1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains some functions that are useful for math stuff.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
15 #define LLVM_SUPPORT_MATHEXTRAS_H
16 
17 #include "llvm/Support/SwapByteOrder.h"
18 
19 namespace llvm {
20 
21 // NOTE: The following support functions use the _32/_64 extensions instead of
22 // type overloading so that signed and unsigned integers can be used without
23 // ambiguity.
24 
25 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
Hi_32(uint64_t Value)26 inline uint32_t Hi_32(uint64_t Value) {
27   return static_cast<uint32_t>(Value >> 32);
28 }
29 
30 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
Lo_32(uint64_t Value)31 inline uint32_t Lo_32(uint64_t Value) {
32   return static_cast<uint32_t>(Value);
33 }
34 
35 /// isInt - Checks if an integer fits into the given bit width.
36 template<unsigned N>
isInt(int64_t x)37 inline bool isInt(int64_t x) {
38   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
39 }
40 // Template specializations to get better code for common cases.
41 template<>
42 inline bool isInt<8>(int64_t x) {
43   return static_cast<int8_t>(x) == x;
44 }
45 template<>
46 inline bool isInt<16>(int64_t x) {
47   return static_cast<int16_t>(x) == x;
48 }
49 template<>
50 inline bool isInt<32>(int64_t x) {
51   return static_cast<int32_t>(x) == x;
52 }
53 
54 /// isUInt - Checks if an unsigned integer fits into the given bit width.
55 template<unsigned N>
isUInt(uint64_t x)56 inline bool isUInt(uint64_t x) {
57   return N >= 64 || x < (UINT64_C(1)<<N);
58 }
59 // Template specializations to get better code for common cases.
60 template<>
61 inline bool isUInt<8>(uint64_t x) {
62   return static_cast<uint8_t>(x) == x;
63 }
64 template<>
65 inline bool isUInt<16>(uint64_t x) {
66   return static_cast<uint16_t>(x) == x;
67 }
68 template<>
69 inline bool isUInt<32>(uint64_t x) {
70   return static_cast<uint32_t>(x) == x;
71 }
72 
73 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
74 /// bit width.
isUIntN(unsigned N,uint64_t x)75 inline bool isUIntN(unsigned N, uint64_t x) {
76   return x == (x & (~0ULL >> (64 - N)));
77 }
78 
79 /// isIntN - Checks if an signed integer fits into the given (dynamic)
80 /// bit width.
isIntN(unsigned N,int64_t x)81 inline bool isIntN(unsigned N, int64_t x) {
82   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
83 }
84 
85 /// isMask_32 - This function returns true if the argument is a sequence of ones
86 /// starting at the least significant bit with the remainder zero (32 bit
87 /// version).   Ex. isMask_32(0x0000FFFFU) == true.
isMask_32(uint32_t Value)88 inline bool isMask_32(uint32_t Value) {
89   return Value && ((Value + 1) & Value) == 0;
90 }
91 
92 /// isMask_64 - This function returns true if the argument is a sequence of ones
93 /// starting at the least significant bit with the remainder zero (64 bit
94 /// version).
isMask_64(uint64_t Value)95 inline bool isMask_64(uint64_t Value) {
96   return Value && ((Value + 1) & Value) == 0;
97 }
98 
99 /// isShiftedMask_32 - This function returns true if the argument contains a
100 /// sequence of ones with the remainder zero (32 bit version.)
101 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
isShiftedMask_32(uint32_t Value)102 inline bool isShiftedMask_32(uint32_t Value) {
103   return isMask_32((Value - 1) | Value);
104 }
105 
106 /// isShiftedMask_64 - This function returns true if the argument contains a
107 /// sequence of ones with the remainder zero (64 bit version.)
isShiftedMask_64(uint64_t Value)108 inline bool isShiftedMask_64(uint64_t Value) {
109   return isMask_64((Value - 1) | Value);
110 }
111 
112 /// isPowerOf2_32 - This function returns true if the argument is a power of
113 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
isPowerOf2_32(uint32_t Value)114 inline bool isPowerOf2_32(uint32_t Value) {
115   return Value && !(Value & (Value - 1));
116 }
117 
118 /// isPowerOf2_64 - This function returns true if the argument is a power of two
119 /// > 0 (64 bit edition.)
isPowerOf2_64(uint64_t Value)120 inline bool isPowerOf2_64(uint64_t Value) {
121   return Value && !(Value & (Value - int64_t(1L)));
122 }
123 
124 /// ByteSwap_16 - This function returns a byte-swapped representation of the
125 /// 16-bit argument, Value.
ByteSwap_16(uint16_t Value)126 inline uint16_t ByteSwap_16(uint16_t Value) {
127   return sys::SwapByteOrder_16(Value);
128 }
129 
130 /// ByteSwap_32 - This function returns a byte-swapped representation of the
131 /// 32-bit argument, Value.
ByteSwap_32(uint32_t Value)132 inline uint32_t ByteSwap_32(uint32_t Value) {
133   return sys::SwapByteOrder_32(Value);
134 }
135 
136 /// ByteSwap_64 - This function returns a byte-swapped representation of the
137 /// 64-bit argument, Value.
ByteSwap_64(uint64_t Value)138 inline uint64_t ByteSwap_64(uint64_t Value) {
139   return sys::SwapByteOrder_64(Value);
140 }
141 
142 /// CountLeadingZeros_32 - this function performs the platform optimal form of
143 /// counting the number of zeros from the most significant bit to the first one
144 /// bit.  Ex. CountLeadingZeros_32(0x00F000FF) == 8.
145 /// Returns 32 if the word is zero.
CountLeadingZeros_32(uint32_t Value)146 inline unsigned CountLeadingZeros_32(uint32_t Value) {
147   unsigned Count; // result
148 #if __GNUC__ >= 4
149   // PowerPC is defined for __builtin_clz(0)
150 #if !defined(__ppc__) && !defined(__ppc64__)
151   if (!Value) return 32;
152 #endif
153   Count = __builtin_clz(Value);
154 #else
155   if (!Value) return 32;
156   Count = 0;
157   // bisection method for count leading zeros
158   for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
159     uint32_t Tmp = Value >> Shift;
160     if (Tmp) {
161       Value = Tmp;
162     } else {
163       Count |= Shift;
164     }
165   }
166 #endif
167   return Count;
168 }
169 
170 /// CountLeadingOnes_32 - this function performs the operation of
171 /// counting the number of ones from the most significant bit to the first zero
172 /// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
173 /// Returns 32 if the word is all ones.
CountLeadingOnes_32(uint32_t Value)174 inline unsigned CountLeadingOnes_32(uint32_t Value) {
175   return CountLeadingZeros_32(~Value);
176 }
177 
178 /// CountLeadingZeros_64 - This function performs the platform optimal form
179 /// of counting the number of zeros from the most significant bit to the first
180 /// one bit (64 bit edition.)
181 /// Returns 64 if the word is zero.
CountLeadingZeros_64(uint64_t Value)182 inline unsigned CountLeadingZeros_64(uint64_t Value) {
183   unsigned Count; // result
184 #if __GNUC__ >= 4
185   // PowerPC is defined for __builtin_clzll(0)
186 #if !defined(__ppc__) && !defined(__ppc64__)
187   if (!Value) return 64;
188 #endif
189   Count = __builtin_clzll(Value);
190 #else
191   if (sizeof(long) == sizeof(int64_t)) {
192     if (!Value) return 64;
193     Count = 0;
194     // bisection method for count leading zeros
195     for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
196       uint64_t Tmp = Value >> Shift;
197       if (Tmp) {
198         Value = Tmp;
199       } else {
200         Count |= Shift;
201       }
202     }
203   } else {
204     // get hi portion
205     uint32_t Hi = Hi_32(Value);
206 
207     // if some bits in hi portion
208     if (Hi) {
209         // leading zeros in hi portion plus all bits in lo portion
210         Count = CountLeadingZeros_32(Hi);
211     } else {
212         // get lo portion
213         uint32_t Lo = Lo_32(Value);
214         // same as 32 bit value
215         Count = CountLeadingZeros_32(Lo)+32;
216     }
217   }
218 #endif
219   return Count;
220 }
221 
222 /// CountLeadingOnes_64 - This function performs the operation
223 /// of counting the number of ones from the most significant bit to the first
224 /// zero bit (64 bit edition.)
225 /// Returns 64 if the word is all ones.
CountLeadingOnes_64(uint64_t Value)226 inline unsigned CountLeadingOnes_64(uint64_t Value) {
227   return CountLeadingZeros_64(~Value);
228 }
229 
230 /// CountTrailingZeros_32 - this function performs the platform optimal form of
231 /// counting the number of zeros from the least significant bit to the first one
232 /// bit.  Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
233 /// Returns 32 if the word is zero.
CountTrailingZeros_32(uint32_t Value)234 inline unsigned CountTrailingZeros_32(uint32_t Value) {
235 #if __GNUC__ >= 4
236   return Value ? __builtin_ctz(Value) : 32;
237 #else
238   static const unsigned Mod37BitPosition[] = {
239     32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
240     4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
241     5, 20, 8, 19, 18
242   };
243   return Mod37BitPosition[(~(Value - 1) & Value) % 37];
244 #endif
245 }
246 
247 /// CountTrailingOnes_32 - this function performs the operation of
248 /// counting the number of ones from the least significant bit to the first zero
249 /// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
250 /// Returns 32 if the word is all ones.
CountTrailingOnes_32(uint32_t Value)251 inline unsigned CountTrailingOnes_32(uint32_t Value) {
252   return CountTrailingZeros_32(~Value);
253 }
254 
255 /// CountTrailingZeros_64 - This function performs the platform optimal form
256 /// of counting the number of zeros from the least significant bit to the first
257 /// one bit (64 bit edition.)
258 /// Returns 64 if the word is zero.
CountTrailingZeros_64(uint64_t Value)259 inline unsigned CountTrailingZeros_64(uint64_t Value) {
260 #if __GNUC__ >= 4
261   return Value ? __builtin_ctzll(Value) : 64;
262 #else
263   static const unsigned Mod67Position[] = {
264     64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
265     4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
266     47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
267     29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
268     7, 48, 35, 6, 34, 33, 0
269   };
270   return Mod67Position[(~(Value - 1) & Value) % 67];
271 #endif
272 }
273 
274 /// CountTrailingOnes_64 - This function performs the operation
275 /// of counting the number of ones from the least significant bit to the first
276 /// zero bit (64 bit edition.)
277 /// Returns 64 if the word is all ones.
CountTrailingOnes_64(uint64_t Value)278 inline unsigned CountTrailingOnes_64(uint64_t Value) {
279   return CountTrailingZeros_64(~Value);
280 }
281 
282 /// CountPopulation_32 - this function counts the number of set bits in a value.
283 /// Ex. CountPopulation(0xF000F000) = 8
284 /// Returns 0 if the word is zero.
CountPopulation_32(uint32_t Value)285 inline unsigned CountPopulation_32(uint32_t Value) {
286 #if __GNUC__ >= 4
287   return __builtin_popcount(Value);
288 #else
289   uint32_t v = Value - ((Value >> 1) & 0x55555555);
290   v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
291   return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
292 #endif
293 }
294 
295 /// CountPopulation_64 - this function counts the number of set bits in a value,
296 /// (64 bit edition.)
CountPopulation_64(uint64_t Value)297 inline unsigned CountPopulation_64(uint64_t Value) {
298 #if __GNUC__ >= 4
299   return __builtin_popcountll(Value);
300 #else
301   uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
302   v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
303   v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
304   return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
305 #endif
306 }
307 
308 /// Log2_32 - This function returns the floor log base 2 of the specified value,
309 /// -1 if the value is zero. (32 bit edition.)
310 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
Log2_32(uint32_t Value)311 inline unsigned Log2_32(uint32_t Value) {
312   return 31 - CountLeadingZeros_32(Value);
313 }
314 
315 /// Log2_64 - This function returns the floor log base 2 of the specified value,
316 /// -1 if the value is zero. (64 bit edition.)
Log2_64(uint64_t Value)317 inline unsigned Log2_64(uint64_t Value) {
318   return 63 - CountLeadingZeros_64(Value);
319 }
320 
321 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
322 /// value, 32 if the value is zero. (32 bit edition).
323 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
Log2_32_Ceil(uint32_t Value)324 inline unsigned Log2_32_Ceil(uint32_t Value) {
325   return 32-CountLeadingZeros_32(Value-1);
326 }
327 
328 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
329 /// value, 64 if the value is zero. (64 bit edition.)
Log2_64_Ceil(uint64_t Value)330 inline unsigned Log2_64_Ceil(uint64_t Value) {
331   return 64-CountLeadingZeros_64(Value-1);
332 }
333 
334 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
335 /// values using Euclid's algorithm.
GreatestCommonDivisor64(uint64_t A,uint64_t B)336 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
337   while (B) {
338     uint64_t T = B;
339     B = A % B;
340     A = T;
341   }
342   return A;
343 }
344 
345 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
346 /// equivalent double.
BitsToDouble(uint64_t Bits)347 inline double BitsToDouble(uint64_t Bits) {
348   union {
349     uint64_t L;
350     double D;
351   } T;
352   T.L = Bits;
353   return T.D;
354 }
355 
356 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
357 /// equivalent float.
BitsToFloat(uint32_t Bits)358 inline float BitsToFloat(uint32_t Bits) {
359   union {
360     uint32_t I;
361     float F;
362   } T;
363   T.I = Bits;
364   return T.F;
365 }
366 
367 /// DoubleToBits - This function takes a double and returns the bit
368 /// equivalent 64-bit integer.  Note that copying doubles around
369 /// changes the bits of NaNs on some hosts, notably x86, so this
370 /// routine cannot be used if these bits are needed.
DoubleToBits(double Double)371 inline uint64_t DoubleToBits(double Double) {
372   union {
373     uint64_t L;
374     double D;
375   } T;
376   T.D = Double;
377   return T.L;
378 }
379 
380 /// FloatToBits - This function takes a float and returns the bit
381 /// equivalent 32-bit integer.  Note that copying floats around
382 /// changes the bits of NaNs on some hosts, notably x86, so this
383 /// routine cannot be used if these bits are needed.
FloatToBits(float Float)384 inline uint32_t FloatToBits(float Float) {
385   union {
386     uint32_t I;
387     float F;
388   } T;
389   T.F = Float;
390   return T.I;
391 }
392 
393 /// Platform-independent wrappers for the C99 isnan() function.
394 int IsNAN(float f);
395 int IsNAN(double d);
396 
397 /// Platform-independent wrappers for the C99 isinf() function.
398 int IsInf(float f);
399 int IsInf(double d);
400 
401 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
402 /// alignment that may be assumed after adding the two together.
MinAlign(uint64_t A,uint64_t B)403 static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
404   // The largest power of 2 that divides both A and B.
405   return (A | B) & ~((A | B) - 1);
406 }
407 
408 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
409 /// that is strictly greater than A.  Returns zero on overflow.
NextPowerOf2(uint64_t A)410 static inline uint64_t NextPowerOf2(uint64_t A) {
411   A |= (A >> 1);
412   A |= (A >> 2);
413   A |= (A >> 4);
414   A |= (A >> 8);
415   A |= (A >> 16);
416   A |= (A >> 32);
417   return A + 1;
418 }
419 
420 /// RoundUpToAlignment - Returns the next integer (mod 2**64) that is
421 /// greater than or equal to \arg Value and is a multiple of \arg
422 /// Align. Align must be non-zero.
423 ///
424 /// Examples:
425 /// RoundUpToAlignment(5, 8) = 8
426 /// RoundUpToAlignment(17, 8) = 24
427 /// RoundUpToAlignment(~0LL, 8) = 0
RoundUpToAlignment(uint64_t Value,uint64_t Align)428 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
429   return ((Value + Align - 1) / Align) * Align;
430 }
431 
432 /// OffsetToAlignment - Return the offset to the next integer (mod 2**64) that
433 /// is greater than or equal to \arg Value and is a multiple of \arg
434 /// Align. Align must be non-zero.
OffsetToAlignment(uint64_t Value,uint64_t Align)435 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
436   return RoundUpToAlignment(Value, Align) - Value;
437 }
438 
439 /// abs64 - absolute value of a 64-bit int.  Not all environments support
440 /// "abs" on whatever their name for the 64-bit int type is.  The absolute
441 /// value of the largest negative number is undefined, as with "abs".
abs64(int64_t x)442 inline int64_t abs64(int64_t x) {
443   return (x < 0) ? -x : x;
444 }
445 
446 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
447 /// Usage int32_t r = SignExtend32<5>(x);
SignExtend32(uint32_t x)448 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
449   return int32_t(x << (32 - B)) >> (32 - B);
450 }
451 
452 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
453 /// Usage int64_t r = SignExtend64<5>(x);
SignExtend64(uint64_t x)454 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
455   return int64_t(x << (64 - B)) >> (64 - B);
456 }
457 
458 } // End llvm namespace
459 
460 #endif
461