = this->getPrev(PosNext); 495 496 // Fix head of list... 497 if (PosPrev) 498 this->setNext(PosPrev, First); 499 else 500 Head = First; 501 this->setPrev(First, PosPrev); 502 503 // Fix end of list... 504 this->setNext(Last, PosNext); 505 this->setPrev(PosNext, Last); 506 507 this->transferNodesFromList(L2, First, PosNext); 508 509 // Now that everything is set, restore the pointers to the list sentinels. 510 L2.setTail(L2Sentinel); 511 setTail(ThisSentinel); 512 } 513 } 514 515 public: 516 517 //===----------------------------------------------------------------------=== 518 // Functionality derived from other functions defined above... 519 // 520 521 size_type size() const { 522 if (Head == 0) return 0; // Don't require construction of sentinel if empty. 523 return std::distance(begin(), end()); 524 } 525 526 iterator erase(iterator first, iterator last) { 527 while (first != last) 528 first = erase(first); 529 return last; 530 } 531 532 void clear() { if (Head) erase(begin(), end()); } 533 534 // Front and back inserters... 535 void push_front(NodeTy *val) { insert(begin(), val); } 536 void push_back(NodeTy *val) { insert(end(), val); } 537 void pop_front() { 538 assert(!empty() && "pop_front() on empty list!"); 539 erase(begin()); 540 } 541 void pop_back() { 542 assert(!empty() && "pop_back() on empty list!"); 543 iterator t = end(); erase(--t); 544 } 545 546 // Special forms of insert... 547 template<class InIt> void insert(iterator where, InIt first, InIt last) { 548 for (; first != last; ++first) insert(where, *first); 549 } 550 551 // Splice members - defined in terms of transfer... 552 void splice(iterator where, iplist &L2) { 553 if (!L2.empty()) 554 transfer(where, L2, L2.begin(), L2.end()); 555 } 556 void splice(iterator where, iplist &L2, iterator first) { 557 iterator last = first; ++last; 558 if (where == first || where == last) return; // No change 559 transfer(where, L2, first, last); 560 } 561 void splice(iterator where, iplist &L2, iterator first, iterator last) { 562 if (first != last) transfer(where, L2, first, last); 563 } 564 565 566 567 //===----------------------------------------------------------------------=== 568 // High-Level Functionality that shouldn't really be here, but is part of list 569 // 570 571 // These two functions are actually called remove/remove_if in list<>, but 572 // they actually do the job of erase, rename them accordingly. 573 // 574 void erase(const NodeTy &val) { 575 for (iterator I = begin(), E = end(); I != E; ) { 576 iterator next = I; ++next; 577 if (*I == val) erase(I); 578 I = next; 579 } 580 } 581 template<class Pr1> void erase_if(Pr1 pred) { 582 for (iterator I = begin(), E = end(); I != E; ) { 583 iterator next = I; ++next; 584 if (pred(*I)) erase(I); 585 I = next; 586 } 587 } 588 589 template<class Pr2> void unique(Pr2 pred) { 590 if (empty()) return; 591 for (iterator I = begin(), E = end(), Next = begin(); ++Next != E;) { 592 if (pred(*I)) 593 erase(Next); 594 else 595 I = Next; 596 Next = I; 597 } 598 } 599 void unique() { unique(op_equal); } 600 601 template<class Pr3> void merge(iplist &right, Pr3 pred) { 602 iterator first1 = begin(), last1 = end(); 603 iterator first2 = right.begin(), last2 = right.end(); 604 while (first1 != last1 && first2 != last2) 605 if (pred(*first2, *first1)) { 606 iterator next = first2; 607 transfer(first1, right, first2, ++next); 608 first2 = next; 609 } else { 610 ++first1; 611 } 612 if (first2 != last2) transfer(last1, right, first2, last2); 613 } 614 void merge(iplist &right) { return merge(right, op_less); } 615 616 template<class Pr3> void sort(Pr3 pred); 617 void sort() { sort(op_less); } 618 }; 619 620 621 template<typename NodeTy> 622 struct ilist : public iplist<NodeTy> { 623 typedef typename iplist<NodeTy>::size_type size_type; 624 typedef typename iplist<NodeTy>::iterator iterator; 625 626 ilist() {} 627 ilist(const ilist &right) { 628 insert(this->begin(), right.begin(), right.end()); 629 } 630 explicit ilist(size_type count) { 631 insert(this->begin(), count, NodeTy()); 632 } 633 ilist(size_type count, const NodeTy &val) { 634 insert(this->begin(), count, val); 635 } 636 template<class InIt> ilist(InIt first, InIt last) { 637 insert(this->begin(), first, last); 638 } 639 640 // bring hidden functions into scope 641 using iplist<NodeTy>::insert; 642 using iplist<NodeTy>::push_front; 643 using iplist<NodeTy>::push_back; 644 645 // Main implementation here - Insert for a node passed by value... 646 iterator insert(iterator where, const NodeTy &val) { 647 return insert(where, this->createNode(val)); 648 } 649 650 651 // Front and back inserters... 652 void push_front(const NodeTy &val) { insert(this->begin(), val); } 653 void push_back(const NodeTy &val) { insert(this->end(), val); } 654 655 // Special forms of insert... 656 template<class InIt> void insert(iterator where, InIt first, InIt last) { 657 for (; first != last; ++first) insert(where, *first); 658 } 659 void insert(iterator where, size_type count, const NodeTy &val) { 660 for (; count != 0; --count) insert(where, val); 661 } 662 663 // Assign special forms... 664 void assign(size_type count, const NodeTy &val) { 665 iterator I = this->begin(); 666 for (; I != this->end() && count != 0; ++I, --count) 667 *I = val; 668 if (count != 0) 669 insert(this->end(), val, val); 670 else 671 erase(I, this->end()); 672 } 673 template<class InIt> void assign(InIt first1, InIt last1) { 674 iterator first2 = this->begin(), last2 = this->end(); 675 for ( ; first1 != last1 && first2 != last2; ++first1, ++first2) 676 *first1 = *first2; 677 if (first2 == last2) 678 erase(first1, last1); 679 else 680 insert(last1, first2, last2); 681 } 682 683 684 // Resize members... 685 void resize(size_type newsize, NodeTy val) { 686 iterator i = this->begin(); 687 size_type len = 0; 688 for ( ; i != this->end() && len < newsize; ++i, ++len) /* empty*/ ; 689 690 if (len == newsize) 691 erase(i, this->end()); 692 else // i == end() 693 insert(this->end(), newsize - len, val); 694 } 695 void resize(size_type newsize) { resize(newsize, NodeTy()); } 696 }; 697 698 } // End llvm namespace 699 700 namespace std { 701 // Ensure that swap uses the fast list swap... 702 template<class Ty> 703 void swap(llvm::iplist<Ty> &Left, llvm::iplist<Ty> &Right) { 704 Left.swap(Right); 705 } 706 } // End 'std' extensions... 707 708 #endif // LLVM_ADT_ILIST_H 709