1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an iterator that enumerates the intervals in a control flow
11 // graph of some sort. This iterator is parametric, allowing iterator over the
12 // following types of graphs:
13 //
14 // 1. A Function* object, composed of BasicBlock nodes.
15 // 2. An IntervalPartition& object, composed of Interval nodes.
16 //
17 // This iterator is defined to walk the control flow graph, returning intervals
18 // in depth first order. These intervals are completely filled in except for
19 // the predecessor fields (the successor information is filled in however).
20 //
21 // By default, the intervals created by this iterator are deleted after they
22 // are no longer any use to the iterator. This behavior can be changed by
23 // passing a false value into the intervals_begin() function. This causes the
24 // IOwnMem member to be set, and the intervals to not be deleted.
25 //
26 // It is only safe to use this if all of the intervals are deleted by the caller
27 // and all of the intervals are processed. However, the user of the iterator is
28 // not allowed to modify or delete the intervals until after the iterator has
29 // been used completely. The IntervalPartition class uses this functionality.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #ifndef LLVM_INTERVAL_ITERATOR_H
34 #define LLVM_INTERVAL_ITERATOR_H
35
36 #include "llvm/Analysis/IntervalPartition.h"
37 #include "llvm/Function.h"
38 #include "llvm/Support/CFG.h"
39 #include <algorithm>
40 #include <set>
41 #include <vector>
42
43 namespace llvm {
44
45 // getNodeHeader - Given a source graph node and the source graph, return the
46 // BasicBlock that is the header node. This is the opposite of
47 // getSourceGraphNode.
48 //
getNodeHeader(BasicBlock * BB)49 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
getNodeHeader(Interval * I)50 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
51
52 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
53 // source graph node that corresponds to the BasicBlock. This is the opposite
54 // of getNodeHeader.
55 //
getSourceGraphNode(Function *,BasicBlock * BB)56 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
57 return BB;
58 }
getSourceGraphNode(IntervalPartition * IP,BasicBlock * BB)59 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
60 return IP->getBlockInterval(BB);
61 }
62
63 // addNodeToInterval - This method exists to assist the generic ProcessNode
64 // with the task of adding a node to the new interval, depending on the
65 // type of the source node. In the case of a CFG source graph (BasicBlock
66 // case), the BasicBlock itself is added to the interval.
67 //
addNodeToInterval(Interval * Int,BasicBlock * BB)68 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
69 Int->Nodes.push_back(BB);
70 }
71
72 // addNodeToInterval - This method exists to assist the generic ProcessNode
73 // with the task of adding a node to the new interval, depending on the
74 // type of the source node. In the case of a CFG source graph (BasicBlock
75 // case), the BasicBlock itself is added to the interval. In the case of
76 // an IntervalPartition source graph (Interval case), all of the member
77 // BasicBlocks are added to the interval.
78 //
addNodeToInterval(Interval * Int,Interval * I)79 inline void addNodeToInterval(Interval *Int, Interval *I) {
80 // Add all of the nodes in I as new nodes in Int.
81 copy(I->Nodes.begin(), I->Nodes.end(), back_inserter(Int->Nodes));
82 }
83
84
85
86
87
88 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy*>,
89 class IGT = GraphTraits<Inverse<NodeTy*> > >
90 class IntervalIterator {
91 std::vector<std::pair<Interval*, typename Interval::succ_iterator> > IntStack;
92 std::set<BasicBlock*> Visited;
93 OrigContainer_t *OrigContainer;
94 bool IOwnMem; // If True, delete intervals when done with them
95 // See file header for conditions of use
96 public:
97 typedef IntervalIterator<NodeTy, OrigContainer_t> _Self;
98 typedef std::forward_iterator_tag iterator_category;
99
IntervalIterator()100 IntervalIterator() {} // End iterator, empty stack
IntervalIterator(Function * M,bool OwnMemory)101 IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
102 OrigContainer = M;
103 if (!ProcessInterval(&M->front())) {
104 assert(0 && "ProcessInterval should never fail for first interval!");
105 }
106 }
107
IntervalIterator(IntervalPartition & IP,bool OwnMemory)108 IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
109 OrigContainer = &IP;
110 if (!ProcessInterval(IP.getRootInterval())) {
111 assert(0 && "ProcessInterval should never fail for first interval!");
112 }
113 }
114
~IntervalIterator()115 inline ~IntervalIterator() {
116 if (IOwnMem)
117 while (!IntStack.empty()) {
118 delete operator*();
119 IntStack.pop_back();
120 }
121 }
122
123 inline bool operator==(const _Self& x) const { return IntStack == x.IntStack;}
124 inline bool operator!=(const _Self& x) const { return !operator==(x); }
125
126 inline const Interval *operator*() const { return IntStack.back().first; }
127 inline Interval *operator*() { return IntStack.back().first; }
128 inline const Interval *operator->() const { return operator*(); }
129 inline Interval *operator->() { return operator*(); }
130
131 _Self& operator++() { // Preincrement
132 assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
133 do {
134 // All of the intervals on the stack have been visited. Try visiting
135 // their successors now.
136 Interval::succ_iterator &SuccIt = IntStack.back().second,
137 EndIt = succ_end(IntStack.back().first);
138 while (SuccIt != EndIt) { // Loop over all interval succs
139 bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
140 ++SuccIt; // Increment iterator
141 if (Done) return *this; // Found a new interval! Use it!
142 }
143
144 // Free interval memory... if necessary
145 if (IOwnMem) delete IntStack.back().first;
146
147 // We ran out of successors for this interval... pop off the stack
148 IntStack.pop_back();
149 } while (!IntStack.empty());
150
151 return *this;
152 }
153 inline _Self operator++(int) { // Postincrement
154 _Self tmp = *this; ++*this; return tmp;
155 }
156
157 private:
158 // ProcessInterval - This method is used during the construction of the
159 // interval graph. It walks through the source graph, recursively creating
160 // an interval per invokation until the entire graph is covered. This uses
161 // the ProcessNode method to add all of the nodes to the interval.
162 //
163 // This method is templated because it may operate on two different source
164 // graphs: a basic block graph, or a preexisting interval graph.
165 //
ProcessInterval(NodeTy * Node)166 bool ProcessInterval(NodeTy *Node) {
167 BasicBlock *Header = getNodeHeader(Node);
168 if (Visited.count(Header)) return false;
169
170 Interval *Int = new Interval(Header);
171 Visited.insert(Header); // The header has now been visited!
172
173 // Check all of our successors to see if they are in the interval...
174 for (typename GT::ChildIteratorType I = GT::child_begin(Node),
175 E = GT::child_end(Node); I != E; ++I)
176 ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
177
178 IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
179 return true;
180 }
181
182 // ProcessNode - This method is called by ProcessInterval to add nodes to the
183 // interval being constructed, and it is also called recursively as it walks
184 // the source graph. A node is added to the current interval only if all of
185 // its predecessors are already in the graph. This also takes care of keeping
186 // the successor set of an interval up to date.
187 //
188 // This method is templated because it may operate on two different source
189 // graphs: a basic block graph, or a preexisting interval graph.
190 //
ProcessNode(Interval * Int,NodeTy * Node)191 void ProcessNode(Interval *Int, NodeTy *Node) {
192 assert(Int && "Null interval == bad!");
193 assert(Node && "Null Node == bad!");
194
195 BasicBlock *NodeHeader = getNodeHeader(Node);
196
197 if (Visited.count(NodeHeader)) { // Node already been visited?
198 if (Int->contains(NodeHeader)) { // Already in this interval...
199 return;
200 } else { // In other interval, add as successor
201 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
202 Int->Successors.push_back(NodeHeader);
203 }
204 } else { // Otherwise, not in interval yet
205 for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
206 E = IGT::child_end(Node); I != E; ++I) {
207 if (!Int->contains(*I)) { // If pred not in interval, we can't be
208 if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
209 Int->Successors.push_back(NodeHeader);
210 return; // See you later
211 }
212 }
213
214 // If we get here, then all of the predecessors of BB are in the interval
215 // already. In this case, we must add BB to the interval!
216 addNodeToInterval(Int, Node);
217 Visited.insert(NodeHeader); // The node has now been visited!
218
219 if (Int->isSuccessor(NodeHeader)) {
220 // If we were in the successor list from before... remove from succ list
221 Int->Successors.erase(std::remove(Int->Successors.begin(),
222 Int->Successors.end(), NodeHeader),
223 Int->Successors.end());
224 }
225
226 // Now that we have discovered that Node is in the interval, perhaps some
227 // of its successors are as well?
228 for (typename GT::ChildIteratorType It = GT::child_begin(Node),
229 End = GT::child_end(Node); It != End; ++It)
230 ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
231 }
232 }
233 };
234
235 typedef IntervalIterator<BasicBlock, Function> function_interval_iterator;
236 typedef IntervalIterator<Interval, IntervalPartition>
237 interval_part_interval_iterator;
238
239
240 inline function_interval_iterator intervals_begin(Function *F,
241 bool DeleteInts = true) {
242 return function_interval_iterator(F, DeleteInts);
243 }
intervals_end(Function *)244 inline function_interval_iterator intervals_end(Function *) {
245 return function_interval_iterator();
246 }
247
248 inline interval_part_interval_iterator
249 intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
250 return interval_part_interval_iterator(IP, DeleteIntervals);
251 }
252
intervals_end(IntervalPartition & IP)253 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
254 return interval_part_interval_iterator();
255 }
256
257 } // End llvm namespace
258
259 #endif
260