1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and 11 // categorize scalar expressions in loops. It specializes in recognizing 12 // general induction variables, representing them with the abstract and opaque 13 // SCEV class. Given this analysis, trip counts of loops and other important 14 // properties can be obtained. 15 // 16 // This analysis is primarily useful for induction variable substitution and 17 // strength reduction. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H 22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H 23 24 #include "llvm/Pass.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/Function.h" 27 #include "llvm/Operator.h" 28 #include "llvm/Support/DataTypes.h" 29 #include "llvm/Support/ValueHandle.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/ConstantRange.h" 32 #include "llvm/ADT/FoldingSet.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include <map> 35 36 namespace llvm { 37 class APInt; 38 class Constant; 39 class ConstantInt; 40 class DominatorTree; 41 class Type; 42 class ScalarEvolution; 43 class TargetData; 44 class LLVMContext; 45 class Loop; 46 class LoopInfo; 47 class Operator; 48 class SCEVUnknown; 49 class SCEV; 50 template<> struct FoldingSetTrait<SCEV>; 51 52 /// SCEV - This class represents an analyzed expression in the program. These 53 /// are opaque objects that the client is not allowed to do much with 54 /// directly. 55 /// 56 class SCEV : public FoldingSetNode { 57 friend struct FoldingSetTrait<SCEV>; 58 59 /// FastID - A reference to an Interned FoldingSetNodeID for this node. 60 /// The ScalarEvolution's BumpPtrAllocator holds the data. 61 FoldingSetNodeIDRef FastID; 62 63 // The SCEV baseclass this node corresponds to 64 const unsigned short SCEVType; 65 66 protected: 67 /// SubclassData - This field is initialized to zero and may be used in 68 /// subclasses to store miscellaneous information. 69 unsigned short SubclassData; 70 71 private: 72 SCEV(const SCEV &); // DO NOT IMPLEMENT 73 void operator=(const SCEV &); // DO NOT IMPLEMENT 74 75 public: 76 /// NoWrapFlags are bitfield indices into SubclassData. 77 /// 78 /// Add and Mul expressions may have no-unsigned-wrap <NUW> or 79 /// no-signed-wrap <NSW> properties, which are derived from the IR 80 /// operator. NSW is a misnomer that we use to mean no signed overflow or 81 /// underflow. 82 /// 83 /// AddRec expression may have a no-self-wraparound <NW> property if the 84 /// result can never reach the start value. This property is independent of 85 /// the actual start value and step direction. Self-wraparound is defined 86 /// purely in terms of the recurrence's loop, step size, and 87 /// bitwidth. Formally, a recurrence with no self-wraparound satisfies: 88 /// abs(step) * max-iteration(loop) <= unsigned-max(bitwidth). 89 /// 90 /// Note that NUW and NSW are also valid properties of a recurrence, and 91 /// either implies NW. For convenience, NW will be set for a recurrence 92 /// whenever either NUW or NSW are set. 93 enum NoWrapFlags { FlagAnyWrap = 0, // No guarantee. 94 FlagNW = (1 << 0), // No self-wrap. 95 FlagNUW = (1 << 1), // No unsigned wrap. 96 FlagNSW = (1 << 2), // No signed wrap. 97 NoWrapMask = (1 << 3) -1 }; 98 99 explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) : 100 FastID(ID), SCEVType(SCEVTy), SubclassData(0) {} 101 102 unsigned getSCEVType() const { return SCEVType; } 103 104 /// getType - Return the LLVM type of this SCEV expression. 105 /// 106 Type *getType() const; 107 108 /// isZero - Return true if the expression is a constant zero. 109 /// 110 bool isZero() const; 111 112 /// isOne - Return true if the expression is a constant one. 113 /// 114 bool isOne() const; 115 116 /// isAllOnesValue - Return true if the expression is a constant 117 /// all-ones value. 118 /// 119 bool isAllOnesValue() const; 120 121 /// print - Print out the internal representation of this scalar to the 122 /// specified stream. This should really only be used for debugging 123 /// purposes. 124 void print(raw_ostream &OS) const; 125 126 /// dump - This method is used for debugging. 127 /// 128 void dump() const; 129 }; 130 131 // Specialize FoldingSetTrait for SCEV to avoid needing to compute 132 // temporary FoldingSetNodeID values. 133 template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { 134 static void Profile(const SCEV &X, FoldingSetNodeID& ID) { 135 ID = X.FastID; 136 } 137 static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, 138 FoldingSetNodeID &TempID) { 139 return ID == X.FastID; 140 } 141 static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { 142 return X.FastID.ComputeHash(); 143 } 144 }; 145 146 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { 147 S.print(OS); 148 return OS; 149 } 150 151 /// SCEVCouldNotCompute - An object of this class is returned by queries that 152 /// could not be answered. For example, if you ask for the number of 153 /// iterations of a linked-list traversal loop, you will get one of these. 154 /// None of the standard SCEV operations are valid on this class, it is just a 155 /// marker. 156 struct SCEVCouldNotCompute : public SCEV { 157 SCEVCouldNotCompute(); 158 159 /// Methods for support type inquiry through isa, cast, and dyn_cast: 160 static inline bool classof(const SCEVCouldNotCompute *S) { return true; } 161 static bool classof(const SCEV *S); 162 }; 163 164 /// ScalarEvolution - This class is the main scalar evolution driver. Because 165 /// client code (intentionally) can't do much with the SCEV objects directly, 166 /// they must ask this class for services. 167 /// 168 class ScalarEvolution : public FunctionPass { 169 public: 170 /// LoopDisposition - An enum describing the relationship between a 171 /// SCEV and a loop. 172 enum LoopDisposition { 173 LoopVariant, ///< The SCEV is loop-variant (unknown). 174 LoopInvariant, ///< The SCEV is loop-invariant. 175 LoopComputable ///< The SCEV varies predictably with the loop. 176 }; 177 178 /// BlockDisposition - An enum describing the relationship between a 179 /// SCEV and a basic block. 180 enum BlockDisposition { 181 DoesNotDominateBlock, ///< The SCEV does not dominate the block. 182 DominatesBlock, ///< The SCEV dominates the block. 183 ProperlyDominatesBlock ///< The SCEV properly dominates the block. 184 }; 185 186 /// Convenient NoWrapFlags manipulation that hides enum casts and is 187 /// visible in the ScalarEvolution name space. 188 static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask) { 189 return (SCEV::NoWrapFlags)(Flags & Mask); 190 } 191 static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, 192 SCEV::NoWrapFlags OnFlags) { 193 return (SCEV::NoWrapFlags)(Flags | OnFlags); 194 } 195 static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, 196 SCEV::NoWrapFlags OffFlags) { 197 return (SCEV::NoWrapFlags)(Flags & ~OffFlags); 198 } 199 200 private: 201 /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be 202 /// notified whenever a Value is deleted. 203 class SCEVCallbackVH : public CallbackVH { 204 ScalarEvolution *SE; 205 virtual void deleted(); 206 virtual void allUsesReplacedWith(Value *New); 207 public: 208 SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0); 209 }; 210 211 friend class SCEVCallbackVH; 212 friend class SCEVExpander; 213 friend class SCEVUnknown; 214 215 /// F - The function we are analyzing. 216 /// 217 Function *F; 218 219 /// LI - The loop information for the function we are currently analyzing. 220 /// 221 LoopInfo *LI; 222 223 /// TD - The target data information for the target we are targeting. 224 /// 225 TargetData *TD; 226 227 /// DT - The dominator tree. 228 /// 229 DominatorTree *DT; 230 231 /// CouldNotCompute - This SCEV is used to represent unknown trip 232 /// counts and things. 233 SCEVCouldNotCompute CouldNotCompute; 234 235 /// ValueExprMapType - The typedef for ValueExprMap. 236 /// 237 typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> > 238 ValueExprMapType; 239 240 /// ValueExprMap - This is a cache of the values we have analyzed so far. 241 /// 242 ValueExprMapType ValueExprMap; 243 244 /// ExitLimit - Information about the number of loop iterations for 245 /// which a loop exit's branch condition evaluates to the not-taken path. 246 /// This is a temporary pair of exact and max expressions that are 247 /// eventually summarized in ExitNotTakenInfo and BackedgeTakenInfo. 248 struct ExitLimit { 249 const SCEV *Exact; 250 const SCEV *Max; 251 252 /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {} 253 254 ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {} 255 256 /// hasAnyInfo - Test whether this ExitLimit contains any computed 257 /// information, or whether it's all SCEVCouldNotCompute values. 258 bool hasAnyInfo() const { 259 return !isa<SCEVCouldNotCompute>(Exact) || 260 !isa<SCEVCouldNotCompute>(Max); 261 } 262 }; 263 264 /// ExitNotTakenInfo - Information about the number of times a particular 265 /// loop exit may be reached before exiting the loop. 266 struct ExitNotTakenInfo { 267 AssertingVH<BasicBlock> ExitingBlock; 268 const SCEV *ExactNotTaken; 269 PointerIntPair<ExitNotTakenInfo*, 1> NextExit; 270 271 ExitNotTakenInfo() : ExitingBlock(0), ExactNotTaken(0) {} 272 273 /// isCompleteList - Return true if all loop exits are computable. 274 bool isCompleteList() const { 275 return NextExit.getInt() == 0; 276 } 277 278 void setIncomplete() { NextExit.setInt(1); } 279 280 /// getNextExit - Return a pointer to the next exit's not-taken info. 281 ExitNotTakenInfo *getNextExit() const { 282 return NextExit.getPointer(); 283 } 284 285 void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); } 286 }; 287 288 /// BackedgeTakenInfo - Information about the backedge-taken count 289 /// of a loop. This currently includes an exact count and a maximum count. 290 /// 291 class BackedgeTakenInfo { 292 /// ExitNotTaken - A list of computable exits and their not-taken counts. 293 /// Loops almost never have more than one computable exit. 294 ExitNotTakenInfo ExitNotTaken; 295 296 /// Max - An expression indicating the least maximum backedge-taken 297 /// count of the loop that is known, or a SCEVCouldNotCompute. 298 const SCEV *Max; 299 300 public: 301 BackedgeTakenInfo() : Max(0) {} 302 303 /// Initialize BackedgeTakenInfo from a list of exact exit counts. 304 BackedgeTakenInfo( 305 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 306 bool Complete, const SCEV *MaxCount); 307 308 /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any 309 /// computed information, or whether it's all SCEVCouldNotCompute 310 /// values. 311 bool hasAnyInfo() const { 312 return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max); 313 } 314 315 /// getExact - Return an expression indicating the exact backedge-taken 316 /// count of the loop if it is known, or SCEVCouldNotCompute 317 /// otherwise. This is the number of times the loop header can be 318 /// guaranteed to execute, minus one. 319 const SCEV *getExact(ScalarEvolution *SE) const; 320 321 /// getExact - Return the number of times this loop exit may fall through 322 /// to the back edge, or SCEVCouldNotCompute. The loop is guaranteed not 323 /// to exit via this block before this number of iterations, but may exit 324 /// via another block. 325 const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const; 326 327 /// getMax - Get the max backedge taken count for the loop. 328 const SCEV *getMax(ScalarEvolution *SE) const; 329 330 /// clear - Invalidate this result and free associated memory. 331 void clear(); 332 }; 333 334 /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for 335 /// this function as they are computed. 336 DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts; 337 338 /// ConstantEvolutionLoopExitValue - This map contains entries for all of 339 /// the PHI instructions that we attempt to compute constant evolutions for. 340 /// This allows us to avoid potentially expensive recomputation of these 341 /// properties. An instruction maps to null if we are unable to compute its 342 /// exit value. 343 DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue; 344 345 /// ValuesAtScopes - This map contains entries for all the expressions 346 /// that we attempt to compute getSCEVAtScope information for, which can 347 /// be expensive in extreme cases. 348 DenseMap<const SCEV *, 349 std::map<const Loop *, const SCEV *> > ValuesAtScopes; 350 351 /// LoopDispositions - Memoized computeLoopDisposition results. 352 DenseMap<const SCEV *, 353 std::map<const Loop *, LoopDisposition> > LoopDispositions; 354 355 /// computeLoopDisposition - Compute a LoopDisposition value. 356 LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); 357 358 /// BlockDispositions - Memoized computeBlockDisposition results. 359 DenseMap<const SCEV *, 360 std::map<const BasicBlock *, BlockDisposition> > BlockDispositions; 361 362 /// computeBlockDisposition - Compute a BlockDisposition value. 363 BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); 364 365 /// UnsignedRanges - Memoized results from getUnsignedRange 366 DenseMap<const SCEV *, ConstantRange> UnsignedRanges; 367 368 /// SignedRanges - Memoized results from getSignedRange 369 DenseMap<const SCEV *, ConstantRange> SignedRanges; 370 371 /// setUnsignedRange - Set the memoized unsigned range for the given SCEV. 372 const ConstantRange &setUnsignedRange(const SCEV *S, 373 const ConstantRange &CR) { 374 std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair = 375 UnsignedRanges.insert(std::make_pair(S, CR)); 376 if (!Pair.second) 377 Pair.first->second = CR; 378 return Pair.first->second; 379 } 380 381 /// setUnsignedRange - Set the memoized signed range for the given SCEV. 382 const ConstantRange &setSignedRange(const SCEV *S, 383 const ConstantRange &CR) { 384 std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair = 385 SignedRanges.insert(std::make_pair(S, CR)); 386 if (!Pair.second) 387 Pair.first->second = CR; 388 return Pair.first->second; 389 } 390 391 /// createSCEV - We know that there is no SCEV for the specified value. 392 /// Analyze the expression. 393 const SCEV *createSCEV(Value *V); 394 395 /// createNodeForPHI - Provide the special handling we need to analyze PHI 396 /// SCEVs. 397 const SCEV *createNodeForPHI(PHINode *PN); 398 399 /// createNodeForGEP - Provide the special handling we need to analyze GEP 400 /// SCEVs. 401 const SCEV *createNodeForGEP(GEPOperator *GEP); 402 403 /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called 404 /// at most once for each SCEV+Loop pair. 405 /// 406 const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); 407 408 /// ForgetSymbolicValue - This looks up computed SCEV values for all 409 /// instructions that depend on the given instruction and removes them from 410 /// the ValueExprMap map if they reference SymName. This is used during PHI 411 /// resolution. 412 void ForgetSymbolicName(Instruction *I, const SCEV *SymName); 413 414 /// getBECount - Subtract the end and start values and divide by the step, 415 /// rounding up, to get the number of times the backedge is executed. Return 416 /// CouldNotCompute if an intermediate computation overflows. 417 const SCEV *getBECount(const SCEV *Start, 418 const SCEV *End, 419 const SCEV *Step, 420 bool NoWrap); 421 422 /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given 423 /// loop, lazily computing new values if the loop hasn't been analyzed 424 /// yet. 425 const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); 426 427 /// ComputeBackedgeTakenCount - Compute the number of times the specified 428 /// loop will iterate. 429 BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L); 430 431 /// ComputeExitLimit - Compute the number of times the backedge of the 432 /// specified loop will execute if it exits via the specified block. 433 ExitLimit ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock); 434 435 /// ComputeExitLimitFromCond - Compute the number of times the backedge of 436 /// the specified loop will execute if its exit condition were a conditional 437 /// branch of ExitCond, TBB, and FBB. 438 ExitLimit ComputeExitLimitFromCond(const Loop *L, 439 Value *ExitCond, 440 BasicBlock *TBB, 441 BasicBlock *FBB); 442 443 /// ComputeExitLimitFromICmp - Compute the number of times the backedge of 444 /// the specified loop will execute if its exit condition were a conditional 445 /// branch of the ICmpInst ExitCond, TBB, and FBB. 446 ExitLimit ComputeExitLimitFromICmp(const Loop *L, 447 ICmpInst *ExitCond, 448 BasicBlock *TBB, 449 BasicBlock *FBB); 450 451 /// ComputeLoadConstantCompareExitLimit - Given an exit condition 452 /// of 'icmp op load X, cst', try to see if we can compute the 453 /// backedge-taken count. 454 ExitLimit ComputeLoadConstantCompareExitLimit(LoadInst *LI, 455 Constant *RHS, 456 const Loop *L, 457 ICmpInst::Predicate p); 458 459 /// ComputeExitCountExhaustively - If the loop is known to execute a 460 /// constant number of times (the condition evolves only from constants), 461 /// try to evaluate a few iterations of the loop until we get the exit 462 /// condition gets a value of ExitWhen (true or false). If we cannot 463 /// evaluate the exit count of the loop, return CouldNotCompute. 464 const SCEV *ComputeExitCountExhaustively(const Loop *L, 465 Value *Cond, 466 bool ExitWhen); 467 468 /// HowFarToZero - Return the number of times an exit condition comparing 469 /// the specified value to zero will execute. If not computable, return 470 /// CouldNotCompute. 471 ExitLimit HowFarToZero(const SCEV *V, const Loop *L); 472 473 /// HowFarToNonZero - Return the number of times an exit condition checking 474 /// the specified value for nonzero will execute. If not computable, return 475 /// CouldNotCompute. 476 ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L); 477 478 /// HowManyLessThans - Return the number of times an exit condition 479 /// containing the specified less-than comparison will execute. If not 480 /// computable, return CouldNotCompute. isSigned specifies whether the 481 /// less-than is signed. 482 ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 483 const Loop *L, bool isSigned); 484 485 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 486 /// (which may not be an immediate predecessor) which has exactly one 487 /// successor from which BB is reachable, or null if no such block is 488 /// found. 489 std::pair<BasicBlock *, BasicBlock *> 490 getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); 491 492 /// isImpliedCond - Test whether the condition described by Pred, LHS, and 493 /// RHS is true whenever the given FoundCondValue value evaluates to true. 494 bool isImpliedCond(ICmpInst::Predicate Pred, 495 const SCEV *LHS, const SCEV *RHS, 496 Value *FoundCondValue, 497 bool Inverse); 498 499 /// isImpliedCondOperands - Test whether the condition described by Pred, 500 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 501 /// and FoundRHS is true. 502 bool isImpliedCondOperands(ICmpInst::Predicate Pred, 503 const SCEV *LHS, const SCEV *RHS, 504 const SCEV *FoundLHS, const SCEV *FoundRHS); 505 506 /// isImpliedCondOperandsHelper - Test whether the condition described by 507 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 508 /// FoundLHS, and FoundRHS is true. 509 bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 510 const SCEV *LHS, const SCEV *RHS, 511 const SCEV *FoundLHS, 512 const SCEV *FoundRHS); 513 514 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 515 /// in the header of its containing loop, we know the loop executes a 516 /// constant number of times, and the PHI node is just a recurrence 517 /// involving constants, fold it. 518 Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, 519 const Loop *L); 520 521 /// isKnownPredicateWithRanges - Test if the given expression is known to 522 /// satisfy the condition described by Pred and the known constant ranges 523 /// of LHS and RHS. 524 /// 525 bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 526 const SCEV *LHS, const SCEV *RHS); 527 528 /// forgetMemoizedResults - Drop memoized information computed for S. 529 void forgetMemoizedResults(const SCEV *S); 530 531 public: 532 static char ID; // Pass identification, replacement for typeid 533 ScalarEvolution(); 534 535 LLVMContext &getContext() const { return F->getContext(); } 536 537 /// isSCEVable - Test if values of the given type are analyzable within 538 /// the SCEV framework. This primarily includes integer types, and it 539 /// can optionally include pointer types if the ScalarEvolution class 540 /// has access to target-specific information. 541 bool isSCEVable(Type *Ty) const; 542 543 /// getTypeSizeInBits - Return the size in bits of the specified type, 544 /// for which isSCEVable must return true. 545 uint64_t getTypeSizeInBits(Type *Ty) const; 546 547 /// getEffectiveSCEVType - Return a type with the same bitwidth as 548 /// the given type and which represents how SCEV will treat the given 549 /// type, for which isSCEVable must return true. For pointer types, 550 /// this is the pointer-sized integer type. 551 Type *getEffectiveSCEVType(Type *Ty) const; 552 553 /// getSCEV - Return a SCEV expression for the full generality of the 554 /// specified expression. 555 const SCEV *getSCEV(Value *V); 556 557 const SCEV *getConstant(ConstantInt *V); 558 const SCEV *getConstant(const APInt& Val); 559 const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); 560 const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty); 561 const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty); 562 const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty); 563 const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); 564 const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 565 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); 566 const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, 567 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { 568 SmallVector<const SCEV *, 2> Ops; 569 Ops.push_back(LHS); 570 Ops.push_back(RHS); 571 return getAddExpr(Ops, Flags); 572 } 573 const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, 574 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { 575 SmallVector<const SCEV *, 3> Ops; 576 Ops.push_back(Op0); 577 Ops.push_back(Op1); 578 Ops.push_back(Op2); 579 return getAddExpr(Ops, Flags); 580 } 581 const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 582 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); 583 const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, 584 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) 585 { 586 SmallVector<const SCEV *, 2> Ops; 587 Ops.push_back(LHS); 588 Ops.push_back(RHS); 589 return getMulExpr(Ops, Flags); 590 } 591 const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, 592 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) { 593 SmallVector<const SCEV *, 3> Ops; 594 Ops.push_back(Op0); 595 Ops.push_back(Op1); 596 Ops.push_back(Op2); 597 return getMulExpr(Ops, Flags); 598 } 599 const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); 600 const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, 601 const Loop *L, SCEV::NoWrapFlags Flags); 602 const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 603 const Loop *L, SCEV::NoWrapFlags Flags); 604 const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, 605 const Loop *L, SCEV::NoWrapFlags Flags) { 606 SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); 607 return getAddRecExpr(NewOp, L, Flags); 608 } 609 const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); 610 const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); 611 const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); 612 const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); 613 const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); 614 const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS); 615 const SCEV *getUnknown(Value *V); 616 const SCEV *getCouldNotCompute(); 617 618 /// getSizeOfExpr - Return an expression for sizeof on the given type. 619 /// 620 const SCEV *getSizeOfExpr(Type *AllocTy); 621 622 /// getAlignOfExpr - Return an expression for alignof on the given type. 623 /// 624 const SCEV *getAlignOfExpr(Type *AllocTy); 625 626 /// getOffsetOfExpr - Return an expression for offsetof on the given field. 627 /// 628 const SCEV *getOffsetOfExpr(StructType *STy, unsigned FieldNo); 629 630 /// getOffsetOfExpr - Return an expression for offsetof on the given field. 631 /// 632 const SCEV *getOffsetOfExpr(Type *CTy, Constant *FieldNo); 633 634 /// getNegativeSCEV - Return the SCEV object corresponding to -V. 635 /// 636 const SCEV *getNegativeSCEV(const SCEV *V); 637 638 /// getNotSCEV - Return the SCEV object corresponding to ~V. 639 /// 640 const SCEV *getNotSCEV(const SCEV *V); 641 642 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 643 const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 644 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); 645 646 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion 647 /// of the input value to the specified type. If the type must be 648 /// extended, it is zero extended. 649 const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty); 650 651 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion 652 /// of the input value to the specified type. If the type must be 653 /// extended, it is sign extended. 654 const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty); 655 656 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of 657 /// the input value to the specified type. If the type must be extended, 658 /// it is zero extended. The conversion must not be narrowing. 659 const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); 660 661 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of 662 /// the input value to the specified type. If the type must be extended, 663 /// it is sign extended. The conversion must not be narrowing. 664 const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); 665 666 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 667 /// the input value to the specified type. If the type must be extended, 668 /// it is extended with unspecified bits. The conversion must not be 669 /// narrowing. 670 const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); 671 672 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 673 /// input value to the specified type. The conversion must not be 674 /// widening. 675 const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); 676 677 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 678 /// the types using zero-extension, and then perform a umax operation 679 /// with them. 680 const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, 681 const SCEV *RHS); 682 683 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 684 /// the types using zero-extension, and then perform a umin operation 685 /// with them. 686 const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, 687 const SCEV *RHS); 688 689 /// getPointerBase - Transitively follow the chain of pointer-type operands 690 /// until reaching a SCEV that does not have a single pointer operand. This 691 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 692 /// but corner cases do exist. 693 const SCEV *getPointerBase(const SCEV *V); 694 695 /// getSCEVAtScope - Return a SCEV expression for the specified value 696 /// at the specified scope in the program. The L value specifies a loop 697 /// nest to evaluate the expression at, where null is the top-level or a 698 /// specified loop is immediately inside of the loop. 699 /// 700 /// This method can be used to compute the exit value for a variable defined 701 /// in a loop by querying what the value will hold in the parent loop. 702 /// 703 /// In the case that a relevant loop exit value cannot be computed, the 704 /// original value V is returned. 705 const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); 706 707 /// getSCEVAtScope - This is a convenience function which does 708 /// getSCEVAtScope(getSCEV(V), L). 709 const SCEV *getSCEVAtScope(Value *V, const Loop *L); 710 711 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 712 /// by a conditional between LHS and RHS. This is used to help avoid max 713 /// expressions in loop trip counts, and to eliminate casts. 714 bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 715 const SCEV *LHS, const SCEV *RHS); 716 717 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 718 /// protected by a conditional between LHS and RHS. This is used to 719 /// to eliminate casts. 720 bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, 721 const SCEV *LHS, const SCEV *RHS); 722 723 /// getSmallConstantTripCount - Returns the maximum trip count of this loop 724 /// as a normal unsigned value, if possible. Returns 0 if the trip count is 725 /// unknown or not constant. 726 unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitBlock); 727 728 /// getSmallConstantTripMultiple - Returns the largest constant divisor of 729 /// the trip count of this loop as a normal unsigned value, if 730 /// possible. This means that the actual trip count is always a multiple of 731 /// the returned value (don't forget the trip count could very well be zero 732 /// as well!). 733 unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitBlock); 734 735 // getExitCount - Get the expression for the number of loop iterations for 736 // which this loop is guaranteed not to exit via ExitingBlock. Otherwise 737 // return SCEVCouldNotCompute. 738 const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock); 739 740 /// getBackedgeTakenCount - If the specified loop has a predictable 741 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 742 /// object. The backedge-taken count is the number of times the loop header 743 /// will be branched to from within the loop. This is one less than the 744 /// trip count of the loop, since it doesn't count the first iteration, 745 /// when the header is branched to from outside the loop. 746 /// 747 /// Note that it is not valid to call this method on a loop without a 748 /// loop-invariant backedge-taken count (see 749 /// hasLoopInvariantBackedgeTakenCount). 750 /// 751 const SCEV *getBackedgeTakenCount(const Loop *L); 752 753 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 754 /// return the least SCEV value that is known never to be less than the 755 /// actual backedge taken count. 756 const SCEV *getMaxBackedgeTakenCount(const Loop *L); 757 758 /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop 759 /// has an analyzable loop-invariant backedge-taken count. 760 bool hasLoopInvariantBackedgeTakenCount(const Loop *L); 761 762 /// forgetLoop - This method should be called by the client when it has 763 /// changed a loop in a way that may effect ScalarEvolution's ability to 764 /// compute a trip count, or if the loop is deleted. 765 void forgetLoop(const Loop *L); 766 767 /// forgetValue - This method should be called by the client when it has 768 /// changed a value in a way that may effect its value, or which may 769 /// disconnect it from a def-use chain linking it to a loop. 770 void forgetValue(Value *V); 771 772 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S 773 /// is guaranteed to end in (at every loop iteration). It is, at the same 774 /// time, the minimum number of times S is divisible by 2. For example, 775 /// given {4,+,8} it returns 2. If S is guaranteed to be 0, it returns the 776 /// bitwidth of S. 777 uint32_t GetMinTrailingZeros(const SCEV *S); 778 779 /// getUnsignedRange - Determine the unsigned range for a particular SCEV. 780 /// 781 ConstantRange getUnsignedRange(const SCEV *S); 782 783 /// getSignedRange - Determine the signed range for a particular SCEV. 784 /// 785 ConstantRange getSignedRange(const SCEV *S); 786 787 /// isKnownNegative - Test if the given expression is known to be negative. 788 /// 789 bool isKnownNegative(const SCEV *S); 790 791 /// isKnownPositive - Test if the given expression is known to be positive. 792 /// 793 bool isKnownPositive(const SCEV *S); 794 795 /// isKnownNonNegative - Test if the given expression is known to be 796 /// non-negative. 797 /// 798 bool isKnownNonNegative(const SCEV *S); 799 800 /// isKnownNonPositive - Test if the given expression is known to be 801 /// non-positive. 802 /// 803 bool isKnownNonPositive(const SCEV *S); 804 805 /// isKnownNonZero - Test if the given expression is known to be 806 /// non-zero. 807 /// 808 bool isKnownNonZero(const SCEV *S); 809 810 /// isKnownPredicate - Test if the given expression is known to satisfy 811 /// the condition described by Pred, LHS, and RHS. 812 /// 813 bool isKnownPredicate(ICmpInst::Predicate Pred, 814 const SCEV *LHS, const SCEV *RHS); 815 816 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 817 /// predicate Pred. Return true iff any changes were made. If the 818 /// operands are provably equal or inequal, LHS and RHS are set to 819 /// the same value and Pred is set to either ICMP_EQ or ICMP_NE. 820 /// 821 bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, 822 const SCEV *&LHS, 823 const SCEV *&RHS); 824 825 /// getLoopDisposition - Return the "disposition" of the given SCEV with 826 /// respect to the given loop. 827 LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); 828 829 /// isLoopInvariant - Return true if the value of the given SCEV is 830 /// unchanging in the specified loop. 831 bool isLoopInvariant(const SCEV *S, const Loop *L); 832 833 /// hasComputableLoopEvolution - Return true if the given SCEV changes value 834 /// in a known way in the specified loop. This property being true implies 835 /// that the value is variant in the loop AND that we can emit an expression 836 /// to compute the value of the expression at any particular loop iteration. 837 bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); 838 839 /// getLoopDisposition - Return the "disposition" of the given SCEV with 840 /// respect to the given block. 841 BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); 842 843 /// dominates - Return true if elements that makes up the given SCEV 844 /// dominate the specified basic block. 845 bool dominates(const SCEV *S, const BasicBlock *BB); 846 847 /// properlyDominates - Return true if elements that makes up the given SCEV 848 /// properly dominate the specified basic block. 849 bool properlyDominates(const SCEV *S, const BasicBlock *BB); 850 851 /// hasOperand - Test whether the given SCEV has Op as a direct or 852 /// indirect operand. 853 bool hasOperand(const SCEV *S, const SCEV *Op) const; 854 855 virtual bool runOnFunction(Function &F); 856 virtual void releaseMemory(); 857 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 858 virtual void print(raw_ostream &OS, const Module* = 0) const; 859 860 private: 861 FoldingSet<SCEV> UniqueSCEVs; 862 BumpPtrAllocator SCEVAllocator; 863 864 /// FirstUnknown - The head of a linked list of all SCEVUnknown 865 /// values that have been allocated. This is used by releaseMemory 866 /// to locate them all and call their destructors. 867 SCEVUnknown *FirstUnknown; 868 }; 869 } 870 871 #endif 872