1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function. For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 // * whether there is a preheader for the loop
22 // * the number of back edges to the header
23 // * whether or not a particular block branches out of the loop
24 // * the successor blocks of the loop
25 // * the loop depth
26 // * the trip count
27 // * etc...
28 //
29 //===----------------------------------------------------------------------===//
30
31 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
32 #define LLVM_ANALYSIS_LOOP_INFO_H
33
34 #include "llvm/Pass.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/GraphTraits.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <map>
46
47 namespace llvm {
48
49 template<typename T>
RemoveFromVector(std::vector<T * > & V,T * N)50 static void RemoveFromVector(std::vector<T*> &V, T *N) {
51 typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
52 assert(I != V.end() && "N is not in this list!");
53 V.erase(I);
54 }
55
56 class DominatorTree;
57 class LoopInfo;
58 class Loop;
59 class PHINode;
60 template<class N, class M> class LoopInfoBase;
61 template<class N, class M> class LoopBase;
62
63 //===----------------------------------------------------------------------===//
64 /// LoopBase class - Instances of this class are used to represent loops that
65 /// are detected in the flow graph
66 ///
67 template<class BlockT, class LoopT>
68 class LoopBase {
69 LoopT *ParentLoop;
70 // SubLoops - Loops contained entirely within this one.
71 std::vector<LoopT *> SubLoops;
72
73 // Blocks - The list of blocks in this loop. First entry is the header node.
74 std::vector<BlockT*> Blocks;
75
76 // DO NOT IMPLEMENT
77 LoopBase(const LoopBase<BlockT, LoopT> &);
78 // DO NOT IMPLEMENT
79 const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
80 public:
81 /// Loop ctor - This creates an empty loop.
LoopBase()82 LoopBase() : ParentLoop(0) {}
~LoopBase()83 ~LoopBase() {
84 for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
85 delete SubLoops[i];
86 }
87
88 /// getLoopDepth - Return the nesting level of this loop. An outer-most
89 /// loop has depth 1, for consistency with loop depth values used for basic
90 /// blocks, where depth 0 is used for blocks not inside any loops.
getLoopDepth()91 unsigned getLoopDepth() const {
92 unsigned D = 1;
93 for (const LoopT *CurLoop = ParentLoop; CurLoop;
94 CurLoop = CurLoop->ParentLoop)
95 ++D;
96 return D;
97 }
getHeader()98 BlockT *getHeader() const { return Blocks.front(); }
getParentLoop()99 LoopT *getParentLoop() const { return ParentLoop; }
100
101 /// contains - Return true if the specified loop is contained within in
102 /// this loop.
103 ///
contains(const LoopT * L)104 bool contains(const LoopT *L) const {
105 if (L == this) return true;
106 if (L == 0) return false;
107 return contains(L->getParentLoop());
108 }
109
110 /// contains - Return true if the specified basic block is in this loop.
111 ///
contains(const BlockT * BB)112 bool contains(const BlockT *BB) const {
113 return std::find(block_begin(), block_end(), BB) != block_end();
114 }
115
116 /// contains - Return true if the specified instruction is in this loop.
117 ///
118 template<class InstT>
contains(const InstT * Inst)119 bool contains(const InstT *Inst) const {
120 return contains(Inst->getParent());
121 }
122
123 /// iterator/begin/end - Return the loops contained entirely within this loop.
124 ///
getSubLoops()125 const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
126 typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()127 iterator begin() const { return SubLoops.begin(); }
end()128 iterator end() const { return SubLoops.end(); }
empty()129 bool empty() const { return SubLoops.empty(); }
130
131 /// getBlocks - Get a list of the basic blocks which make up this loop.
132 ///
getBlocks()133 const std::vector<BlockT*> &getBlocks() const { return Blocks; }
134 typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_begin()135 block_iterator block_begin() const { return Blocks.begin(); }
block_end()136 block_iterator block_end() const { return Blocks.end(); }
137
138 /// getNumBlocks - Get the number of blocks in this loop in constant time.
getNumBlocks()139 unsigned getNumBlocks() const {
140 return Blocks.size();
141 }
142
143 /// isLoopExiting - True if terminator in the block can branch to another
144 /// block that is outside of the current loop.
145 ///
isLoopExiting(const BlockT * BB)146 bool isLoopExiting(const BlockT *BB) const {
147 typedef GraphTraits<BlockT*> BlockTraits;
148 for (typename BlockTraits::ChildIteratorType SI =
149 BlockTraits::child_begin(const_cast<BlockT*>(BB)),
150 SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
151 if (!contains(*SI))
152 return true;
153 }
154 return false;
155 }
156
157 /// getNumBackEdges - Calculate the number of back edges to the loop header
158 ///
getNumBackEdges()159 unsigned getNumBackEdges() const {
160 unsigned NumBackEdges = 0;
161 BlockT *H = getHeader();
162
163 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
164 for (typename InvBlockTraits::ChildIteratorType I =
165 InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
166 E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
167 if (contains(*I))
168 ++NumBackEdges;
169
170 return NumBackEdges;
171 }
172
173 //===--------------------------------------------------------------------===//
174 // APIs for simple analysis of the loop.
175 //
176 // Note that all of these methods can fail on general loops (ie, there may not
177 // be a preheader, etc). For best success, the loop simplification and
178 // induction variable canonicalization pass should be used to normalize loops
179 // for easy analysis. These methods assume canonical loops.
180
181 /// getExitingBlocks - Return all blocks inside the loop that have successors
182 /// outside of the loop. These are the blocks _inside of the current loop_
183 /// which branch out. The returned list is always unique.
184 ///
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)185 void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
186 // Sort the blocks vector so that we can use binary search to do quick
187 // lookups.
188 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
189 std::sort(LoopBBs.begin(), LoopBBs.end());
190
191 typedef GraphTraits<BlockT*> BlockTraits;
192 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
193 for (typename BlockTraits::ChildIteratorType I =
194 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
195 I != E; ++I)
196 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
197 // Not in current loop? It must be an exit block.
198 ExitingBlocks.push_back(*BI);
199 break;
200 }
201 }
202
203 /// getExitingBlock - If getExitingBlocks would return exactly one block,
204 /// return that block. Otherwise return null.
getExitingBlock()205 BlockT *getExitingBlock() const {
206 SmallVector<BlockT*, 8> ExitingBlocks;
207 getExitingBlocks(ExitingBlocks);
208 if (ExitingBlocks.size() == 1)
209 return ExitingBlocks[0];
210 return 0;
211 }
212
213 /// getExitBlocks - Return all of the successor blocks of this loop. These
214 /// are the blocks _outside of the current loop_ which are branched to.
215 ///
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)216 void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
217 // Sort the blocks vector so that we can use binary search to do quick
218 // lookups.
219 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
220 std::sort(LoopBBs.begin(), LoopBBs.end());
221
222 typedef GraphTraits<BlockT*> BlockTraits;
223 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
224 for (typename BlockTraits::ChildIteratorType I =
225 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
226 I != E; ++I)
227 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
228 // Not in current loop? It must be an exit block.
229 ExitBlocks.push_back(*I);
230 }
231
232 /// getExitBlock - If getExitBlocks would return exactly one block,
233 /// return that block. Otherwise return null.
getExitBlock()234 BlockT *getExitBlock() const {
235 SmallVector<BlockT*, 8> ExitBlocks;
236 getExitBlocks(ExitBlocks);
237 if (ExitBlocks.size() == 1)
238 return ExitBlocks[0];
239 return 0;
240 }
241
242 /// Edge type.
243 typedef std::pair<BlockT*, BlockT*> Edge;
244
245 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
246 template <typename EdgeT>
getExitEdges(SmallVectorImpl<EdgeT> & ExitEdges)247 void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
248 // Sort the blocks vector so that we can use binary search to do quick
249 // lookups.
250 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
251 array_pod_sort(LoopBBs.begin(), LoopBBs.end());
252
253 typedef GraphTraits<BlockT*> BlockTraits;
254 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
255 for (typename BlockTraits::ChildIteratorType I =
256 BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
257 I != E; ++I)
258 if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
259 // Not in current loop? It must be an exit block.
260 ExitEdges.push_back(EdgeT(*BI, *I));
261 }
262
263 /// getLoopPreheader - If there is a preheader for this loop, return it. A
264 /// loop has a preheader if there is only one edge to the header of the loop
265 /// from outside of the loop. If this is the case, the block branching to the
266 /// header of the loop is the preheader node.
267 ///
268 /// This method returns null if there is no preheader for the loop.
269 ///
getLoopPreheader()270 BlockT *getLoopPreheader() const {
271 // Keep track of nodes outside the loop branching to the header...
272 BlockT *Out = getLoopPredecessor();
273 if (!Out) return 0;
274
275 // Make sure there is only one exit out of the preheader.
276 typedef GraphTraits<BlockT*> BlockTraits;
277 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
278 ++SI;
279 if (SI != BlockTraits::child_end(Out))
280 return 0; // Multiple exits from the block, must not be a preheader.
281
282 // The predecessor has exactly one successor, so it is a preheader.
283 return Out;
284 }
285
286 /// getLoopPredecessor - If the given loop's header has exactly one unique
287 /// predecessor outside the loop, return it. Otherwise return null.
288 /// This is less strict that the loop "preheader" concept, which requires
289 /// the predecessor to have exactly one successor.
290 ///
getLoopPredecessor()291 BlockT *getLoopPredecessor() const {
292 // Keep track of nodes outside the loop branching to the header...
293 BlockT *Out = 0;
294
295 // Loop over the predecessors of the header node...
296 BlockT *Header = getHeader();
297 typedef GraphTraits<BlockT*> BlockTraits;
298 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299 for (typename InvBlockTraits::ChildIteratorType PI =
300 InvBlockTraits::child_begin(Header),
301 PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
302 typename InvBlockTraits::NodeType *N = *PI;
303 if (!contains(N)) { // If the block is not in the loop...
304 if (Out && Out != N)
305 return 0; // Multiple predecessors outside the loop
306 Out = N;
307 }
308 }
309
310 // Make sure there is only one exit out of the preheader.
311 assert(Out && "Header of loop has no predecessors from outside loop?");
312 return Out;
313 }
314
315 /// getLoopLatch - If there is a single latch block for this loop, return it.
316 /// A latch block is a block that contains a branch back to the header.
getLoopLatch()317 BlockT *getLoopLatch() const {
318 BlockT *Header = getHeader();
319 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
320 typename InvBlockTraits::ChildIteratorType PI =
321 InvBlockTraits::child_begin(Header);
322 typename InvBlockTraits::ChildIteratorType PE =
323 InvBlockTraits::child_end(Header);
324 BlockT *Latch = 0;
325 for (; PI != PE; ++PI) {
326 typename InvBlockTraits::NodeType *N = *PI;
327 if (contains(N)) {
328 if (Latch) return 0;
329 Latch = N;
330 }
331 }
332
333 return Latch;
334 }
335
336 //===--------------------------------------------------------------------===//
337 // APIs for updating loop information after changing the CFG
338 //
339
340 /// addBasicBlockToLoop - This method is used by other analyses to update loop
341 /// information. NewBB is set to be a new member of the current loop.
342 /// Because of this, it is added as a member of all parent loops, and is added
343 /// to the specified LoopInfo object as being in the current basic block. It
344 /// is not valid to replace the loop header with this method.
345 ///
346 void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
347
348 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
349 /// the OldChild entry in our children list with NewChild, and updates the
350 /// parent pointer of OldChild to be null and the NewChild to be this loop.
351 /// This updates the loop depth of the new child.
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)352 void replaceChildLoopWith(LoopT *OldChild,
353 LoopT *NewChild) {
354 assert(OldChild->ParentLoop == this && "This loop is already broken!");
355 assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
356 typename std::vector<LoopT *>::iterator I =
357 std::find(SubLoops.begin(), SubLoops.end(), OldChild);
358 assert(I != SubLoops.end() && "OldChild not in loop!");
359 *I = NewChild;
360 OldChild->ParentLoop = 0;
361 NewChild->ParentLoop = static_cast<LoopT *>(this);
362 }
363
364 /// addChildLoop - Add the specified loop to be a child of this loop. This
365 /// updates the loop depth of the new child.
366 ///
addChildLoop(LoopT * NewChild)367 void addChildLoop(LoopT *NewChild) {
368 assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
369 NewChild->ParentLoop = static_cast<LoopT *>(this);
370 SubLoops.push_back(NewChild);
371 }
372
373 /// removeChildLoop - This removes the specified child from being a subloop of
374 /// this loop. The loop is not deleted, as it will presumably be inserted
375 /// into another loop.
removeChildLoop(iterator I)376 LoopT *removeChildLoop(iterator I) {
377 assert(I != SubLoops.end() && "Cannot remove end iterator!");
378 LoopT *Child = *I;
379 assert(Child->ParentLoop == this && "Child is not a child of this loop!");
380 SubLoops.erase(SubLoops.begin()+(I-begin()));
381 Child->ParentLoop = 0;
382 return Child;
383 }
384
385 /// addBlockEntry - This adds a basic block directly to the basic block list.
386 /// This should only be used by transformations that create new loops. Other
387 /// transformations should use addBasicBlockToLoop.
addBlockEntry(BlockT * BB)388 void addBlockEntry(BlockT *BB) {
389 Blocks.push_back(BB);
390 }
391
392 /// moveToHeader - This method is used to move BB (which must be part of this
393 /// loop) to be the loop header of the loop (the block that dominates all
394 /// others).
moveToHeader(BlockT * BB)395 void moveToHeader(BlockT *BB) {
396 if (Blocks[0] == BB) return;
397 for (unsigned i = 0; ; ++i) {
398 assert(i != Blocks.size() && "Loop does not contain BB!");
399 if (Blocks[i] == BB) {
400 Blocks[i] = Blocks[0];
401 Blocks[0] = BB;
402 return;
403 }
404 }
405 }
406
407 /// removeBlockFromLoop - This removes the specified basic block from the
408 /// current loop, updating the Blocks as appropriate. This does not update
409 /// the mapping in the LoopInfo class.
removeBlockFromLoop(BlockT * BB)410 void removeBlockFromLoop(BlockT *BB) {
411 RemoveFromVector(Blocks, BB);
412 }
413
414 /// verifyLoop - Verify loop structure
verifyLoop()415 void verifyLoop() const {
416 #ifndef NDEBUG
417 assert(!Blocks.empty() && "Loop header is missing");
418
419 // Sort the blocks vector so that we can use binary search to do quick
420 // lookups.
421 SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
422 std::sort(LoopBBs.begin(), LoopBBs.end());
423
424 // Check the individual blocks.
425 for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
426 BlockT *BB = *I;
427 bool HasInsideLoopSuccs = false;
428 bool HasInsideLoopPreds = false;
429 SmallVector<BlockT *, 2> OutsideLoopPreds;
430
431 typedef GraphTraits<BlockT*> BlockTraits;
432 for (typename BlockTraits::ChildIteratorType SI =
433 BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
434 SI != SE; ++SI)
435 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
436 HasInsideLoopSuccs = true;
437 break;
438 }
439 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
440 for (typename InvBlockTraits::ChildIteratorType PI =
441 InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
442 PI != PE; ++PI) {
443 typename InvBlockTraits::NodeType *N = *PI;
444 if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
445 HasInsideLoopPreds = true;
446 else
447 OutsideLoopPreds.push_back(N);
448 }
449
450 if (BB == getHeader()) {
451 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
452 } else if (!OutsideLoopPreds.empty()) {
453 // A non-header loop shouldn't be reachable from outside the loop,
454 // though it is permitted if the predecessor is not itself actually
455 // reachable.
456 BlockT *EntryBB = BB->getParent()->begin();
457 for (df_iterator<BlockT *> NI = df_begin(EntryBB),
458 NE = df_end(EntryBB); NI != NE; ++NI)
459 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
460 assert(*NI != OutsideLoopPreds[i] &&
461 "Loop has multiple entry points!");
462 }
463 assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
464 assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
465 assert(BB != getHeader()->getParent()->begin() &&
466 "Loop contains function entry block!");
467 }
468
469 // Check the subloops.
470 for (iterator I = begin(), E = end(); I != E; ++I)
471 // Each block in each subloop should be contained within this loop.
472 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
473 BI != BE; ++BI) {
474 assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
475 "Loop does not contain all the blocks of a subloop!");
476 }
477
478 // Check the parent loop pointer.
479 if (ParentLoop) {
480 assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
481 ParentLoop->end() &&
482 "Loop is not a subloop of its parent!");
483 }
484 #endif
485 }
486
487 /// verifyLoop - Verify loop structure of this loop and all nested loops.
verifyLoopNest(DenseSet<const LoopT * > * Loops)488 void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
489 Loops->insert(static_cast<const LoopT *>(this));
490 // Verify this loop.
491 verifyLoop();
492 // Verify the subloops.
493 for (iterator I = begin(), E = end(); I != E; ++I)
494 (*I)->verifyLoopNest(Loops);
495 }
496
497 void print(raw_ostream &OS, unsigned Depth = 0) const {
498 OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
499 << " containing: ";
500
501 for (unsigned i = 0; i < getBlocks().size(); ++i) {
502 if (i) OS << ",";
503 BlockT *BB = getBlocks()[i];
504 WriteAsOperand(OS, BB, false);
505 if (BB == getHeader()) OS << "<header>";
506 if (BB == getLoopLatch()) OS << "<latch>";
507 if (isLoopExiting(BB)) OS << "<exiting>";
508 }
509 OS << "\n";
510
511 for (iterator I = begin(), E = end(); I != E; ++I)
512 (*I)->print(OS, Depth+2);
513 }
514
515 protected:
516 friend class LoopInfoBase<BlockT, LoopT>;
LoopBase(BlockT * BB)517 explicit LoopBase(BlockT *BB) : ParentLoop(0) {
518 Blocks.push_back(BB);
519 }
520 };
521
522 template<class BlockT, class LoopT>
523 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
524 Loop.print(OS);
525 return OS;
526 }
527
528 class Loop : public LoopBase<BasicBlock, Loop> {
529 public:
Loop()530 Loop() {}
531
532 /// isLoopInvariant - Return true if the specified value is loop invariant
533 ///
534 bool isLoopInvariant(Value *V) const;
535
536 /// hasLoopInvariantOperands - Return true if all the operands of the
537 /// specified instruction are loop invariant.
538 bool hasLoopInvariantOperands(Instruction *I) const;
539
540 /// makeLoopInvariant - If the given value is an instruction inside of the
541 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
542 /// Return true if the value after any hoisting is loop invariant. This
543 /// function can be used as a slightly more aggressive replacement for
544 /// isLoopInvariant.
545 ///
546 /// If InsertPt is specified, it is the point to hoist instructions to.
547 /// If null, the terminator of the loop preheader is used.
548 ///
549 bool makeLoopInvariant(Value *V, bool &Changed,
550 Instruction *InsertPt = 0) const;
551
552 /// makeLoopInvariant - If the given instruction is inside of the
553 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
554 /// Return true if the instruction after any hoisting is loop invariant. This
555 /// function can be used as a slightly more aggressive replacement for
556 /// isLoopInvariant.
557 ///
558 /// If InsertPt is specified, it is the point to hoist instructions to.
559 /// If null, the terminator of the loop preheader is used.
560 ///
561 bool makeLoopInvariant(Instruction *I, bool &Changed,
562 Instruction *InsertPt = 0) const;
563
564 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
565 /// induction variable: an integer recurrence that starts at 0 and increments
566 /// by one each time through the loop. If so, return the phi node that
567 /// corresponds to it.
568 ///
569 /// The IndVarSimplify pass transforms loops to have a canonical induction
570 /// variable.
571 ///
572 PHINode *getCanonicalInductionVariable() const;
573
574 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
575 /// times the loop will be executed. Note that this means that the backedge
576 /// of the loop executes N-1 times. If the trip-count cannot be determined,
577 /// this returns null.
578 ///
579 /// The IndVarSimplify pass transforms loops to have a form that this
580 /// function easily understands.
581 ///
582 Value *getTripCount() const;
583
584 /// getSmallConstantTripCount - Returns the trip count of this loop as a
585 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
586 /// of not constant. Will also return 0 if the trip count is very large
587 /// (>= 2^32)
588 ///
589 /// The IndVarSimplify pass transforms loops to have a form that this
590 /// function easily understands.
591 ///
592 unsigned getSmallConstantTripCount() const;
593
594 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
595 /// trip count of this loop as a normal unsigned value, if possible. This
596 /// means that the actual trip count is always a multiple of the returned
597 /// value (don't forget the trip count could very well be zero as well!).
598 ///
599 /// Returns 1 if the trip count is unknown or not guaranteed to be the
600 /// multiple of a constant (which is also the case if the trip count is simply
601 /// constant, use getSmallConstantTripCount for that case), Will also return 1
602 /// if the trip count is very large (>= 2^32).
603 unsigned getSmallConstantTripMultiple() const;
604
605 /// isLCSSAForm - Return true if the Loop is in LCSSA form
606 bool isLCSSAForm(DominatorTree &DT) const;
607
608 /// isLoopSimplifyForm - Return true if the Loop is in the form that
609 /// the LoopSimplify form transforms loops to, which is sometimes called
610 /// normal form.
611 bool isLoopSimplifyForm() const;
612
613 /// hasDedicatedExits - Return true if no exit block for the loop
614 /// has a predecessor that is outside the loop.
615 bool hasDedicatedExits() const;
616
617 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
618 /// These are the blocks _outside of the current loop_ which are branched to.
619 /// This assumes that loop exits are in canonical form.
620 ///
621 void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
622
623 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
624 /// block, return that block. Otherwise return null.
625 BasicBlock *getUniqueExitBlock() const;
626
627 void dump() const;
628
629 private:
630 friend class LoopInfoBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)631 explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
632 };
633
634 //===----------------------------------------------------------------------===//
635 /// LoopInfo - This class builds and contains all of the top level loop
636 /// structures in the specified function.
637 ///
638
639 template<class BlockT, class LoopT>
640 class LoopInfoBase {
641 // BBMap - Mapping of basic blocks to the inner most loop they occur in
642 DenseMap<BlockT *, LoopT *> BBMap;
643 std::vector<LoopT *> TopLevelLoops;
644 friend class LoopBase<BlockT, LoopT>;
645 friend class LoopInfo;
646
647 void operator=(const LoopInfoBase &); // do not implement
648 LoopInfoBase(const LoopInfo &); // do not implement
649 public:
LoopInfoBase()650 LoopInfoBase() { }
~LoopInfoBase()651 ~LoopInfoBase() { releaseMemory(); }
652
releaseMemory()653 void releaseMemory() {
654 for (typename std::vector<LoopT *>::iterator I =
655 TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
656 delete *I; // Delete all of the loops...
657
658 BBMap.clear(); // Reset internal state of analysis
659 TopLevelLoops.clear();
660 }
661
662 /// iterator/begin/end - The interface to the top-level loops in the current
663 /// function.
664 ///
665 typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()666 iterator begin() const { return TopLevelLoops.begin(); }
end()667 iterator end() const { return TopLevelLoops.end(); }
empty()668 bool empty() const { return TopLevelLoops.empty(); }
669
670 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
671 /// block is in no loop (for example the entry node), null is returned.
672 ///
getLoopFor(const BlockT * BB)673 LoopT *getLoopFor(const BlockT *BB) const {
674 typename DenseMap<BlockT *, LoopT *>::const_iterator I=
675 BBMap.find(const_cast<BlockT*>(BB));
676 return I != BBMap.end() ? I->second : 0;
677 }
678
679 /// operator[] - same as getLoopFor...
680 ///
681 const LoopT *operator[](const BlockT *BB) const {
682 return getLoopFor(BB);
683 }
684
685 /// getLoopDepth - Return the loop nesting level of the specified block. A
686 /// depth of 0 means the block is not inside any loop.
687 ///
getLoopDepth(const BlockT * BB)688 unsigned getLoopDepth(const BlockT *BB) const {
689 const LoopT *L = getLoopFor(BB);
690 return L ? L->getLoopDepth() : 0;
691 }
692
693 // isLoopHeader - True if the block is a loop header node
isLoopHeader(BlockT * BB)694 bool isLoopHeader(BlockT *BB) const {
695 const LoopT *L = getLoopFor(BB);
696 return L && L->getHeader() == BB;
697 }
698
699 /// removeLoop - This removes the specified top-level loop from this loop info
700 /// object. The loop is not deleted, as it will presumably be inserted into
701 /// another loop.
removeLoop(iterator I)702 LoopT *removeLoop(iterator I) {
703 assert(I != end() && "Cannot remove end iterator!");
704 LoopT *L = *I;
705 assert(L->getParentLoop() == 0 && "Not a top-level loop!");
706 TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
707 return L;
708 }
709
710 /// changeLoopFor - Change the top-level loop that contains BB to the
711 /// specified loop. This should be used by transformations that restructure
712 /// the loop hierarchy tree.
changeLoopFor(BlockT * BB,LoopT * L)713 void changeLoopFor(BlockT *BB, LoopT *L) {
714 if (!L) {
715 typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
716 if (I != BBMap.end())
717 BBMap.erase(I);
718 return;
719 }
720 BBMap[BB] = L;
721 }
722
723 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
724 /// list with the indicated loop.
changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)725 void changeTopLevelLoop(LoopT *OldLoop,
726 LoopT *NewLoop) {
727 typename std::vector<LoopT *>::iterator I =
728 std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
729 assert(I != TopLevelLoops.end() && "Old loop not at top level!");
730 *I = NewLoop;
731 assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
732 "Loops already embedded into a subloop!");
733 }
734
735 /// addTopLevelLoop - This adds the specified loop to the collection of
736 /// top-level loops.
addTopLevelLoop(LoopT * New)737 void addTopLevelLoop(LoopT *New) {
738 assert(New->getParentLoop() == 0 && "Loop already in subloop!");
739 TopLevelLoops.push_back(New);
740 }
741
742 /// removeBlock - This method completely removes BB from all data structures,
743 /// including all of the Loop objects it is nested in and our mapping from
744 /// BasicBlocks to loops.
removeBlock(BlockT * BB)745 void removeBlock(BlockT *BB) {
746 typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
747 if (I != BBMap.end()) {
748 for (LoopT *L = I->second; L; L = L->getParentLoop())
749 L->removeBlockFromLoop(BB);
750
751 BBMap.erase(I);
752 }
753 }
754
755 // Internals
756
isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)757 static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
758 const LoopT *ParentLoop) {
759 if (SubLoop == 0) return true;
760 if (SubLoop == ParentLoop) return false;
761 return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
762 }
763
Calculate(DominatorTreeBase<BlockT> & DT)764 void Calculate(DominatorTreeBase<BlockT> &DT) {
765 BlockT *RootNode = DT.getRootNode()->getBlock();
766
767 for (df_iterator<BlockT*> NI = df_begin(RootNode),
768 NE = df_end(RootNode); NI != NE; ++NI)
769 if (LoopT *L = ConsiderForLoop(*NI, DT))
770 TopLevelLoops.push_back(L);
771 }
772
ConsiderForLoop(BlockT * BB,DominatorTreeBase<BlockT> & DT)773 LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
774 if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
775
776 std::vector<BlockT *> TodoStack;
777
778 // Scan the predecessors of BB, checking to see if BB dominates any of
779 // them. This identifies backedges which target this node...
780 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
781 for (typename InvBlockTraits::ChildIteratorType I =
782 InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
783 I != E; ++I) {
784 typename InvBlockTraits::NodeType *N = *I;
785 if (DT.dominates(BB, N)) // If BB dominates its predecessor...
786 TodoStack.push_back(N);
787 }
788
789 if (TodoStack.empty()) return 0; // No backedges to this block...
790
791 // Create a new loop to represent this basic block...
792 LoopT *L = new LoopT(BB);
793 BBMap[BB] = L;
794
795 BlockT *EntryBlock = BB->getParent()->begin();
796
797 while (!TodoStack.empty()) { // Process all the nodes in the loop
798 BlockT *X = TodoStack.back();
799 TodoStack.pop_back();
800
801 if (!L->contains(X) && // As of yet unprocessed??
802 DT.dominates(EntryBlock, X)) { // X is reachable from entry block?
803 // Check to see if this block already belongs to a loop. If this occurs
804 // then we have a case where a loop that is supposed to be a child of
805 // the current loop was processed before the current loop. When this
806 // occurs, this child loop gets added to a part of the current loop,
807 // making it a sibling to the current loop. We have to reparent this
808 // loop.
809 if (LoopT *SubLoop =
810 const_cast<LoopT *>(getLoopFor(X)))
811 if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
812 // Remove the subloop from its current parent...
813 assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
814 LoopT *SLP = SubLoop->ParentLoop; // SubLoopParent
815 typename std::vector<LoopT *>::iterator I =
816 std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
817 assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
818 SLP->SubLoops.erase(I); // Remove from parent...
819
820 // Add the subloop to THIS loop...
821 SubLoop->ParentLoop = L;
822 L->SubLoops.push_back(SubLoop);
823 }
824
825 // Normal case, add the block to our loop...
826 L->Blocks.push_back(X);
827
828 typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
829
830 // Add all of the predecessors of X to the end of the work stack...
831 for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(X), PE = InvBlockTraits::child_end(X); PI != PE; ++PI) {
832 typename InvBlockTraits::NodeType *N = *PI;
833 TodoStack.push_back(N);
834 }
835 }
836 }
837
838 // If there are any loops nested within this loop, create them now!
839 for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
840 E = L->Blocks.end(); I != E; ++I)
841 if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
842 L->SubLoops.push_back(NewLoop);
843 NewLoop->ParentLoop = L;
844 }
845
846 // Add the basic blocks that comprise this loop to the BBMap so that this
847 // loop can be found for them.
848 //
849 for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
850 E = L->Blocks.end(); I != E; ++I)
851 BBMap.insert(std::make_pair(*I, L));
852
853 // Now that we have a list of all of the child loops of this loop, check to
854 // see if any of them should actually be nested inside of each other. We
855 // can accidentally pull loops our of their parents, so we must make sure to
856 // organize the loop nests correctly now.
857 {
858 std::map<BlockT *, LoopT *> ContainingLoops;
859 for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
860 LoopT *Child = L->SubLoops[i];
861 assert(Child->getParentLoop() == L && "Not proper child loop?");
862
863 if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
864 // If there is already a loop which contains this loop, move this loop
865 // into the containing loop.
866 MoveSiblingLoopInto(Child, ContainingLoop);
867 --i; // The loop got removed from the SubLoops list.
868 } else {
869 // This is currently considered to be a top-level loop. Check to see
870 // if any of the contained blocks are loop headers for subloops we
871 // have already processed.
872 for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
873 LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
874 if (BlockLoop == 0) { // Child block not processed yet...
875 BlockLoop = Child;
876 } else if (BlockLoop != Child) {
877 LoopT *SubLoop = BlockLoop;
878 // Reparent all of the blocks which used to belong to BlockLoops
879 for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
880 ContainingLoops[SubLoop->Blocks[j]] = Child;
881
882 // There is already a loop which contains this block, that means
883 // that we should reparent the loop which the block is currently
884 // considered to belong to to be a child of this loop.
885 MoveSiblingLoopInto(SubLoop, Child);
886 --i; // We just shrunk the SubLoops list.
887 }
888 }
889 }
890 }
891 }
892
893 return L;
894 }
895
896 /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
897 /// of the NewParent Loop, instead of being a sibling of it.
MoveSiblingLoopInto(LoopT * NewChild,LoopT * NewParent)898 void MoveSiblingLoopInto(LoopT *NewChild,
899 LoopT *NewParent) {
900 LoopT *OldParent = NewChild->getParentLoop();
901 assert(OldParent && OldParent == NewParent->getParentLoop() &&
902 NewChild != NewParent && "Not sibling loops!");
903
904 // Remove NewChild from being a child of OldParent
905 typename std::vector<LoopT *>::iterator I =
906 std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
907 NewChild);
908 assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
909 OldParent->SubLoops.erase(I); // Remove from parent's subloops list
910 NewChild->ParentLoop = 0;
911
912 InsertLoopInto(NewChild, NewParent);
913 }
914
915 /// InsertLoopInto - This inserts loop L into the specified parent loop. If
916 /// the parent loop contains a loop which should contain L, the loop gets
917 /// inserted into L instead.
InsertLoopInto(LoopT * L,LoopT * Parent)918 void InsertLoopInto(LoopT *L, LoopT *Parent) {
919 BlockT *LHeader = L->getHeader();
920 assert(Parent->contains(LHeader) &&
921 "This loop should not be inserted here!");
922
923 // Check to see if it belongs in a child loop...
924 for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
925 i != e; ++i)
926 if (Parent->SubLoops[i]->contains(LHeader)) {
927 InsertLoopInto(L, Parent->SubLoops[i]);
928 return;
929 }
930
931 // If not, insert it here!
932 Parent->SubLoops.push_back(L);
933 L->ParentLoop = Parent;
934 }
935
936 // Debugging
937
print(raw_ostream & OS)938 void print(raw_ostream &OS) const {
939 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
940 TopLevelLoops[i]->print(OS);
941 #if 0
942 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
943 E = BBMap.end(); I != E; ++I)
944 OS << "BB '" << I->first->getName() << "' level = "
945 << I->second->getLoopDepth() << "\n";
946 #endif
947 }
948 };
949
950 class LoopInfo : public FunctionPass {
951 LoopInfoBase<BasicBlock, Loop> LI;
952 friend class LoopBase<BasicBlock, Loop>;
953
954 void operator=(const LoopInfo &); // do not implement
955 LoopInfo(const LoopInfo &); // do not implement
956 public:
957 static char ID; // Pass identification, replacement for typeid
958
LoopInfo()959 LoopInfo() : FunctionPass(ID) {
960 initializeLoopInfoPass(*PassRegistry::getPassRegistry());
961 }
962
getBase()963 LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
964
965 /// iterator/begin/end - The interface to the top-level loops in the current
966 /// function.
967 ///
968 typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
begin()969 inline iterator begin() const { return LI.begin(); }
end()970 inline iterator end() const { return LI.end(); }
empty()971 bool empty() const { return LI.empty(); }
972
973 /// getLoopFor - Return the inner most loop that BB lives in. If a basic
974 /// block is in no loop (for example the entry node), null is returned.
975 ///
getLoopFor(const BasicBlock * BB)976 inline Loop *getLoopFor(const BasicBlock *BB) const {
977 return LI.getLoopFor(BB);
978 }
979
980 /// operator[] - same as getLoopFor...
981 ///
982 inline const Loop *operator[](const BasicBlock *BB) const {
983 return LI.getLoopFor(BB);
984 }
985
986 /// getLoopDepth - Return the loop nesting level of the specified block. A
987 /// depth of 0 means the block is not inside any loop.
988 ///
getLoopDepth(const BasicBlock * BB)989 inline unsigned getLoopDepth(const BasicBlock *BB) const {
990 return LI.getLoopDepth(BB);
991 }
992
993 // isLoopHeader - True if the block is a loop header node
isLoopHeader(BasicBlock * BB)994 inline bool isLoopHeader(BasicBlock *BB) const {
995 return LI.isLoopHeader(BB);
996 }
997
998 /// runOnFunction - Calculate the natural loop information.
999 ///
1000 virtual bool runOnFunction(Function &F);
1001
1002 virtual void verifyAnalysis() const;
1003
releaseMemory()1004 virtual void releaseMemory() { LI.releaseMemory(); }
1005
1006 virtual void print(raw_ostream &O, const Module* M = 0) const;
1007
1008 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1009
1010 /// removeLoop - This removes the specified top-level loop from this loop info
1011 /// object. The loop is not deleted, as it will presumably be inserted into
1012 /// another loop.
removeLoop(iterator I)1013 inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1014
1015 /// changeLoopFor - Change the top-level loop that contains BB to the
1016 /// specified loop. This should be used by transformations that restructure
1017 /// the loop hierarchy tree.
changeLoopFor(BasicBlock * BB,Loop * L)1018 inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1019 LI.changeLoopFor(BB, L);
1020 }
1021
1022 /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1023 /// list with the indicated loop.
changeTopLevelLoop(Loop * OldLoop,Loop * NewLoop)1024 inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1025 LI.changeTopLevelLoop(OldLoop, NewLoop);
1026 }
1027
1028 /// addTopLevelLoop - This adds the specified loop to the collection of
1029 /// top-level loops.
addTopLevelLoop(Loop * New)1030 inline void addTopLevelLoop(Loop *New) {
1031 LI.addTopLevelLoop(New);
1032 }
1033
1034 /// removeBlock - This method completely removes BB from all data structures,
1035 /// including all of the Loop objects it is nested in and our mapping from
1036 /// BasicBlocks to loops.
removeBlock(BasicBlock * BB)1037 void removeBlock(BasicBlock *BB) {
1038 LI.removeBlock(BB);
1039 }
1040
1041 /// updateUnloop - Update LoopInfo after removing the last backedge from a
1042 /// loop--now the "unloop". This updates the loop forest and parent loops for
1043 /// each block so that Unloop is no longer referenced, but the caller must
1044 /// actually delete the Unloop object.
1045 void updateUnloop(Loop *Unloop);
1046
1047 /// replacementPreservesLCSSAForm - Returns true if replacing From with To
1048 /// everywhere is guaranteed to preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)1049 bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1050 // Preserving LCSSA form is only problematic if the replacing value is an
1051 // instruction.
1052 Instruction *I = dyn_cast<Instruction>(To);
1053 if (!I) return true;
1054 // If both instructions are defined in the same basic block then replacement
1055 // cannot break LCSSA form.
1056 if (I->getParent() == From->getParent())
1057 return true;
1058 // If the instruction is not defined in a loop then it can safely replace
1059 // anything.
1060 Loop *ToLoop = getLoopFor(I->getParent());
1061 if (!ToLoop) return true;
1062 // If the replacing instruction is defined in the same loop as the original
1063 // instruction, or in a loop that contains it as an inner loop, then using
1064 // it as a replacement will not break LCSSA form.
1065 return ToLoop->contains(getLoopFor(From->getParent()));
1066 }
1067 };
1068
1069
1070 // Allow clients to walk the list of nested loops...
1071 template <> struct GraphTraits<const Loop*> {
1072 typedef const Loop NodeType;
1073 typedef LoopInfo::iterator ChildIteratorType;
1074
1075 static NodeType *getEntryNode(const Loop *L) { return L; }
1076 static inline ChildIteratorType child_begin(NodeType *N) {
1077 return N->begin();
1078 }
1079 static inline ChildIteratorType child_end(NodeType *N) {
1080 return N->end();
1081 }
1082 };
1083
1084 template <> struct GraphTraits<Loop*> {
1085 typedef Loop NodeType;
1086 typedef LoopInfo::iterator ChildIteratorType;
1087
1088 static NodeType *getEntryNode(Loop *L) { return L; }
1089 static inline ChildIteratorType child_begin(NodeType *N) {
1090 return N->begin();
1091 }
1092 static inline ChildIteratorType child_end(NodeType *N) {
1093 return N->end();
1094 }
1095 };
1096
1097 template<class BlockT, class LoopT>
1098 void
1099 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1100 LoopInfoBase<BlockT, LoopT> &LIB) {
1101 assert((Blocks.empty() || LIB[getHeader()] == this) &&
1102 "Incorrect LI specified for this loop!");
1103 assert(NewBB && "Cannot add a null basic block to the loop!");
1104 assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1105
1106 LoopT *L = static_cast<LoopT *>(this);
1107
1108 // Add the loop mapping to the LoopInfo object...
1109 LIB.BBMap[NewBB] = L;
1110
1111 // Add the basic block to this loop and all parent loops...
1112 while (L) {
1113 L->Blocks.push_back(NewBB);
1114 L = L->getParentLoop();
1115 }
1116 }
1117
1118 } // End llvm namespace
1119
1120 #endif
1121