1 //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the Instruction class, which is the 11 // base class for all of the LLVM instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_INSTRUCTION_H 16 #define LLVM_INSTRUCTION_H 17 18 #include "llvm/User.h" 19 #include "llvm/ADT/ilist_node.h" 20 #include "llvm/Support/DebugLoc.h" 21 22 namespace llvm { 23 24 class LLVMContext; 25 class MDNode; 26 27 template<typename ValueSubClass, typename ItemParentClass> 28 class SymbolTableListTraits; 29 30 class Instruction : public User, public ilist_node<Instruction> { 31 void operator=(const Instruction &); // Do not implement 32 Instruction(const Instruction &); // Do not implement 33 34 BasicBlock *Parent; 35 DebugLoc DbgLoc; // 'dbg' Metadata cache. 36 37 enum { 38 /// HasMetadataBit - This is a bit stored in the SubClassData field which 39 /// indicates whether this instruction has metadata attached to it or not. 40 HasMetadataBit = 1 << 15 41 }; 42 public: 43 // Out of line virtual method, so the vtable, etc has a home. 44 ~Instruction(); 45 46 /// use_back - Specialize the methods defined in Value, as we know that an 47 /// instruction can only be used by other instructions. use_back()48 Instruction *use_back() { return cast<Instruction>(*use_begin());} use_back()49 const Instruction *use_back() const { return cast<Instruction>(*use_begin());} 50 getParent()51 inline const BasicBlock *getParent() const { return Parent; } getParent()52 inline BasicBlock *getParent() { return Parent; } 53 54 /// removeFromParent - This method unlinks 'this' from the containing basic 55 /// block, but does not delete it. 56 /// 57 void removeFromParent(); 58 59 /// eraseFromParent - This method unlinks 'this' from the containing basic 60 /// block and deletes it. 61 /// 62 void eraseFromParent(); 63 64 /// insertBefore - Insert an unlinked instructions into a basic block 65 /// immediately before the specified instruction. 66 void insertBefore(Instruction *InsertPos); 67 68 /// insertAfter - Insert an unlinked instructions into a basic block 69 /// immediately after the specified instruction. 70 void insertAfter(Instruction *InsertPos); 71 72 /// moveBefore - Unlink this instruction from its current basic block and 73 /// insert it into the basic block that MovePos lives in, right before 74 /// MovePos. 75 void moveBefore(Instruction *MovePos); 76 77 //===--------------------------------------------------------------------===// 78 // Subclass classification. 79 //===--------------------------------------------------------------------===// 80 81 /// getOpcode() returns a member of one of the enums like Instruction::Add. getOpcode()82 unsigned getOpcode() const { return getValueID() - InstructionVal; } 83 getOpcodeName()84 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } isTerminator()85 bool isTerminator() const { return isTerminator(getOpcode()); } isBinaryOp()86 bool isBinaryOp() const { return isBinaryOp(getOpcode()); } isShift()87 bool isShift() { return isShift(getOpcode()); } isCast()88 bool isCast() const { return isCast(getOpcode()); } 89 90 static const char* getOpcodeName(unsigned OpCode); 91 isTerminator(unsigned OpCode)92 static inline bool isTerminator(unsigned OpCode) { 93 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; 94 } 95 isBinaryOp(unsigned Opcode)96 static inline bool isBinaryOp(unsigned Opcode) { 97 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; 98 } 99 100 /// @brief Determine if the Opcode is one of the shift instructions. isShift(unsigned Opcode)101 static inline bool isShift(unsigned Opcode) { 102 return Opcode >= Shl && Opcode <= AShr; 103 } 104 105 /// isLogicalShift - Return true if this is a logical shift left or a logical 106 /// shift right. isLogicalShift()107 inline bool isLogicalShift() const { 108 return getOpcode() == Shl || getOpcode() == LShr; 109 } 110 111 /// isArithmeticShift - Return true if this is an arithmetic shift right. isArithmeticShift()112 inline bool isArithmeticShift() const { 113 return getOpcode() == AShr; 114 } 115 116 /// @brief Determine if the OpCode is one of the CastInst instructions. isCast(unsigned OpCode)117 static inline bool isCast(unsigned OpCode) { 118 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; 119 } 120 121 //===--------------------------------------------------------------------===// 122 // Metadata manipulation. 123 //===--------------------------------------------------------------------===// 124 125 /// hasMetadata() - Return true if this instruction has any metadata attached 126 /// to it. hasMetadata()127 bool hasMetadata() const { 128 return !DbgLoc.isUnknown() || hasMetadataHashEntry(); 129 } 130 131 /// hasMetadataOtherThanDebugLoc - Return true if this instruction has 132 /// metadata attached to it other than a debug location. hasMetadataOtherThanDebugLoc()133 bool hasMetadataOtherThanDebugLoc() const { 134 return hasMetadataHashEntry(); 135 } 136 137 /// getMetadata - Get the metadata of given kind attached to this Instruction. 138 /// If the metadata is not found then return null. getMetadata(unsigned KindID)139 MDNode *getMetadata(unsigned KindID) const { 140 if (!hasMetadata()) return 0; 141 return getMetadataImpl(KindID); 142 } 143 144 /// getMetadata - Get the metadata of given kind attached to this Instruction. 145 /// If the metadata is not found then return null. getMetadata(const char * Kind)146 MDNode *getMetadata(const char *Kind) const { 147 if (!hasMetadata()) return 0; 148 return getMetadataImpl(Kind); 149 } 150 151 /// getAllMetadata - Get all metadata attached to this Instruction. The first 152 /// element of each pair returned is the KindID, the second element is the 153 /// metadata value. This list is returned sorted by the KindID. getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs)154 void getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode*> > &MDs)const{ 155 if (hasMetadata()) 156 getAllMetadataImpl(MDs); 157 } 158 159 /// getAllMetadataOtherThanDebugLoc - This does the same thing as 160 /// getAllMetadata, except that it filters out the debug location. getAllMetadataOtherThanDebugLoc(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs)161 void getAllMetadataOtherThanDebugLoc(SmallVectorImpl<std::pair<unsigned, 162 MDNode*> > &MDs) const { 163 if (hasMetadataOtherThanDebugLoc()) 164 getAllMetadataOtherThanDebugLocImpl(MDs); 165 } 166 167 /// setMetadata - Set the metadata of the specified kind to the specified 168 /// node. This updates/replaces metadata if already present, or removes it if 169 /// Node is null. 170 void setMetadata(unsigned KindID, MDNode *Node); 171 void setMetadata(const char *Kind, MDNode *Node); 172 173 /// setDebugLoc - Set the debug location information for this instruction. setDebugLoc(const DebugLoc & Loc)174 void setDebugLoc(const DebugLoc &Loc) { DbgLoc = Loc; } 175 176 /// getDebugLoc - Return the debug location for this node as a DebugLoc. getDebugLoc()177 const DebugLoc &getDebugLoc() const { return DbgLoc; } 178 179 private: 180 /// hasMetadataHashEntry - Return true if we have an entry in the on-the-side 181 /// metadata hash. hasMetadataHashEntry()182 bool hasMetadataHashEntry() const { 183 return (getSubclassDataFromValue() & HasMetadataBit) != 0; 184 } 185 186 // These are all implemented in Metadata.cpp. 187 MDNode *getMetadataImpl(unsigned KindID) const; 188 MDNode *getMetadataImpl(const char *Kind) const; 189 void getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode*> > &)const; 190 void getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, 191 MDNode*> > &) const; 192 void clearMetadataHashEntries(); 193 public: 194 //===--------------------------------------------------------------------===// 195 // Predicates and helper methods. 196 //===--------------------------------------------------------------------===// 197 198 199 /// isAssociative - Return true if the instruction is associative: 200 /// 201 /// Associative operators satisfy: x op (y op z) === (x op y) op z 202 /// 203 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. 204 /// isAssociative()205 bool isAssociative() const { return isAssociative(getOpcode()); } 206 static bool isAssociative(unsigned op); 207 208 /// isCommutative - Return true if the instruction is commutative: 209 /// 210 /// Commutative operators satisfy: (x op y) === (y op x) 211 /// 212 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when 213 /// applied to any type. 214 /// isCommutative()215 bool isCommutative() const { return isCommutative(getOpcode()); } 216 static bool isCommutative(unsigned op); 217 218 /// mayWriteToMemory - Return true if this instruction may modify memory. 219 /// 220 bool mayWriteToMemory() const; 221 222 /// mayReadFromMemory - Return true if this instruction may read memory. 223 /// 224 bool mayReadFromMemory() const; 225 226 /// mayReadOrWriteMemory - Return true if this instruction may read or 227 /// write memory. 228 /// mayReadOrWriteMemory()229 bool mayReadOrWriteMemory() const { 230 return mayReadFromMemory() || mayWriteToMemory(); 231 } 232 233 /// mayThrow - Return true if this instruction may throw an exception. 234 /// 235 bool mayThrow() const; 236 237 /// mayHaveSideEffects - Return true if the instruction may have side effects. 238 /// 239 /// Note that this does not consider malloc and alloca to have side 240 /// effects because the newly allocated memory is completely invisible to 241 /// instructions which don't used the returned value. For cases where this 242 /// matters, isSafeToSpeculativelyExecute may be more appropriate. mayHaveSideEffects()243 bool mayHaveSideEffects() const { 244 return mayWriteToMemory() || mayThrow(); 245 } 246 247 /// isSafeToSpeculativelyExecute - Return true if the instruction does not 248 /// have any effects besides calculating the result and does not have 249 /// undefined behavior. 250 /// 251 /// This method never returns true for an instruction that returns true for 252 /// mayHaveSideEffects; however, this method also does some other checks in 253 /// addition. It checks for undefined behavior, like dividing by zero or 254 /// loading from an invalid pointer (but not for undefined results, like a 255 /// shift with a shift amount larger than the width of the result). It checks 256 /// for malloc and alloca because speculatively executing them might cause a 257 /// memory leak. It also returns false for instructions related to control 258 /// flow, specifically terminators and PHI nodes. 259 /// 260 /// This method only looks at the instruction itself and its operands, so if 261 /// this method returns true, it is safe to move the instruction as long as 262 /// the correct dominance relationships for the operands and users hold. 263 /// However, this method can return true for instructions that read memory; 264 /// for such instructions, moving them may change the resulting value. 265 bool isSafeToSpeculativelyExecute() const; 266 267 /// clone() - Create a copy of 'this' instruction that is identical in all 268 /// ways except the following: 269 /// * The instruction has no parent 270 /// * The instruction has no name 271 /// 272 Instruction *clone() const; 273 274 /// isIdenticalTo - Return true if the specified instruction is exactly 275 /// identical to the current one. This means that all operands match and any 276 /// extra information (e.g. load is volatile) agree. 277 bool isIdenticalTo(const Instruction *I) const; 278 279 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it 280 /// ignores the SubclassOptionalData flags, which specify conditions 281 /// under which the instruction's result is undefined. 282 bool isIdenticalToWhenDefined(const Instruction *I) const; 283 284 /// This function determines if the specified instruction executes the same 285 /// operation as the current one. This means that the opcodes, type, operand 286 /// types and any other factors affecting the operation must be the same. This 287 /// is similar to isIdenticalTo except the operands themselves don't have to 288 /// be identical. 289 /// @returns true if the specified instruction is the same operation as 290 /// the current one. 291 /// @brief Determine if one instruction is the same operation as another. 292 bool isSameOperationAs(const Instruction *I) const; 293 294 /// isUsedOutsideOfBlock - Return true if there are any uses of this 295 /// instruction in blocks other than the specified block. Note that PHI nodes 296 /// are considered to evaluate their operands in the corresponding predecessor 297 /// block. 298 bool isUsedOutsideOfBlock(const BasicBlock *BB) const; 299 300 301 /// Methods for support type inquiry through isa, cast, and dyn_cast: classof(const Instruction *)302 static inline bool classof(const Instruction *) { return true; } classof(const Value * V)303 static inline bool classof(const Value *V) { 304 return V->getValueID() >= Value::InstructionVal; 305 } 306 307 //---------------------------------------------------------------------- 308 // Exported enumerations. 309 // 310 enum TermOps { // These terminate basic blocks 311 #define FIRST_TERM_INST(N) TermOpsBegin = N, 312 #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, 313 #define LAST_TERM_INST(N) TermOpsEnd = N+1 314 #include "llvm/Instruction.def" 315 }; 316 317 enum BinaryOps { 318 #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, 319 #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, 320 #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 321 #include "llvm/Instruction.def" 322 }; 323 324 enum MemoryOps { 325 #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, 326 #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, 327 #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 328 #include "llvm/Instruction.def" 329 }; 330 331 enum CastOps { 332 #define FIRST_CAST_INST(N) CastOpsBegin = N, 333 #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, 334 #define LAST_CAST_INST(N) CastOpsEnd = N+1 335 #include "llvm/Instruction.def" 336 }; 337 338 enum OtherOps { 339 #define FIRST_OTHER_INST(N) OtherOpsBegin = N, 340 #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, 341 #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 342 #include "llvm/Instruction.def" 343 }; 344 private: 345 // Shadow Value::setValueSubclassData with a private forwarding method so that 346 // subclasses cannot accidentally use it. setValueSubclassData(unsigned short D)347 void setValueSubclassData(unsigned short D) { 348 Value::setValueSubclassData(D); 349 } getSubclassDataFromValue()350 unsigned short getSubclassDataFromValue() const { 351 return Value::getSubclassDataFromValue(); 352 } 353 setHasMetadataHashEntry(bool V)354 void setHasMetadataHashEntry(bool V) { 355 setValueSubclassData((getSubclassDataFromValue() & ~HasMetadataBit) | 356 (V ? HasMetadataBit : 0)); 357 } 358 359 friend class SymbolTableListTraits<Instruction, BasicBlock>; 360 void setParent(BasicBlock *P); 361 protected: 362 // Instruction subclasses can stick up to 15 bits of stuff into the 363 // SubclassData field of instruction with these members. 364 365 // Verify that only the low 15 bits are used. setInstructionSubclassData(unsigned short D)366 void setInstructionSubclassData(unsigned short D) { 367 assert((D & HasMetadataBit) == 0 && "Out of range value put into field"); 368 setValueSubclassData((getSubclassDataFromValue() & HasMetadataBit) | D); 369 } 370 getSubclassDataFromInstruction()371 unsigned getSubclassDataFromInstruction() const { 372 return getSubclassDataFromValue() & ~HasMetadataBit; 373 } 374 375 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, 376 Instruction *InsertBefore = 0); 377 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, 378 BasicBlock *InsertAtEnd); 379 virtual Instruction *clone_impl() const = 0; 380 381 }; 382 383 // Instruction* is only 4-byte aligned. 384 template<> 385 class PointerLikeTypeTraits<Instruction*> { 386 typedef Instruction* PT; 387 public: getAsVoidPointer(PT P)388 static inline void *getAsVoidPointer(PT P) { return P; } getFromVoidPointer(void * P)389 static inline PT getFromVoidPointer(void *P) { 390 return static_cast<PT>(P); 391 } 392 enum { NumLowBitsAvailable = 2 }; 393 }; 394 395 } // End llvm namespace 396 397 #endif 398