1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function.  For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 //  * whether there is a preheader for the loop
22 //  * the number of back edges to the header
23 //  * whether or not a particular block branches out of the loop
24 //  * the successor blocks of the loop
25 //  * the loop depth
26 //  * the trip count
27 //  * etc...
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #ifndef LLVM_ANALYSIS_LOOP_INFO_H
32 #define LLVM_ANALYSIS_LOOP_INFO_H
33 
34 #include "llvm/Pass.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/DepthFirstIterator.h"
38 #include "llvm/ADT/GraphTraits.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Analysis/Dominators.h"
42 #include "llvm/Support/CFG.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <map>
46 
47 namespace llvm {
48 
49 template<typename T>
RemoveFromVector(std::vector<T * > & V,T * N)50 static void RemoveFromVector(std::vector<T*> &V, T *N) {
51   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
52   assert(I != V.end() && "N is not in this list!");
53   V.erase(I);
54 }
55 
56 class DominatorTree;
57 class LoopInfo;
58 class Loop;
59 class PHINode;
60 template<class N, class M> class LoopInfoBase;
61 template<class N, class M> class LoopBase;
62 
63 //===----------------------------------------------------------------------===//
64 /// LoopBase class - Instances of this class are used to represent loops that
65 /// are detected in the flow graph
66 ///
67 template<class BlockT, class LoopT>
68 class LoopBase {
69   LoopT *ParentLoop;
70   // SubLoops - Loops contained entirely within this one.
71   std::vector<LoopT *> SubLoops;
72 
73   // Blocks - The list of blocks in this loop.  First entry is the header node.
74   std::vector<BlockT*> Blocks;
75 
76   // DO NOT IMPLEMENT
77   LoopBase(const LoopBase<BlockT, LoopT> &);
78   // DO NOT IMPLEMENT
79   const LoopBase<BlockT, LoopT>&operator=(const LoopBase<BlockT, LoopT> &);
80 public:
81   /// Loop ctor - This creates an empty loop.
LoopBase()82   LoopBase() : ParentLoop(0) {}
~LoopBase()83   ~LoopBase() {
84     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
85       delete SubLoops[i];
86   }
87 
88   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
89   /// loop has depth 1, for consistency with loop depth values used for basic
90   /// blocks, where depth 0 is used for blocks not inside any loops.
getLoopDepth()91   unsigned getLoopDepth() const {
92     unsigned D = 1;
93     for (const LoopT *CurLoop = ParentLoop; CurLoop;
94          CurLoop = CurLoop->ParentLoop)
95       ++D;
96     return D;
97   }
getHeader()98   BlockT *getHeader() const { return Blocks.front(); }
getParentLoop()99   LoopT *getParentLoop() const { return ParentLoop; }
100 
101   /// contains - Return true if the specified loop is contained within in
102   /// this loop.
103   ///
contains(const LoopT * L)104   bool contains(const LoopT *L) const {
105     if (L == this) return true;
106     if (L == 0)    return false;
107     return contains(L->getParentLoop());
108   }
109 
110   /// contains - Return true if the specified basic block is in this loop.
111   ///
contains(const BlockT * BB)112   bool contains(const BlockT *BB) const {
113     return std::find(block_begin(), block_end(), BB) != block_end();
114   }
115 
116   /// contains - Return true if the specified instruction is in this loop.
117   ///
118   template<class InstT>
contains(const InstT * Inst)119   bool contains(const InstT *Inst) const {
120     return contains(Inst->getParent());
121   }
122 
123   /// iterator/begin/end - Return the loops contained entirely within this loop.
124   ///
getSubLoops()125   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
126   typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()127   iterator begin() const { return SubLoops.begin(); }
end()128   iterator end() const { return SubLoops.end(); }
empty()129   bool empty() const { return SubLoops.empty(); }
130 
131   /// getBlocks - Get a list of the basic blocks which make up this loop.
132   ///
getBlocks()133   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
134   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_begin()135   block_iterator block_begin() const { return Blocks.begin(); }
block_end()136   block_iterator block_end() const { return Blocks.end(); }
137 
138   /// getNumBlocks - Get the number of blocks in this loop in constant time.
getNumBlocks()139   unsigned getNumBlocks() const {
140     return Blocks.size();
141   }
142 
143   /// isLoopExiting - True if terminator in the block can branch to another
144   /// block that is outside of the current loop.
145   ///
isLoopExiting(const BlockT * BB)146   bool isLoopExiting(const BlockT *BB) const {
147     typedef GraphTraits<BlockT*> BlockTraits;
148     for (typename BlockTraits::ChildIteratorType SI =
149          BlockTraits::child_begin(const_cast<BlockT*>(BB)),
150          SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
151       if (!contains(*SI))
152         return true;
153     }
154     return false;
155   }
156 
157   /// getNumBackEdges - Calculate the number of back edges to the loop header
158   ///
getNumBackEdges()159   unsigned getNumBackEdges() const {
160     unsigned NumBackEdges = 0;
161     BlockT *H = getHeader();
162 
163     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
164     for (typename InvBlockTraits::ChildIteratorType I =
165          InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
166          E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
167       if (contains(*I))
168         ++NumBackEdges;
169 
170     return NumBackEdges;
171   }
172 
173   //===--------------------------------------------------------------------===//
174   // APIs for simple analysis of the loop.
175   //
176   // Note that all of these methods can fail on general loops (ie, there may not
177   // be a preheader, etc).  For best success, the loop simplification and
178   // induction variable canonicalization pass should be used to normalize loops
179   // for easy analysis.  These methods assume canonical loops.
180 
181   /// getExitingBlocks - Return all blocks inside the loop that have successors
182   /// outside of the loop.  These are the blocks _inside of the current loop_
183   /// which branch out.  The returned list is always unique.
184   ///
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)185   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
186     // Sort the blocks vector so that we can use binary search to do quick
187     // lookups.
188     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
189     std::sort(LoopBBs.begin(), LoopBBs.end());
190 
191     typedef GraphTraits<BlockT*> BlockTraits;
192     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
193       for (typename BlockTraits::ChildIteratorType I =
194           BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
195           I != E; ++I)
196         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
197           // Not in current loop? It must be an exit block.
198           ExitingBlocks.push_back(*BI);
199           break;
200         }
201   }
202 
203   /// getExitingBlock - If getExitingBlocks would return exactly one block,
204   /// return that block. Otherwise return null.
getExitingBlock()205   BlockT *getExitingBlock() const {
206     SmallVector<BlockT*, 8> ExitingBlocks;
207     getExitingBlocks(ExitingBlocks);
208     if (ExitingBlocks.size() == 1)
209       return ExitingBlocks[0];
210     return 0;
211   }
212 
213   /// getExitBlocks - Return all of the successor blocks of this loop.  These
214   /// are the blocks _outside of the current loop_ which are branched to.
215   ///
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)216   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
217     // Sort the blocks vector so that we can use binary search to do quick
218     // lookups.
219     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
220     std::sort(LoopBBs.begin(), LoopBBs.end());
221 
222     typedef GraphTraits<BlockT*> BlockTraits;
223     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
224       for (typename BlockTraits::ChildIteratorType I =
225            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
226            I != E; ++I)
227         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
228           // Not in current loop? It must be an exit block.
229           ExitBlocks.push_back(*I);
230   }
231 
232   /// getExitBlock - If getExitBlocks would return exactly one block,
233   /// return that block. Otherwise return null.
getExitBlock()234   BlockT *getExitBlock() const {
235     SmallVector<BlockT*, 8> ExitBlocks;
236     getExitBlocks(ExitBlocks);
237     if (ExitBlocks.size() == 1)
238       return ExitBlocks[0];
239     return 0;
240   }
241 
242   /// Edge type.
243   typedef std::pair<BlockT*, BlockT*> Edge;
244 
245   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
246   template <typename EdgeT>
getExitEdges(SmallVectorImpl<EdgeT> & ExitEdges)247   void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
248     // Sort the blocks vector so that we can use binary search to do quick
249     // lookups.
250     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
251     array_pod_sort(LoopBBs.begin(), LoopBBs.end());
252 
253     typedef GraphTraits<BlockT*> BlockTraits;
254     for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
255       for (typename BlockTraits::ChildIteratorType I =
256            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
257            I != E; ++I)
258         if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
259           // Not in current loop? It must be an exit block.
260           ExitEdges.push_back(EdgeT(*BI, *I));
261   }
262 
263   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
264   /// loop has a preheader if there is only one edge to the header of the loop
265   /// from outside of the loop.  If this is the case, the block branching to the
266   /// header of the loop is the preheader node.
267   ///
268   /// This method returns null if there is no preheader for the loop.
269   ///
getLoopPreheader()270   BlockT *getLoopPreheader() const {
271     // Keep track of nodes outside the loop branching to the header...
272     BlockT *Out = getLoopPredecessor();
273     if (!Out) return 0;
274 
275     // Make sure there is only one exit out of the preheader.
276     typedef GraphTraits<BlockT*> BlockTraits;
277     typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
278     ++SI;
279     if (SI != BlockTraits::child_end(Out))
280       return 0;  // Multiple exits from the block, must not be a preheader.
281 
282     // The predecessor has exactly one successor, so it is a preheader.
283     return Out;
284   }
285 
286   /// getLoopPredecessor - If the given loop's header has exactly one unique
287   /// predecessor outside the loop, return it. Otherwise return null.
288   /// This is less strict that the loop "preheader" concept, which requires
289   /// the predecessor to have exactly one successor.
290   ///
getLoopPredecessor()291   BlockT *getLoopPredecessor() const {
292     // Keep track of nodes outside the loop branching to the header...
293     BlockT *Out = 0;
294 
295     // Loop over the predecessors of the header node...
296     BlockT *Header = getHeader();
297     typedef GraphTraits<BlockT*> BlockTraits;
298     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
299     for (typename InvBlockTraits::ChildIteratorType PI =
300          InvBlockTraits::child_begin(Header),
301          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
302       typename InvBlockTraits::NodeType *N = *PI;
303       if (!contains(N)) {     // If the block is not in the loop...
304         if (Out && Out != N)
305           return 0;             // Multiple predecessors outside the loop
306         Out = N;
307       }
308     }
309 
310     // Make sure there is only one exit out of the preheader.
311     assert(Out && "Header of loop has no predecessors from outside loop?");
312     return Out;
313   }
314 
315   /// getLoopLatch - If there is a single latch block for this loop, return it.
316   /// A latch block is a block that contains a branch back to the header.
getLoopLatch()317   BlockT *getLoopLatch() const {
318     BlockT *Header = getHeader();
319     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
320     typename InvBlockTraits::ChildIteratorType PI =
321                                             InvBlockTraits::child_begin(Header);
322     typename InvBlockTraits::ChildIteratorType PE =
323                                               InvBlockTraits::child_end(Header);
324     BlockT *Latch = 0;
325     for (; PI != PE; ++PI) {
326       typename InvBlockTraits::NodeType *N = *PI;
327       if (contains(N)) {
328         if (Latch) return 0;
329         Latch = N;
330       }
331     }
332 
333     return Latch;
334   }
335 
336   //===--------------------------------------------------------------------===//
337   // APIs for updating loop information after changing the CFG
338   //
339 
340   /// addBasicBlockToLoop - This method is used by other analyses to update loop
341   /// information.  NewBB is set to be a new member of the current loop.
342   /// Because of this, it is added as a member of all parent loops, and is added
343   /// to the specified LoopInfo object as being in the current basic block.  It
344   /// is not valid to replace the loop header with this method.
345   ///
346   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
347 
348   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
349   /// the OldChild entry in our children list with NewChild, and updates the
350   /// parent pointer of OldChild to be null and the NewChild to be this loop.
351   /// This updates the loop depth of the new child.
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)352   void replaceChildLoopWith(LoopT *OldChild,
353                             LoopT *NewChild) {
354     assert(OldChild->ParentLoop == this && "This loop is already broken!");
355     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
356     typename std::vector<LoopT *>::iterator I =
357                           std::find(SubLoops.begin(), SubLoops.end(), OldChild);
358     assert(I != SubLoops.end() && "OldChild not in loop!");
359     *I = NewChild;
360     OldChild->ParentLoop = 0;
361     NewChild->ParentLoop = static_cast<LoopT *>(this);
362   }
363 
364   /// addChildLoop - Add the specified loop to be a child of this loop.  This
365   /// updates the loop depth of the new child.
366   ///
addChildLoop(LoopT * NewChild)367   void addChildLoop(LoopT *NewChild) {
368     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
369     NewChild->ParentLoop = static_cast<LoopT *>(this);
370     SubLoops.push_back(NewChild);
371   }
372 
373   /// removeChildLoop - This removes the specified child from being a subloop of
374   /// this loop.  The loop is not deleted, as it will presumably be inserted
375   /// into another loop.
removeChildLoop(iterator I)376   LoopT *removeChildLoop(iterator I) {
377     assert(I != SubLoops.end() && "Cannot remove end iterator!");
378     LoopT *Child = *I;
379     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
380     SubLoops.erase(SubLoops.begin()+(I-begin()));
381     Child->ParentLoop = 0;
382     return Child;
383   }
384 
385   /// addBlockEntry - This adds a basic block directly to the basic block list.
386   /// This should only be used by transformations that create new loops.  Other
387   /// transformations should use addBasicBlockToLoop.
addBlockEntry(BlockT * BB)388   void addBlockEntry(BlockT *BB) {
389     Blocks.push_back(BB);
390   }
391 
392   /// moveToHeader - This method is used to move BB (which must be part of this
393   /// loop) to be the loop header of the loop (the block that dominates all
394   /// others).
moveToHeader(BlockT * BB)395   void moveToHeader(BlockT *BB) {
396     if (Blocks[0] == BB) return;
397     for (unsigned i = 0; ; ++i) {
398       assert(i != Blocks.size() && "Loop does not contain BB!");
399       if (Blocks[i] == BB) {
400         Blocks[i] = Blocks[0];
401         Blocks[0] = BB;
402         return;
403       }
404     }
405   }
406 
407   /// removeBlockFromLoop - This removes the specified basic block from the
408   /// current loop, updating the Blocks as appropriate.  This does not update
409   /// the mapping in the LoopInfo class.
removeBlockFromLoop(BlockT * BB)410   void removeBlockFromLoop(BlockT *BB) {
411     RemoveFromVector(Blocks, BB);
412   }
413 
414   /// verifyLoop - Verify loop structure
verifyLoop()415   void verifyLoop() const {
416 #ifndef NDEBUG
417     assert(!Blocks.empty() && "Loop header is missing");
418 
419     // Sort the blocks vector so that we can use binary search to do quick
420     // lookups.
421     SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
422     std::sort(LoopBBs.begin(), LoopBBs.end());
423 
424     // Check the individual blocks.
425     for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
426       BlockT *BB = *I;
427       bool HasInsideLoopSuccs = false;
428       bool HasInsideLoopPreds = false;
429       SmallVector<BlockT *, 2> OutsideLoopPreds;
430 
431       typedef GraphTraits<BlockT*> BlockTraits;
432       for (typename BlockTraits::ChildIteratorType SI =
433            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
434            SI != SE; ++SI)
435         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
436           HasInsideLoopSuccs = true;
437           break;
438         }
439       typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
440       for (typename InvBlockTraits::ChildIteratorType PI =
441            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
442            PI != PE; ++PI) {
443         typename InvBlockTraits::NodeType *N = *PI;
444         if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
445           HasInsideLoopPreds = true;
446         else
447           OutsideLoopPreds.push_back(N);
448       }
449 
450       if (BB == getHeader()) {
451         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
452       } else if (!OutsideLoopPreds.empty()) {
453         // A non-header loop shouldn't be reachable from outside the loop,
454         // though it is permitted if the predecessor is not itself actually
455         // reachable.
456         BlockT *EntryBB = BB->getParent()->begin();
457         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
458              NE = df_end(EntryBB); NI != NE; ++NI)
459           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
460             assert(*NI != OutsideLoopPreds[i] &&
461                    "Loop has multiple entry points!");
462       }
463       assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
464       assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
465       assert(BB != getHeader()->getParent()->begin() &&
466              "Loop contains function entry block!");
467     }
468 
469     // Check the subloops.
470     for (iterator I = begin(), E = end(); I != E; ++I)
471       // Each block in each subloop should be contained within this loop.
472       for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
473            BI != BE; ++BI) {
474         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
475                "Loop does not contain all the blocks of a subloop!");
476       }
477 
478     // Check the parent loop pointer.
479     if (ParentLoop) {
480       assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
481                ParentLoop->end() &&
482              "Loop is not a subloop of its parent!");
483     }
484 #endif
485   }
486 
487   /// verifyLoop - Verify loop structure of this loop and all nested loops.
verifyLoopNest(DenseSet<const LoopT * > * Loops)488   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
489     Loops->insert(static_cast<const LoopT *>(this));
490     // Verify this loop.
491     verifyLoop();
492     // Verify the subloops.
493     for (iterator I = begin(), E = end(); I != E; ++I)
494       (*I)->verifyLoopNest(Loops);
495   }
496 
497   void print(raw_ostream &OS, unsigned Depth = 0) const {
498     OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
499        << " containing: ";
500 
501     for (unsigned i = 0; i < getBlocks().size(); ++i) {
502       if (i) OS << ",";
503       BlockT *BB = getBlocks()[i];
504       WriteAsOperand(OS, BB, false);
505       if (BB == getHeader())    OS << "<header>";
506       if (BB == getLoopLatch()) OS << "<latch>";
507       if (isLoopExiting(BB))    OS << "<exiting>";
508     }
509     OS << "\n";
510 
511     for (iterator I = begin(), E = end(); I != E; ++I)
512       (*I)->print(OS, Depth+2);
513   }
514 
515 protected:
516   friend class LoopInfoBase<BlockT, LoopT>;
LoopBase(BlockT * BB)517   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
518     Blocks.push_back(BB);
519   }
520 };
521 
522 template<class BlockT, class LoopT>
523 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
524   Loop.print(OS);
525   return OS;
526 }
527 
528 class Loop : public LoopBase<BasicBlock, Loop> {
529 public:
Loop()530   Loop() {}
531 
532   /// isLoopInvariant - Return true if the specified value is loop invariant
533   ///
534   bool isLoopInvariant(Value *V) const;
535 
536   /// hasLoopInvariantOperands - Return true if all the operands of the
537   /// specified instruction are loop invariant.
538   bool hasLoopInvariantOperands(Instruction *I) const;
539 
540   /// makeLoopInvariant - If the given value is an instruction inside of the
541   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
542   /// Return true if the value after any hoisting is loop invariant. This
543   /// function can be used as a slightly more aggressive replacement for
544   /// isLoopInvariant.
545   ///
546   /// If InsertPt is specified, it is the point to hoist instructions to.
547   /// If null, the terminator of the loop preheader is used.
548   ///
549   bool makeLoopInvariant(Value *V, bool &Changed,
550                          Instruction *InsertPt = 0) const;
551 
552   /// makeLoopInvariant - If the given instruction is inside of the
553   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
554   /// Return true if the instruction after any hoisting is loop invariant. This
555   /// function can be used as a slightly more aggressive replacement for
556   /// isLoopInvariant.
557   ///
558   /// If InsertPt is specified, it is the point to hoist instructions to.
559   /// If null, the terminator of the loop preheader is used.
560   ///
561   bool makeLoopInvariant(Instruction *I, bool &Changed,
562                          Instruction *InsertPt = 0) const;
563 
564   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
565   /// induction variable: an integer recurrence that starts at 0 and increments
566   /// by one each time through the loop.  If so, return the phi node that
567   /// corresponds to it.
568   ///
569   /// The IndVarSimplify pass transforms loops to have a canonical induction
570   /// variable.
571   ///
572   PHINode *getCanonicalInductionVariable() const;
573 
574   /// getTripCount - Return a loop-invariant LLVM value indicating the number of
575   /// times the loop will be executed.  Note that this means that the backedge
576   /// of the loop executes N-1 times.  If the trip-count cannot be determined,
577   /// this returns null.
578   ///
579   /// The IndVarSimplify pass transforms loops to have a form that this
580   /// function easily understands.
581   ///
582   Value *getTripCount() const;
583 
584   /// getSmallConstantTripCount - Returns the trip count of this loop as a
585   /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
586   /// of not constant. Will also return 0 if the trip count is very large
587   /// (>= 2^32)
588   ///
589   /// The IndVarSimplify pass transforms loops to have a form that this
590   /// function easily understands.
591   ///
592   unsigned getSmallConstantTripCount() const;
593 
594   /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
595   /// trip count of this loop as a normal unsigned value, if possible. This
596   /// means that the actual trip count is always a multiple of the returned
597   /// value (don't forget the trip count could very well be zero as well!).
598   ///
599   /// Returns 1 if the trip count is unknown or not guaranteed to be the
600   /// multiple of a constant (which is also the case if the trip count is simply
601   /// constant, use getSmallConstantTripCount for that case), Will also return 1
602   /// if the trip count is very large (>= 2^32).
603   unsigned getSmallConstantTripMultiple() const;
604 
605   /// isLCSSAForm - Return true if the Loop is in LCSSA form
606   bool isLCSSAForm(DominatorTree &DT) const;
607 
608   /// isLoopSimplifyForm - Return true if the Loop is in the form that
609   /// the LoopSimplify form transforms loops to, which is sometimes called
610   /// normal form.
611   bool isLoopSimplifyForm() const;
612 
613   /// hasDedicatedExits - Return true if no exit block for the loop
614   /// has a predecessor that is outside the loop.
615   bool hasDedicatedExits() const;
616 
617   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
618   /// These are the blocks _outside of the current loop_ which are branched to.
619   /// This assumes that loop exits are in canonical form.
620   ///
621   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
622 
623   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
624   /// block, return that block. Otherwise return null.
625   BasicBlock *getUniqueExitBlock() const;
626 
627   void dump() const;
628 
629 private:
630   friend class LoopInfoBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)631   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
632 };
633 
634 //===----------------------------------------------------------------------===//
635 /// LoopInfo - This class builds and contains all of the top level loop
636 /// structures in the specified function.
637 ///
638 
639 template<class BlockT, class LoopT>
640 class LoopInfoBase {
641   // BBMap - Mapping of basic blocks to the inner most loop they occur in
642   DenseMap<BlockT *, LoopT *> BBMap;
643   std::vector<LoopT *> TopLevelLoops;
644   friend class LoopBase<BlockT, LoopT>;
645   friend class LoopInfo;
646 
647   void operator=(const LoopInfoBase &); // do not implement
648   LoopInfoBase(const LoopInfo &);       // do not implement
649 public:
LoopInfoBase()650   LoopInfoBase() { }
~LoopInfoBase()651   ~LoopInfoBase() { releaseMemory(); }
652 
releaseMemory()653   void releaseMemory() {
654     for (typename std::vector<LoopT *>::iterator I =
655          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
656       delete *I;   // Delete all of the loops...
657 
658     BBMap.clear();                           // Reset internal state of analysis
659     TopLevelLoops.clear();
660   }
661 
662   /// iterator/begin/end - The interface to the top-level loops in the current
663   /// function.
664   ///
665   typedef typename std::vector<LoopT *>::const_iterator iterator;
begin()666   iterator begin() const { return TopLevelLoops.begin(); }
end()667   iterator end() const { return TopLevelLoops.end(); }
empty()668   bool empty() const { return TopLevelLoops.empty(); }
669 
670   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
671   /// block is in no loop (for example the entry node), null is returned.
672   ///
getLoopFor(const BlockT * BB)673   LoopT *getLoopFor(const BlockT *BB) const {
674     typename DenseMap<BlockT *, LoopT *>::const_iterator I=
675       BBMap.find(const_cast<BlockT*>(BB));
676     return I != BBMap.end() ? I->second : 0;
677   }
678 
679   /// operator[] - same as getLoopFor...
680   ///
681   const LoopT *operator[](const BlockT *BB) const {
682     return getLoopFor(BB);
683   }
684 
685   /// getLoopDepth - Return the loop nesting level of the specified block.  A
686   /// depth of 0 means the block is not inside any loop.
687   ///
getLoopDepth(const BlockT * BB)688   unsigned getLoopDepth(const BlockT *BB) const {
689     const LoopT *L = getLoopFor(BB);
690     return L ? L->getLoopDepth() : 0;
691   }
692 
693   // isLoopHeader - True if the block is a loop header node
isLoopHeader(BlockT * BB)694   bool isLoopHeader(BlockT *BB) const {
695     const LoopT *L = getLoopFor(BB);
696     return L && L->getHeader() == BB;
697   }
698 
699   /// removeLoop - This removes the specified top-level loop from this loop info
700   /// object.  The loop is not deleted, as it will presumably be inserted into
701   /// another loop.
removeLoop(iterator I)702   LoopT *removeLoop(iterator I) {
703     assert(I != end() && "Cannot remove end iterator!");
704     LoopT *L = *I;
705     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
706     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
707     return L;
708   }
709 
710   /// changeLoopFor - Change the top-level loop that contains BB to the
711   /// specified loop.  This should be used by transformations that restructure
712   /// the loop hierarchy tree.
changeLoopFor(BlockT * BB,LoopT * L)713   void changeLoopFor(BlockT *BB, LoopT *L) {
714     if (!L) {
715       typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
716       if (I != BBMap.end())
717         BBMap.erase(I);
718       return;
719     }
720     BBMap[BB] = L;
721   }
722 
723   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
724   /// list with the indicated loop.
changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)725   void changeTopLevelLoop(LoopT *OldLoop,
726                           LoopT *NewLoop) {
727     typename std::vector<LoopT *>::iterator I =
728                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
729     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
730     *I = NewLoop;
731     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
732            "Loops already embedded into a subloop!");
733   }
734 
735   /// addTopLevelLoop - This adds the specified loop to the collection of
736   /// top-level loops.
addTopLevelLoop(LoopT * New)737   void addTopLevelLoop(LoopT *New) {
738     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
739     TopLevelLoops.push_back(New);
740   }
741 
742   /// removeBlock - This method completely removes BB from all data structures,
743   /// including all of the Loop objects it is nested in and our mapping from
744   /// BasicBlocks to loops.
removeBlock(BlockT * BB)745   void removeBlock(BlockT *BB) {
746     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
747     if (I != BBMap.end()) {
748       for (LoopT *L = I->second; L; L = L->getParentLoop())
749         L->removeBlockFromLoop(BB);
750 
751       BBMap.erase(I);
752     }
753   }
754 
755   // Internals
756 
isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)757   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
758                                       const LoopT *ParentLoop) {
759     if (SubLoop == 0) return true;
760     if (SubLoop == ParentLoop) return false;
761     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
762   }
763 
Calculate(DominatorTreeBase<BlockT> & DT)764   void Calculate(DominatorTreeBase<BlockT> &DT) {
765     BlockT *RootNode = DT.getRootNode()->getBlock();
766 
767     for (df_iterator<BlockT*> NI = df_begin(RootNode),
768            NE = df_end(RootNode); NI != NE; ++NI)
769       if (LoopT *L = ConsiderForLoop(*NI, DT))
770         TopLevelLoops.push_back(L);
771   }
772 
ConsiderForLoop(BlockT * BB,DominatorTreeBase<BlockT> & DT)773   LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
774     if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
775 
776     std::vector<BlockT *> TodoStack;
777 
778     // Scan the predecessors of BB, checking to see if BB dominates any of
779     // them.  This identifies backedges which target this node...
780     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
781     for (typename InvBlockTraits::ChildIteratorType I =
782          InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
783          I != E; ++I) {
784       typename InvBlockTraits::NodeType *N = *I;
785       if (DT.dominates(BB, N))   // If BB dominates its predecessor...
786           TodoStack.push_back(N);
787     }
788 
789     if (TodoStack.empty()) return 0;  // No backedges to this block...
790 
791     // Create a new loop to represent this basic block...
792     LoopT *L = new LoopT(BB);
793     BBMap[BB] = L;
794 
795     BlockT *EntryBlock = BB->getParent()->begin();
796 
797     while (!TodoStack.empty()) {  // Process all the nodes in the loop
798       BlockT *X = TodoStack.back();
799       TodoStack.pop_back();
800 
801       if (!L->contains(X) &&         // As of yet unprocessed??
802           DT.dominates(EntryBlock, X)) {   // X is reachable from entry block?
803         // Check to see if this block already belongs to a loop.  If this occurs
804         // then we have a case where a loop that is supposed to be a child of
805         // the current loop was processed before the current loop.  When this
806         // occurs, this child loop gets added to a part of the current loop,
807         // making it a sibling to the current loop.  We have to reparent this
808         // loop.
809         if (LoopT *SubLoop =
810             const_cast<LoopT *>(getLoopFor(X)))
811           if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
812             // Remove the subloop from its current parent...
813             assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
814             LoopT *SLP = SubLoop->ParentLoop;  // SubLoopParent
815             typename std::vector<LoopT *>::iterator I =
816               std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
817             assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
818             SLP->SubLoops.erase(I);   // Remove from parent...
819 
820             // Add the subloop to THIS loop...
821             SubLoop->ParentLoop = L;
822             L->SubLoops.push_back(SubLoop);
823           }
824 
825         // Normal case, add the block to our loop...
826         L->Blocks.push_back(X);
827 
828         typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
829 
830         // Add all of the predecessors of X to the end of the work stack...
831         for (typename InvBlockTraits::ChildIteratorType PI = InvBlockTraits::child_begin(X), PE = InvBlockTraits::child_end(X); PI != PE; ++PI) {
832           typename InvBlockTraits::NodeType *N = *PI;
833           TodoStack.push_back(N);
834         }
835       }
836     }
837 
838     // If there are any loops nested within this loop, create them now!
839     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
840          E = L->Blocks.end(); I != E; ++I)
841       if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
842         L->SubLoops.push_back(NewLoop);
843         NewLoop->ParentLoop = L;
844       }
845 
846     // Add the basic blocks that comprise this loop to the BBMap so that this
847     // loop can be found for them.
848     //
849     for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
850            E = L->Blocks.end(); I != E; ++I)
851       BBMap.insert(std::make_pair(*I, L));
852 
853     // Now that we have a list of all of the child loops of this loop, check to
854     // see if any of them should actually be nested inside of each other.  We
855     // can accidentally pull loops our of their parents, so we must make sure to
856     // organize the loop nests correctly now.
857     {
858       std::map<BlockT *, LoopT *> ContainingLoops;
859       for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
860         LoopT *Child = L->SubLoops[i];
861         assert(Child->getParentLoop() == L && "Not proper child loop?");
862 
863         if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
864           // If there is already a loop which contains this loop, move this loop
865           // into the containing loop.
866           MoveSiblingLoopInto(Child, ContainingLoop);
867           --i;  // The loop got removed from the SubLoops list.
868         } else {
869           // This is currently considered to be a top-level loop.  Check to see
870           // if any of the contained blocks are loop headers for subloops we
871           // have already processed.
872           for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
873             LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
874             if (BlockLoop == 0) {   // Child block not processed yet...
875               BlockLoop = Child;
876             } else if (BlockLoop != Child) {
877               LoopT *SubLoop = BlockLoop;
878               // Reparent all of the blocks which used to belong to BlockLoops
879               for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
880                 ContainingLoops[SubLoop->Blocks[j]] = Child;
881 
882               // There is already a loop which contains this block, that means
883               // that we should reparent the loop which the block is currently
884               // considered to belong to to be a child of this loop.
885               MoveSiblingLoopInto(SubLoop, Child);
886               --i;  // We just shrunk the SubLoops list.
887             }
888           }
889         }
890       }
891     }
892 
893     return L;
894   }
895 
896   /// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
897   /// of the NewParent Loop, instead of being a sibling of it.
MoveSiblingLoopInto(LoopT * NewChild,LoopT * NewParent)898   void MoveSiblingLoopInto(LoopT *NewChild,
899                            LoopT *NewParent) {
900     LoopT *OldParent = NewChild->getParentLoop();
901     assert(OldParent && OldParent == NewParent->getParentLoop() &&
902            NewChild != NewParent && "Not sibling loops!");
903 
904     // Remove NewChild from being a child of OldParent
905     typename std::vector<LoopT *>::iterator I =
906       std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
907                 NewChild);
908     assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
909     OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
910     NewChild->ParentLoop = 0;
911 
912     InsertLoopInto(NewChild, NewParent);
913   }
914 
915   /// InsertLoopInto - This inserts loop L into the specified parent loop.  If
916   /// the parent loop contains a loop which should contain L, the loop gets
917   /// inserted into L instead.
InsertLoopInto(LoopT * L,LoopT * Parent)918   void InsertLoopInto(LoopT *L, LoopT *Parent) {
919     BlockT *LHeader = L->getHeader();
920     assert(Parent->contains(LHeader) &&
921            "This loop should not be inserted here!");
922 
923     // Check to see if it belongs in a child loop...
924     for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
925          i != e; ++i)
926       if (Parent->SubLoops[i]->contains(LHeader)) {
927         InsertLoopInto(L, Parent->SubLoops[i]);
928         return;
929       }
930 
931     // If not, insert it here!
932     Parent->SubLoops.push_back(L);
933     L->ParentLoop = Parent;
934   }
935 
936   // Debugging
937 
print(raw_ostream & OS)938   void print(raw_ostream &OS) const {
939     for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
940       TopLevelLoops[i]->print(OS);
941   #if 0
942     for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
943            E = BBMap.end(); I != E; ++I)
944       OS << "BB '" << I->first->getName() << "' level = "
945          << I->second->getLoopDepth() << "\n";
946   #endif
947   }
948 };
949 
950 class LoopInfo : public FunctionPass {
951   LoopInfoBase<BasicBlock, Loop> LI;
952   friend class LoopBase<BasicBlock, Loop>;
953 
954   void operator=(const LoopInfo &); // do not implement
955   LoopInfo(const LoopInfo &);       // do not implement
956 public:
957   static char ID; // Pass identification, replacement for typeid
958 
LoopInfo()959   LoopInfo() : FunctionPass(ID) {
960     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
961   }
962 
getBase()963   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
964 
965   /// iterator/begin/end - The interface to the top-level loops in the current
966   /// function.
967   ///
968   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
begin()969   inline iterator begin() const { return LI.begin(); }
end()970   inline iterator end() const { return LI.end(); }
empty()971   bool empty() const { return LI.empty(); }
972 
973   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
974   /// block is in no loop (for example the entry node), null is returned.
975   ///
getLoopFor(const BasicBlock * BB)976   inline Loop *getLoopFor(const BasicBlock *BB) const {
977     return LI.getLoopFor(BB);
978   }
979 
980   /// operator[] - same as getLoopFor...
981   ///
982   inline const Loop *operator[](const BasicBlock *BB) const {
983     return LI.getLoopFor(BB);
984   }
985 
986   /// getLoopDepth - Return the loop nesting level of the specified block.  A
987   /// depth of 0 means the block is not inside any loop.
988   ///
getLoopDepth(const BasicBlock * BB)989   inline unsigned getLoopDepth(const BasicBlock *BB) const {
990     return LI.getLoopDepth(BB);
991   }
992 
993   // isLoopHeader - True if the block is a loop header node
isLoopHeader(BasicBlock * BB)994   inline bool isLoopHeader(BasicBlock *BB) const {
995     return LI.isLoopHeader(BB);
996   }
997 
998   /// runOnFunction - Calculate the natural loop information.
999   ///
1000   virtual bool runOnFunction(Function &F);
1001 
1002   virtual void verifyAnalysis() const;
1003 
releaseMemory()1004   virtual void releaseMemory() { LI.releaseMemory(); }
1005 
1006   virtual void print(raw_ostream &O, const Module* M = 0) const;
1007 
1008   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1009 
1010   /// removeLoop - This removes the specified top-level loop from this loop info
1011   /// object.  The loop is not deleted, as it will presumably be inserted into
1012   /// another loop.
removeLoop(iterator I)1013   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
1014 
1015   /// changeLoopFor - Change the top-level loop that contains BB to the
1016   /// specified loop.  This should be used by transformations that restructure
1017   /// the loop hierarchy tree.
changeLoopFor(BasicBlock * BB,Loop * L)1018   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
1019     LI.changeLoopFor(BB, L);
1020   }
1021 
1022   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
1023   /// list with the indicated loop.
changeTopLevelLoop(Loop * OldLoop,Loop * NewLoop)1024   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
1025     LI.changeTopLevelLoop(OldLoop, NewLoop);
1026   }
1027 
1028   /// addTopLevelLoop - This adds the specified loop to the collection of
1029   /// top-level loops.
addTopLevelLoop(Loop * New)1030   inline void addTopLevelLoop(Loop *New) {
1031     LI.addTopLevelLoop(New);
1032   }
1033 
1034   /// removeBlock - This method completely removes BB from all data structures,
1035   /// including all of the Loop objects it is nested in and our mapping from
1036   /// BasicBlocks to loops.
removeBlock(BasicBlock * BB)1037   void removeBlock(BasicBlock *BB) {
1038     LI.removeBlock(BB);
1039   }
1040 
1041   /// updateUnloop - Update LoopInfo after removing the last backedge from a
1042   /// loop--now the "unloop". This updates the loop forest and parent loops for
1043   /// each block so that Unloop is no longer referenced, but the caller must
1044   /// actually delete the Unloop object.
1045   void updateUnloop(Loop *Unloop);
1046 
1047   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
1048   /// everywhere is guaranteed to preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)1049   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1050     // Preserving LCSSA form is only problematic if the replacing value is an
1051     // instruction.
1052     Instruction *I = dyn_cast<Instruction>(To);
1053     if (!I) return true;
1054     // If both instructions are defined in the same basic block then replacement
1055     // cannot break LCSSA form.
1056     if (I->getParent() == From->getParent())
1057       return true;
1058     // If the instruction is not defined in a loop then it can safely replace
1059     // anything.
1060     Loop *ToLoop = getLoopFor(I->getParent());
1061     if (!ToLoop) return true;
1062     // If the replacing instruction is defined in the same loop as the original
1063     // instruction, or in a loop that contains it as an inner loop, then using
1064     // it as a replacement will not break LCSSA form.
1065     return ToLoop->contains(getLoopFor(From->getParent()));
1066   }
1067 };
1068 
1069 
1070 // Allow clients to walk the list of nested loops...
1071 template <> struct GraphTraits<const Loop*> {
1072   typedef const Loop NodeType;
1073   typedef LoopInfo::iterator ChildIteratorType;
1074 
1075   static NodeType *getEntryNode(const Loop *L) { return L; }
1076   static inline ChildIteratorType child_begin(NodeType *N) {
1077     return N->begin();
1078   }
1079   static inline ChildIteratorType child_end(NodeType *N) {
1080     return N->end();
1081   }
1082 };
1083 
1084 template <> struct GraphTraits<Loop*> {
1085   typedef Loop NodeType;
1086   typedef LoopInfo::iterator ChildIteratorType;
1087 
1088   static NodeType *getEntryNode(Loop *L) { return L; }
1089   static inline ChildIteratorType child_begin(NodeType *N) {
1090     return N->begin();
1091   }
1092   static inline ChildIteratorType child_end(NodeType *N) {
1093     return N->end();
1094   }
1095 };
1096 
1097 template<class BlockT, class LoopT>
1098 void
1099 LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
1100                                              LoopInfoBase<BlockT, LoopT> &LIB) {
1101   assert((Blocks.empty() || LIB[getHeader()] == this) &&
1102          "Incorrect LI specified for this loop!");
1103   assert(NewBB && "Cannot add a null basic block to the loop!");
1104   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
1105 
1106   LoopT *L = static_cast<LoopT *>(this);
1107 
1108   // Add the loop mapping to the LoopInfo object...
1109   LIB.BBMap[NewBB] = L;
1110 
1111   // Add the basic block to this loop and all parent loops...
1112   while (L) {
1113     L->Blocks.push_back(NewBB);
1114     L = L->getParentLoop();
1115   }
1116 }
1117 
1118 } // End llvm namespace
1119 
1120 #endif
1121