1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/CallGraph.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/InstIterator.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/SCCIterator.h"
32 #include <set>
33 using namespace llvm;
34
35 STATISTIC(NumNonAddrTakenGlobalVars,
36 "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41
42 namespace {
43 /// FunctionRecord - One instance of this structure is stored for every
44 /// function in the program. Later, the entries for these functions are
45 /// removed if the function is found to call an external function (in which
46 /// case we know nothing about it.
47 struct FunctionRecord {
48 /// GlobalInfo - Maintain mod/ref info for all of the globals without
49 /// addresses taken that are read or written (transitively) by this
50 /// function.
51 std::map<const GlobalValue*, unsigned> GlobalInfo;
52
53 /// MayReadAnyGlobal - May read global variables, but it is not known which.
54 bool MayReadAnyGlobal;
55
getInfoForGlobal__anon2b56ac7b0111::FunctionRecord56 unsigned getInfoForGlobal(const GlobalValue *GV) const {
57 unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
58 std::map<const GlobalValue*, unsigned>::const_iterator I =
59 GlobalInfo.find(GV);
60 if (I != GlobalInfo.end())
61 Effect |= I->second;
62 return Effect;
63 }
64
65 /// FunctionEffect - Capture whether or not this function reads or writes to
66 /// ANY memory. If not, we can do a lot of aggressive analysis on it.
67 unsigned FunctionEffect;
68
FunctionRecord__anon2b56ac7b0111::FunctionRecord69 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
70 };
71
72 /// GlobalsModRef - The actual analysis pass.
73 class GlobalsModRef : public ModulePass, public AliasAnalysis {
74 /// NonAddressTakenGlobals - The globals that do not have their addresses
75 /// taken.
76 std::set<const GlobalValue*> NonAddressTakenGlobals;
77
78 /// IndirectGlobals - The memory pointed to by this global is known to be
79 /// 'owned' by the global.
80 std::set<const GlobalValue*> IndirectGlobals;
81
82 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
83 /// indirect global, this map indicates which one.
84 std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
85
86 /// FunctionInfo - For each function, keep track of what globals are
87 /// modified or read.
88 std::map<const Function*, FunctionRecord> FunctionInfo;
89
90 public:
91 static char ID;
GlobalsModRef()92 GlobalsModRef() : ModulePass(ID) {
93 initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
94 }
95
runOnModule(Module & M)96 bool runOnModule(Module &M) {
97 InitializeAliasAnalysis(this); // set up super class
98 AnalyzeGlobals(M); // find non-addr taken globals
99 AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
100 return false;
101 }
102
getAnalysisUsage(AnalysisUsage & AU) const103 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
104 AliasAnalysis::getAnalysisUsage(AU);
105 AU.addRequired<CallGraph>();
106 AU.setPreservesAll(); // Does not transform code
107 }
108
109 //------------------------------------------------
110 // Implement the AliasAnalysis API
111 //
112 AliasResult alias(const Location &LocA, const Location &LocB);
113 ModRefResult getModRefInfo(ImmutableCallSite CS,
114 const Location &Loc);
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)115 ModRefResult getModRefInfo(ImmutableCallSite CS1,
116 ImmutableCallSite CS2) {
117 return AliasAnalysis::getModRefInfo(CS1, CS2);
118 }
119
120 /// getModRefBehavior - Return the behavior of the specified function if
121 /// called from the specified call site. The call site may be null in which
122 /// case the most generic behavior of this function should be returned.
getModRefBehavior(const Function * F)123 ModRefBehavior getModRefBehavior(const Function *F) {
124 ModRefBehavior Min = UnknownModRefBehavior;
125
126 if (FunctionRecord *FR = getFunctionInfo(F)) {
127 if (FR->FunctionEffect == 0)
128 Min = DoesNotAccessMemory;
129 else if ((FR->FunctionEffect & Mod) == 0)
130 Min = OnlyReadsMemory;
131 }
132
133 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
134 }
135
136 /// getModRefBehavior - Return the behavior of the specified function if
137 /// called from the specified call site. The call site may be null in which
138 /// case the most generic behavior of this function should be returned.
getModRefBehavior(ImmutableCallSite CS)139 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
140 ModRefBehavior Min = UnknownModRefBehavior;
141
142 if (const Function* F = CS.getCalledFunction())
143 if (FunctionRecord *FR = getFunctionInfo(F)) {
144 if (FR->FunctionEffect == 0)
145 Min = DoesNotAccessMemory;
146 else if ((FR->FunctionEffect & Mod) == 0)
147 Min = OnlyReadsMemory;
148 }
149
150 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
151 }
152
153 virtual void deleteValue(Value *V);
154 virtual void copyValue(Value *From, Value *To);
155 virtual void addEscapingUse(Use &U);
156
157 /// getAdjustedAnalysisPointer - This method is used when a pass implements
158 /// an analysis interface through multiple inheritance. If needed, it
159 /// should override this to adjust the this pointer as needed for the
160 /// specified pass info.
getAdjustedAnalysisPointer(AnalysisID PI)161 virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
162 if (PI == &AliasAnalysis::ID)
163 return (AliasAnalysis*)this;
164 return this;
165 }
166
167 private:
168 /// getFunctionInfo - Return the function info for the function, or null if
169 /// we don't have anything useful to say about it.
getFunctionInfo(const Function * F)170 FunctionRecord *getFunctionInfo(const Function *F) {
171 std::map<const Function*, FunctionRecord>::iterator I =
172 FunctionInfo.find(F);
173 if (I != FunctionInfo.end())
174 return &I->second;
175 return 0;
176 }
177
178 void AnalyzeGlobals(Module &M);
179 void AnalyzeCallGraph(CallGraph &CG, Module &M);
180 bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
181 std::vector<Function*> &Writers,
182 GlobalValue *OkayStoreDest = 0);
183 bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
184 };
185 }
186
187 char GlobalsModRef::ID = 0;
188 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
189 "globalsmodref-aa", "Simple mod/ref analysis for globals",
190 false, true, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)191 INITIALIZE_AG_DEPENDENCY(CallGraph)
192 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
193 "globalsmodref-aa", "Simple mod/ref analysis for globals",
194 false, true, false)
195
196 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
197
198 /// AnalyzeGlobals - Scan through the users of all of the internal
199 /// GlobalValue's in the program. If none of them have their "address taken"
200 /// (really, their address passed to something nontrivial), record this fact,
201 /// and record the functions that they are used directly in.
AnalyzeGlobals(Module & M)202 void GlobalsModRef::AnalyzeGlobals(Module &M) {
203 std::vector<Function*> Readers, Writers;
204 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
205 if (I->hasLocalLinkage()) {
206 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
207 // Remember that we are tracking this global.
208 NonAddressTakenGlobals.insert(I);
209 ++NumNonAddrTakenFunctions;
210 }
211 Readers.clear(); Writers.clear();
212 }
213
214 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
215 I != E; ++I)
216 if (I->hasLocalLinkage()) {
217 if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
218 // Remember that we are tracking this global, and the mod/ref fns
219 NonAddressTakenGlobals.insert(I);
220
221 for (unsigned i = 0, e = Readers.size(); i != e; ++i)
222 FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
223
224 if (!I->isConstant()) // No need to keep track of writers to constants
225 for (unsigned i = 0, e = Writers.size(); i != e; ++i)
226 FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
227 ++NumNonAddrTakenGlobalVars;
228
229 // If this global holds a pointer type, see if it is an indirect global.
230 if (I->getType()->getElementType()->isPointerTy() &&
231 AnalyzeIndirectGlobalMemory(I))
232 ++NumIndirectGlobalVars;
233 }
234 Readers.clear(); Writers.clear();
235 }
236 }
237
238 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
239 /// If this is used by anything complex (i.e., the address escapes), return
240 /// true. Also, while we are at it, keep track of those functions that read and
241 /// write to the value.
242 ///
243 /// If OkayStoreDest is non-null, stores into this global are allowed.
AnalyzeUsesOfPointer(Value * V,std::vector<Function * > & Readers,std::vector<Function * > & Writers,GlobalValue * OkayStoreDest)244 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
245 std::vector<Function*> &Readers,
246 std::vector<Function*> &Writers,
247 GlobalValue *OkayStoreDest) {
248 if (!V->getType()->isPointerTy()) return true;
249
250 for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
251 User *U = *UI;
252 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
253 Readers.push_back(LI->getParent()->getParent());
254 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
255 if (V == SI->getOperand(1)) {
256 Writers.push_back(SI->getParent()->getParent());
257 } else if (SI->getOperand(1) != OkayStoreDest) {
258 return true; // Storing the pointer
259 }
260 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
261 if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
262 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
263 if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
264 return true;
265 } else if (isFreeCall(U)) {
266 Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
267 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
268 // Make sure that this is just the function being called, not that it is
269 // passing into the function.
270 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
271 if (CI->getArgOperand(i) == V) return true;
272 } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
273 // Make sure that this is just the function being called, not that it is
274 // passing into the function.
275 for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
276 if (II->getArgOperand(i) == V) return true;
277 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
278 if (CE->getOpcode() == Instruction::GetElementPtr ||
279 CE->getOpcode() == Instruction::BitCast) {
280 if (AnalyzeUsesOfPointer(CE, Readers, Writers))
281 return true;
282 } else {
283 return true;
284 }
285 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
286 if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
287 return true; // Allow comparison against null.
288 } else {
289 return true;
290 }
291 }
292
293 return false;
294 }
295
296 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
297 /// which holds a pointer type. See if the global always points to non-aliased
298 /// heap memory: that is, all initializers of the globals are allocations, and
299 /// those allocations have no use other than initialization of the global.
300 /// Further, all loads out of GV must directly use the memory, not store the
301 /// pointer somewhere. If this is true, we consider the memory pointed to by
302 /// GV to be owned by GV and can disambiguate other pointers from it.
AnalyzeIndirectGlobalMemory(GlobalValue * GV)303 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
304 // Keep track of values related to the allocation of the memory, f.e. the
305 // value produced by the malloc call and any casts.
306 std::vector<Value*> AllocRelatedValues;
307
308 // Walk the user list of the global. If we find anything other than a direct
309 // load or store, bail out.
310 for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
311 User *U = *I;
312 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
313 // The pointer loaded from the global can only be used in simple ways:
314 // we allow addressing of it and loading storing to it. We do *not* allow
315 // storing the loaded pointer somewhere else or passing to a function.
316 std::vector<Function*> ReadersWriters;
317 if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
318 return false; // Loaded pointer escapes.
319 // TODO: Could try some IP mod/ref of the loaded pointer.
320 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
321 // Storing the global itself.
322 if (SI->getOperand(0) == GV) return false;
323
324 // If storing the null pointer, ignore it.
325 if (isa<ConstantPointerNull>(SI->getOperand(0)))
326 continue;
327
328 // Check the value being stored.
329 Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
330
331 if (isMalloc(Ptr)) {
332 // Okay, easy case.
333 } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
334 Function *F = CI->getCalledFunction();
335 if (!F || !F->isDeclaration()) return false; // Too hard to analyze.
336 if (F->getName() != "calloc") return false; // Not calloc.
337 } else {
338 return false; // Too hard to analyze.
339 }
340
341 // Analyze all uses of the allocation. If any of them are used in a
342 // non-simple way (e.g. stored to another global) bail out.
343 std::vector<Function*> ReadersWriters;
344 if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
345 return false; // Loaded pointer escapes.
346
347 // Remember that this allocation is related to the indirect global.
348 AllocRelatedValues.push_back(Ptr);
349 } else {
350 // Something complex, bail out.
351 return false;
352 }
353 }
354
355 // Okay, this is an indirect global. Remember all of the allocations for
356 // this global in AllocsForIndirectGlobals.
357 while (!AllocRelatedValues.empty()) {
358 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
359 AllocRelatedValues.pop_back();
360 }
361 IndirectGlobals.insert(GV);
362 return true;
363 }
364
365 /// AnalyzeCallGraph - At this point, we know the functions where globals are
366 /// immediately stored to and read from. Propagate this information up the call
367 /// graph to all callers and compute the mod/ref info for all memory for each
368 /// function.
AnalyzeCallGraph(CallGraph & CG,Module & M)369 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
370 // We do a bottom-up SCC traversal of the call graph. In other words, we
371 // visit all callees before callers (leaf-first).
372 for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
373 ++I) {
374 std::vector<CallGraphNode *> &SCC = *I;
375 assert(!SCC.empty() && "SCC with no functions?");
376
377 if (!SCC[0]->getFunction()) {
378 // Calls externally - can't say anything useful. Remove any existing
379 // function records (may have been created when scanning globals).
380 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
381 FunctionInfo.erase(SCC[i]->getFunction());
382 continue;
383 }
384
385 FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
386
387 bool KnowNothing = false;
388 unsigned FunctionEffect = 0;
389
390 // Collect the mod/ref properties due to called functions. We only compute
391 // one mod-ref set.
392 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
393 Function *F = SCC[i]->getFunction();
394 if (!F) {
395 KnowNothing = true;
396 break;
397 }
398
399 if (F->isDeclaration()) {
400 // Try to get mod/ref behaviour from function attributes.
401 if (F->doesNotAccessMemory()) {
402 // Can't do better than that!
403 } else if (F->onlyReadsMemory()) {
404 FunctionEffect |= Ref;
405 if (!F->isIntrinsic())
406 // This function might call back into the module and read a global -
407 // consider every global as possibly being read by this function.
408 FR.MayReadAnyGlobal = true;
409 } else {
410 FunctionEffect |= ModRef;
411 // Can't say anything useful unless it's an intrinsic - they don't
412 // read or write global variables of the kind considered here.
413 KnowNothing = !F->isIntrinsic();
414 }
415 continue;
416 }
417
418 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
419 CI != E && !KnowNothing; ++CI)
420 if (Function *Callee = CI->second->getFunction()) {
421 if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
422 // Propagate function effect up.
423 FunctionEffect |= CalleeFR->FunctionEffect;
424
425 // Incorporate callee's effects on globals into our info.
426 for (std::map<const GlobalValue*, unsigned>::iterator GI =
427 CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
428 GI != E; ++GI)
429 FR.GlobalInfo[GI->first] |= GI->second;
430 FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
431 } else {
432 // Can't say anything about it. However, if it is inside our SCC,
433 // then nothing needs to be done.
434 CallGraphNode *CalleeNode = CG[Callee];
435 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
436 KnowNothing = true;
437 }
438 } else {
439 KnowNothing = true;
440 }
441 }
442
443 // If we can't say anything useful about this SCC, remove all SCC functions
444 // from the FunctionInfo map.
445 if (KnowNothing) {
446 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
447 FunctionInfo.erase(SCC[i]->getFunction());
448 continue;
449 }
450
451 // Scan the function bodies for explicit loads or stores.
452 for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
453 for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
454 E = inst_end(SCC[i]->getFunction());
455 II != E && FunctionEffect != ModRef; ++II)
456 if (isa<LoadInst>(*II)) {
457 FunctionEffect |= Ref;
458 if (cast<LoadInst>(*II).isVolatile())
459 // Volatile loads may have side-effects, so mark them as writing
460 // memory (for example, a flag inside the processor).
461 FunctionEffect |= Mod;
462 } else if (isa<StoreInst>(*II)) {
463 FunctionEffect |= Mod;
464 if (cast<StoreInst>(*II).isVolatile())
465 // Treat volatile stores as reading memory somewhere.
466 FunctionEffect |= Ref;
467 } else if (isMalloc(&cast<Instruction>(*II)) ||
468 isFreeCall(&cast<Instruction>(*II))) {
469 FunctionEffect |= ModRef;
470 }
471
472 if ((FunctionEffect & Mod) == 0)
473 ++NumReadMemFunctions;
474 if (FunctionEffect == 0)
475 ++NumNoMemFunctions;
476 FR.FunctionEffect = FunctionEffect;
477
478 // Finally, now that we know the full effect on this SCC, clone the
479 // information to each function in the SCC.
480 for (unsigned i = 1, e = SCC.size(); i != e; ++i)
481 FunctionInfo[SCC[i]->getFunction()] = FR;
482 }
483 }
484
485
486
487 /// alias - If one of the pointers is to a global that we are tracking, and the
488 /// other is some random pointer, we know there cannot be an alias, because the
489 /// address of the global isn't taken.
490 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)491 GlobalsModRef::alias(const Location &LocA,
492 const Location &LocB) {
493 // Get the base object these pointers point to.
494 const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
495 const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
496
497 // If either of the underlying values is a global, they may be non-addr-taken
498 // globals, which we can answer queries about.
499 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
500 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
501 if (GV1 || GV2) {
502 // If the global's address is taken, pretend we don't know it's a pointer to
503 // the global.
504 if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
505 if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
506
507 // If the two pointers are derived from two different non-addr-taken
508 // globals, or if one is and the other isn't, we know these can't alias.
509 if ((GV1 || GV2) && GV1 != GV2)
510 return NoAlias;
511
512 // Otherwise if they are both derived from the same addr-taken global, we
513 // can't know the two accesses don't overlap.
514 }
515
516 // These pointers may be based on the memory owned by an indirect global. If
517 // so, we may be able to handle this. First check to see if the base pointer
518 // is a direct load from an indirect global.
519 GV1 = GV2 = 0;
520 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
521 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
522 if (IndirectGlobals.count(GV))
523 GV1 = GV;
524 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
525 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
526 if (IndirectGlobals.count(GV))
527 GV2 = GV;
528
529 // These pointers may also be from an allocation for the indirect global. If
530 // so, also handle them.
531 if (AllocsForIndirectGlobals.count(UV1))
532 GV1 = AllocsForIndirectGlobals[UV1];
533 if (AllocsForIndirectGlobals.count(UV2))
534 GV2 = AllocsForIndirectGlobals[UV2];
535
536 // Now that we know whether the two pointers are related to indirect globals,
537 // use this to disambiguate the pointers. If either pointer is based on an
538 // indirect global and if they are not both based on the same indirect global,
539 // they cannot alias.
540 if ((GV1 || GV2) && GV1 != GV2)
541 return NoAlias;
542
543 return AliasAnalysis::alias(LocA, LocB);
544 }
545
546 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)547 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
548 const Location &Loc) {
549 unsigned Known = ModRef;
550
551 // If we are asking for mod/ref info of a direct call with a pointer to a
552 // global we are tracking, return information if we have it.
553 if (const GlobalValue *GV =
554 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
555 if (GV->hasLocalLinkage())
556 if (const Function *F = CS.getCalledFunction())
557 if (NonAddressTakenGlobals.count(GV))
558 if (const FunctionRecord *FR = getFunctionInfo(F))
559 Known = FR->getInfoForGlobal(GV);
560
561 if (Known == NoModRef)
562 return NoModRef; // No need to query other mod/ref analyses
563 return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
564 }
565
566
567 //===----------------------------------------------------------------------===//
568 // Methods to update the analysis as a result of the client transformation.
569 //
deleteValue(Value * V)570 void GlobalsModRef::deleteValue(Value *V) {
571 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
572 if (NonAddressTakenGlobals.erase(GV)) {
573 // This global might be an indirect global. If so, remove it and remove
574 // any AllocRelatedValues for it.
575 if (IndirectGlobals.erase(GV)) {
576 // Remove any entries in AllocsForIndirectGlobals for this global.
577 for (std::map<const Value*, const GlobalValue*>::iterator
578 I = AllocsForIndirectGlobals.begin(),
579 E = AllocsForIndirectGlobals.end(); I != E; ) {
580 if (I->second == GV) {
581 AllocsForIndirectGlobals.erase(I++);
582 } else {
583 ++I;
584 }
585 }
586 }
587 }
588 }
589
590 // Otherwise, if this is an allocation related to an indirect global, remove
591 // it.
592 AllocsForIndirectGlobals.erase(V);
593
594 AliasAnalysis::deleteValue(V);
595 }
596
copyValue(Value * From,Value * To)597 void GlobalsModRef::copyValue(Value *From, Value *To) {
598 AliasAnalysis::copyValue(From, To);
599 }
600
addEscapingUse(Use & U)601 void GlobalsModRef::addEscapingUse(Use &U) {
602 // For the purposes of this analysis, it is conservatively correct to treat
603 // a newly escaping value equivalently to a deleted one. We could perhaps
604 // be more precise by processing the new use and attempting to update our
605 // saved analysis results to accommodate it.
606 deleteValue(U);
607
608 AliasAnalysis::addEscapingUse(U);
609 }
610