1 //===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a template that implements the core algorithm for the
11 // SSAUpdater and MachineSSAUpdater.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
17 
18 namespace llvm {
19 
20 template<typename T> class SSAUpdaterTraits;
21 
22 template<typename UpdaterT>
23 class SSAUpdaterImpl {
24 private:
25   UpdaterT *Updater;
26 
27   typedef SSAUpdaterTraits<UpdaterT> Traits;
28   typedef typename Traits::BlkT BlkT;
29   typedef typename Traits::ValT ValT;
30   typedef typename Traits::PhiT PhiT;
31 
32   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
33   /// The predecessors of each block are cached here since pred_iterator is
34   /// slow and we need to iterate over the blocks at least a few times.
35   class BBInfo {
36   public:
37     BlkT *BB;          // Back-pointer to the corresponding block.
38     ValT AvailableVal; // Value to use in this block.
39     BBInfo *DefBB;     // Block that defines the available value.
40     int BlkNum;        // Postorder number.
41     BBInfo *IDom;      // Immediate dominator.
42     unsigned NumPreds; // Number of predecessor blocks.
43     BBInfo **Preds;    // Array[NumPreds] of predecessor blocks.
44     PhiT *PHITag;      // Marker for existing PHIs that match.
45 
BBInfo(BlkT * ThisBB,ValT V)46     BBInfo(BlkT *ThisBB, ValT V)
47       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
48       NumPreds(0), Preds(0), PHITag(0) { }
49   };
50 
51   typedef DenseMap<BlkT*, ValT> AvailableValsTy;
52   AvailableValsTy *AvailableVals;
53 
54   SmallVectorImpl<PhiT*> *InsertedPHIs;
55 
56   typedef SmallVectorImpl<BBInfo*> BlockListTy;
57   typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
58   BBMapTy BBMap;
59   BumpPtrAllocator Allocator;
60 
61 public:
SSAUpdaterImpl(UpdaterT * U,AvailableValsTy * A,SmallVectorImpl<PhiT * > * Ins)62   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
63                           SmallVectorImpl<PhiT*> *Ins) :
64     Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
65 
66   /// GetValue - Check to see if AvailableVals has an entry for the specified
67   /// BB and if so, return it.  If not, construct SSA form by first
68   /// calculating the required placement of PHIs and then inserting new PHIs
69   /// where needed.
GetValue(BlkT * BB)70   ValT GetValue(BlkT *BB) {
71     SmallVector<BBInfo*, 100> BlockList;
72     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
73 
74     // Special case: bail out if BB is unreachable.
75     if (BlockList.size() == 0) {
76       ValT V = Traits::GetUndefVal(BB, Updater);
77       (*AvailableVals)[BB] = V;
78       return V;
79     }
80 
81     FindDominators(&BlockList, PseudoEntry);
82     FindPHIPlacement(&BlockList);
83     FindAvailableVals(&BlockList);
84 
85     return BBMap[BB]->DefBB->AvailableVal;
86   }
87 
88   /// BuildBlockList - Starting from the specified basic block, traverse back
89   /// through its predecessors until reaching blocks with known values.
90   /// Create BBInfo structures for the blocks and append them to the block
91   /// list.
BuildBlockList(BlkT * BB,BlockListTy * BlockList)92   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
93     SmallVector<BBInfo*, 10> RootList;
94     SmallVector<BBInfo*, 64> WorkList;
95 
96     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
97     BBMap[BB] = Info;
98     WorkList.push_back(Info);
99 
100     // Search backward from BB, creating BBInfos along the way and stopping
101     // when reaching blocks that define the value.  Record those defining
102     // blocks on the RootList.
103     SmallVector<BlkT*, 10> Preds;
104     while (!WorkList.empty()) {
105       Info = WorkList.pop_back_val();
106       Preds.clear();
107       Traits::FindPredecessorBlocks(Info->BB, &Preds);
108       Info->NumPreds = Preds.size();
109       if (Info->NumPreds == 0)
110         Info->Preds = 0;
111       else
112         Info->Preds = static_cast<BBInfo**>
113           (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
114                               AlignOf<BBInfo*>::Alignment));
115 
116       for (unsigned p = 0; p != Info->NumPreds; ++p) {
117         BlkT *Pred = Preds[p];
118         // Check if BBMap already has a BBInfo for the predecessor block.
119         typename BBMapTy::value_type &BBMapBucket =
120           BBMap.FindAndConstruct(Pred);
121         if (BBMapBucket.second) {
122           Info->Preds[p] = BBMapBucket.second;
123           continue;
124         }
125 
126         // Create a new BBInfo for the predecessor.
127         ValT PredVal = AvailableVals->lookup(Pred);
128         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
129         BBMapBucket.second = PredInfo;
130         Info->Preds[p] = PredInfo;
131 
132         if (PredInfo->AvailableVal) {
133           RootList.push_back(PredInfo);
134           continue;
135         }
136         WorkList.push_back(PredInfo);
137       }
138     }
139 
140     // Now that we know what blocks are backwards-reachable from the starting
141     // block, do a forward depth-first traversal to assign postorder numbers
142     // to those blocks.
143     BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
144     unsigned BlkNum = 1;
145 
146     // Initialize the worklist with the roots from the backward traversal.
147     while (!RootList.empty()) {
148       Info = RootList.pop_back_val();
149       Info->IDom = PseudoEntry;
150       Info->BlkNum = -1;
151       WorkList.push_back(Info);
152     }
153 
154     while (!WorkList.empty()) {
155       Info = WorkList.back();
156 
157       if (Info->BlkNum == -2) {
158         // All the successors have been handled; assign the postorder number.
159         Info->BlkNum = BlkNum++;
160         // If not a root, put it on the BlockList.
161         if (!Info->AvailableVal)
162           BlockList->push_back(Info);
163         WorkList.pop_back();
164         continue;
165       }
166 
167       // Leave this entry on the worklist, but set its BlkNum to mark that its
168       // successors have been put on the worklist.  When it returns to the top
169       // the list, after handling its successors, it will be assigned a
170       // number.
171       Info->BlkNum = -2;
172 
173       // Add unvisited successors to the work list.
174       for (typename Traits::BlkSucc_iterator SI =
175              Traits::BlkSucc_begin(Info->BB),
176              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
177         BBInfo *SuccInfo = BBMap[*SI];
178         if (!SuccInfo || SuccInfo->BlkNum)
179           continue;
180         SuccInfo->BlkNum = -1;
181         WorkList.push_back(SuccInfo);
182       }
183     }
184     PseudoEntry->BlkNum = BlkNum;
185     return PseudoEntry;
186   }
187 
188   /// IntersectDominators - This is the dataflow lattice "meet" operation for
189   /// finding dominators.  Given two basic blocks, it walks up the dominator
190   /// tree until it finds a common dominator of both.  It uses the postorder
191   /// number of the blocks to determine how to do that.
IntersectDominators(BBInfo * Blk1,BBInfo * Blk2)192   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
193     while (Blk1 != Blk2) {
194       while (Blk1->BlkNum < Blk2->BlkNum) {
195         Blk1 = Blk1->IDom;
196         if (!Blk1)
197           return Blk2;
198       }
199       while (Blk2->BlkNum < Blk1->BlkNum) {
200         Blk2 = Blk2->IDom;
201         if (!Blk2)
202           return Blk1;
203       }
204     }
205     return Blk1;
206   }
207 
208   /// FindDominators - Calculate the dominator tree for the subset of the CFG
209   /// corresponding to the basic blocks on the BlockList.  This uses the
210   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
211   /// and Kennedy, published in Software--Practice and Experience, 2001,
212   /// 4:1-10.  Because the CFG subset does not include any edges leading into
213   /// blocks that define the value, the results are not the usual dominator
214   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
215   /// of root nodes for blocks that define the value.  The dominators for this
216   /// subset CFG are not the standard dominators but they are adequate for
217   /// placing PHIs within the subset CFG.
FindDominators(BlockListTy * BlockList,BBInfo * PseudoEntry)218   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
219     bool Changed;
220     do {
221       Changed = false;
222       // Iterate over the list in reverse order, i.e., forward on CFG edges.
223       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
224              E = BlockList->rend(); I != E; ++I) {
225         BBInfo *Info = *I;
226         BBInfo *NewIDom = 0;
227 
228         // Iterate through the block's predecessors.
229         for (unsigned p = 0; p != Info->NumPreds; ++p) {
230           BBInfo *Pred = Info->Preds[p];
231 
232           // Treat an unreachable predecessor as a definition with 'undef'.
233           if (Pred->BlkNum == 0) {
234             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
235             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
236             Pred->DefBB = Pred;
237             Pred->BlkNum = PseudoEntry->BlkNum;
238             PseudoEntry->BlkNum++;
239           }
240 
241           if (!NewIDom)
242             NewIDom = Pred;
243           else
244             NewIDom = IntersectDominators(NewIDom, Pred);
245         }
246 
247         // Check if the IDom value has changed.
248         if (NewIDom && NewIDom != Info->IDom) {
249           Info->IDom = NewIDom;
250           Changed = true;
251         }
252       }
253     } while (Changed);
254   }
255 
256   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
257   /// any blocks containing definitions of the value.  If one is found, then
258   /// the successor of Pred is in the dominance frontier for the definition,
259   /// and this function returns true.
IsDefInDomFrontier(const BBInfo * Pred,const BBInfo * IDom)260   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
261     for (; Pred != IDom; Pred = Pred->IDom) {
262       if (Pred->DefBB == Pred)
263         return true;
264     }
265     return false;
266   }
267 
268   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
269   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
270   /// until nothing changes.  Along the way, keep track of the nearest
271   /// dominating definitions for non-PHI blocks.
FindPHIPlacement(BlockListTy * BlockList)272   void FindPHIPlacement(BlockListTy *BlockList) {
273     bool Changed;
274     do {
275       Changed = false;
276       // Iterate over the list in reverse order, i.e., forward on CFG edges.
277       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
278              E = BlockList->rend(); I != E; ++I) {
279         BBInfo *Info = *I;
280 
281         // If this block already needs a PHI, there is nothing to do here.
282         if (Info->DefBB == Info)
283           continue;
284 
285         // Default to use the same def as the immediate dominator.
286         BBInfo *NewDefBB = Info->IDom->DefBB;
287         for (unsigned p = 0; p != Info->NumPreds; ++p) {
288           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
289             // Need a PHI here.
290             NewDefBB = Info;
291             break;
292           }
293         }
294 
295         // Check if anything changed.
296         if (NewDefBB != Info->DefBB) {
297           Info->DefBB = NewDefBB;
298           Changed = true;
299         }
300       }
301     } while (Changed);
302   }
303 
304   /// FindAvailableVal - If this block requires a PHI, first check if an
305   /// existing PHI matches the PHI placement and reaching definitions computed
306   /// earlier, and if not, create a new PHI.  Visit all the block's
307   /// predecessors to calculate the available value for each one and fill in
308   /// the incoming values for a new PHI.
FindAvailableVals(BlockListTy * BlockList)309   void FindAvailableVals(BlockListTy *BlockList) {
310     // Go through the worklist in forward order (i.e., backward through the CFG)
311     // and check if existing PHIs can be used.  If not, create empty PHIs where
312     // they are needed.
313     for (typename BlockListTy::iterator I = BlockList->begin(),
314            E = BlockList->end(); I != E; ++I) {
315       BBInfo *Info = *I;
316       // Check if there needs to be a PHI in BB.
317       if (Info->DefBB != Info)
318         continue;
319 
320       // Look for an existing PHI.
321       FindExistingPHI(Info->BB, BlockList);
322       if (Info->AvailableVal)
323         continue;
324 
325       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
326       Info->AvailableVal = PHI;
327       (*AvailableVals)[Info->BB] = PHI;
328     }
329 
330     // Now go back through the worklist in reverse order to fill in the
331     // arguments for any new PHIs added in the forward traversal.
332     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
333            E = BlockList->rend(); I != E; ++I) {
334       BBInfo *Info = *I;
335 
336       if (Info->DefBB != Info) {
337         // Record the available value at join nodes to speed up subsequent
338         // uses of this SSAUpdater for the same value.
339         if (Info->NumPreds > 1)
340           (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
341         continue;
342       }
343 
344       // Check if this block contains a newly added PHI.
345       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
346       if (!PHI)
347         continue;
348 
349       // Iterate through the block's predecessors.
350       for (unsigned p = 0; p != Info->NumPreds; ++p) {
351         BBInfo *PredInfo = Info->Preds[p];
352         BlkT *Pred = PredInfo->BB;
353         // Skip to the nearest preceding definition.
354         if (PredInfo->DefBB != PredInfo)
355           PredInfo = PredInfo->DefBB;
356         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
357       }
358 
359       DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
360 
361       // If the client wants to know about all new instructions, tell it.
362       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
363     }
364   }
365 
366   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
367   /// them match what is needed.
FindExistingPHI(BlkT * BB,BlockListTy * BlockList)368   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
369     for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
370          BBI != BBE; ++BBI) {
371       PhiT *SomePHI = Traits::InstrIsPHI(BBI);
372       if (!SomePHI)
373         break;
374       if (CheckIfPHIMatches(SomePHI)) {
375         RecordMatchingPHI(SomePHI);
376         break;
377       }
378       // Match failed: clear all the PHITag values.
379       for (typename BlockListTy::iterator I = BlockList->begin(),
380              E = BlockList->end(); I != E; ++I)
381         (*I)->PHITag = 0;
382     }
383   }
384 
385   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
386   /// in the BBMap.
CheckIfPHIMatches(PhiT * PHI)387   bool CheckIfPHIMatches(PhiT *PHI) {
388     SmallVector<PhiT*, 20> WorkList;
389     WorkList.push_back(PHI);
390 
391     // Mark that the block containing this PHI has been visited.
392     BBMap[PHI->getParent()]->PHITag = PHI;
393 
394     while (!WorkList.empty()) {
395       PHI = WorkList.pop_back_val();
396 
397       // Iterate through the PHI's incoming values.
398       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
399              E = Traits::PHI_end(PHI); I != E; ++I) {
400         ValT IncomingVal = I.getIncomingValue();
401         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
402         // Skip to the nearest preceding definition.
403         if (PredInfo->DefBB != PredInfo)
404           PredInfo = PredInfo->DefBB;
405 
406         // Check if it matches the expected value.
407         if (PredInfo->AvailableVal) {
408           if (IncomingVal == PredInfo->AvailableVal)
409             continue;
410           return false;
411         }
412 
413         // Check if the value is a PHI in the correct block.
414         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
415         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
416           return false;
417 
418         // If this block has already been visited, check if this PHI matches.
419         if (PredInfo->PHITag) {
420           if (IncomingPHIVal == PredInfo->PHITag)
421             continue;
422           return false;
423         }
424         PredInfo->PHITag = IncomingPHIVal;
425 
426         WorkList.push_back(IncomingPHIVal);
427       }
428     }
429     return true;
430   }
431 
432   /// RecordMatchingPHI - For a PHI node that matches, record it and its input
433   /// PHIs in both the BBMap and the AvailableVals mapping.
RecordMatchingPHI(PhiT * PHI)434   void RecordMatchingPHI(PhiT *PHI) {
435     SmallVector<PhiT*, 20> WorkList;
436     WorkList.push_back(PHI);
437 
438     // Record this PHI.
439     BlkT *BB = PHI->getParent();
440     ValT PHIVal = Traits::GetPHIValue(PHI);
441     (*AvailableVals)[BB] = PHIVal;
442     BBMap[BB]->AvailableVal = PHIVal;
443 
444     while (!WorkList.empty()) {
445       PHI = WorkList.pop_back_val();
446 
447       // Iterate through the PHI's incoming values.
448       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
449              E = Traits::PHI_end(PHI); I != E; ++I) {
450         ValT IncomingVal = I.getIncomingValue();
451         PhiT *IncomingPHI = Traits::ValueIsPHI(IncomingVal, Updater);
452         if (!IncomingPHI) continue;
453         BB = IncomingPHI->getParent();
454         BBInfo *Info = BBMap[BB];
455         if (!Info || Info->AvailableVal)
456           continue;
457 
458         // Record the PHI and add it to the worklist.
459         (*AvailableVals)[BB] = IncomingVal;
460         Info->AvailableVal = IncomingVal;
461         WorkList.push_back(IncomingPHI);
462       }
463     }
464   }
465 };
466 
467 } // End llvm namespace
468 
469 #endif
470