1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure").  For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/CallGraph.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/InstIterator.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/SCCIterator.h"
32 #include <set>
33 using namespace llvm;
34 
35 STATISTIC(NumNonAddrTakenGlobalVars,
36           "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 
42 namespace {
43   /// FunctionRecord - One instance of this structure is stored for every
44   /// function in the program.  Later, the entries for these functions are
45   /// removed if the function is found to call an external function (in which
46   /// case we know nothing about it.
47   struct FunctionRecord {
48     /// GlobalInfo - Maintain mod/ref info for all of the globals without
49     /// addresses taken that are read or written (transitively) by this
50     /// function.
51     std::map<const GlobalValue*, unsigned> GlobalInfo;
52 
53     /// MayReadAnyGlobal - May read global variables, but it is not known which.
54     bool MayReadAnyGlobal;
55 
getInfoForGlobal__anon2b56ac7b0111::FunctionRecord56     unsigned getInfoForGlobal(const GlobalValue *GV) const {
57       unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
58       std::map<const GlobalValue*, unsigned>::const_iterator I =
59         GlobalInfo.find(GV);
60       if (I != GlobalInfo.end())
61         Effect |= I->second;
62       return Effect;
63     }
64 
65     /// FunctionEffect - Capture whether or not this function reads or writes to
66     /// ANY memory.  If not, we can do a lot of aggressive analysis on it.
67     unsigned FunctionEffect;
68 
FunctionRecord__anon2b56ac7b0111::FunctionRecord69     FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
70   };
71 
72   /// GlobalsModRef - The actual analysis pass.
73   class GlobalsModRef : public ModulePass, public AliasAnalysis {
74     /// NonAddressTakenGlobals - The globals that do not have their addresses
75     /// taken.
76     std::set<const GlobalValue*> NonAddressTakenGlobals;
77 
78     /// IndirectGlobals - The memory pointed to by this global is known to be
79     /// 'owned' by the global.
80     std::set<const GlobalValue*> IndirectGlobals;
81 
82     /// AllocsForIndirectGlobals - If an instruction allocates memory for an
83     /// indirect global, this map indicates which one.
84     std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
85 
86     /// FunctionInfo - For each function, keep track of what globals are
87     /// modified or read.
88     std::map<const Function*, FunctionRecord> FunctionInfo;
89 
90   public:
91     static char ID;
GlobalsModRef()92     GlobalsModRef() : ModulePass(ID) {
93       initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
94     }
95 
runOnModule(Module & M)96     bool runOnModule(Module &M) {
97       InitializeAliasAnalysis(this);                 // set up super class
98       AnalyzeGlobals(M);                          // find non-addr taken globals
99       AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
100       return false;
101     }
102 
getAnalysisUsage(AnalysisUsage & AU) const103     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
104       AliasAnalysis::getAnalysisUsage(AU);
105       AU.addRequired<CallGraph>();
106       AU.setPreservesAll();                         // Does not transform code
107     }
108 
109     //------------------------------------------------
110     // Implement the AliasAnalysis API
111     //
112     AliasResult alias(const Location &LocA, const Location &LocB);
113     ModRefResult getModRefInfo(ImmutableCallSite CS,
114                                const Location &Loc);
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)115     ModRefResult getModRefInfo(ImmutableCallSite CS1,
116                                ImmutableCallSite CS2) {
117       return AliasAnalysis::getModRefInfo(CS1, CS2);
118     }
119 
120     /// getModRefBehavior - Return the behavior of the specified function if
121     /// called from the specified call site.  The call site may be null in which
122     /// case the most generic behavior of this function should be returned.
getModRefBehavior(const Function * F)123     ModRefBehavior getModRefBehavior(const Function *F) {
124       ModRefBehavior Min = UnknownModRefBehavior;
125 
126       if (FunctionRecord *FR = getFunctionInfo(F)) {
127         if (FR->FunctionEffect == 0)
128           Min = DoesNotAccessMemory;
129         else if ((FR->FunctionEffect & Mod) == 0)
130           Min = OnlyReadsMemory;
131       }
132 
133       return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
134     }
135 
136     /// getModRefBehavior - Return the behavior of the specified function if
137     /// called from the specified call site.  The call site may be null in which
138     /// case the most generic behavior of this function should be returned.
getModRefBehavior(ImmutableCallSite CS)139     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
140       ModRefBehavior Min = UnknownModRefBehavior;
141 
142       if (const Function* F = CS.getCalledFunction())
143         if (FunctionRecord *FR = getFunctionInfo(F)) {
144           if (FR->FunctionEffect == 0)
145             Min = DoesNotAccessMemory;
146           else if ((FR->FunctionEffect & Mod) == 0)
147             Min = OnlyReadsMemory;
148         }
149 
150       return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
151     }
152 
153     virtual void deleteValue(Value *V);
154     virtual void copyValue(Value *From, Value *To);
155     virtual void addEscapingUse(Use &U);
156 
157     /// getAdjustedAnalysisPointer - This method is used when a pass implements
158     /// an analysis interface through multiple inheritance.  If needed, it
159     /// should override this to adjust the this pointer as needed for the
160     /// specified pass info.
getAdjustedAnalysisPointer(AnalysisID PI)161     virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
162       if (PI == &AliasAnalysis::ID)
163         return (AliasAnalysis*)this;
164       return this;
165     }
166 
167   private:
168     /// getFunctionInfo - Return the function info for the function, or null if
169     /// we don't have anything useful to say about it.
getFunctionInfo(const Function * F)170     FunctionRecord *getFunctionInfo(const Function *F) {
171       std::map<const Function*, FunctionRecord>::iterator I =
172         FunctionInfo.find(F);
173       if (I != FunctionInfo.end())
174         return &I->second;
175       return 0;
176     }
177 
178     void AnalyzeGlobals(Module &M);
179     void AnalyzeCallGraph(CallGraph &CG, Module &M);
180     bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
181                               std::vector<Function*> &Writers,
182                               GlobalValue *OkayStoreDest = 0);
183     bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
184   };
185 }
186 
187 char GlobalsModRef::ID = 0;
188 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,
189                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
190                 false, true, false)
INITIALIZE_AG_DEPENDENCY(CallGraph)191 INITIALIZE_AG_DEPENDENCY(CallGraph)
192 INITIALIZE_AG_PASS_END(GlobalsModRef, AliasAnalysis,
193                 "globalsmodref-aa", "Simple mod/ref analysis for globals",
194                 false, true, false)
195 
196 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
197 
198 /// AnalyzeGlobals - Scan through the users of all of the internal
199 /// GlobalValue's in the program.  If none of them have their "address taken"
200 /// (really, their address passed to something nontrivial), record this fact,
201 /// and record the functions that they are used directly in.
AnalyzeGlobals(Module & M)202 void GlobalsModRef::AnalyzeGlobals(Module &M) {
203   std::vector<Function*> Readers, Writers;
204   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
205     if (I->hasLocalLinkage()) {
206       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
207         // Remember that we are tracking this global.
208         NonAddressTakenGlobals.insert(I);
209         ++NumNonAddrTakenFunctions;
210       }
211       Readers.clear(); Writers.clear();
212     }
213 
214   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
215        I != E; ++I)
216     if (I->hasLocalLinkage()) {
217       if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
218         // Remember that we are tracking this global, and the mod/ref fns
219         NonAddressTakenGlobals.insert(I);
220 
221         for (unsigned i = 0, e = Readers.size(); i != e; ++i)
222           FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
223 
224         if (!I->isConstant())  // No need to keep track of writers to constants
225           for (unsigned i = 0, e = Writers.size(); i != e; ++i)
226             FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
227         ++NumNonAddrTakenGlobalVars;
228 
229         // If this global holds a pointer type, see if it is an indirect global.
230         if (I->getType()->getElementType()->isPointerTy() &&
231             AnalyzeIndirectGlobalMemory(I))
232           ++NumIndirectGlobalVars;
233       }
234       Readers.clear(); Writers.clear();
235     }
236 }
237 
238 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
239 /// If this is used by anything complex (i.e., the address escapes), return
240 /// true.  Also, while we are at it, keep track of those functions that read and
241 /// write to the value.
242 ///
243 /// If OkayStoreDest is non-null, stores into this global are allowed.
AnalyzeUsesOfPointer(Value * V,std::vector<Function * > & Readers,std::vector<Function * > & Writers,GlobalValue * OkayStoreDest)244 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
245                                          std::vector<Function*> &Readers,
246                                          std::vector<Function*> &Writers,
247                                          GlobalValue *OkayStoreDest) {
248   if (!V->getType()->isPointerTy()) return true;
249 
250   for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
251     User *U = *UI;
252     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
253       Readers.push_back(LI->getParent()->getParent());
254     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
255       if (V == SI->getOperand(1)) {
256         Writers.push_back(SI->getParent()->getParent());
257       } else if (SI->getOperand(1) != OkayStoreDest) {
258         return true;  // Storing the pointer
259       }
260     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
261       if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
262     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
263       if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
264         return true;
265     } else if (isFreeCall(U)) {
266       Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
267     } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
268       // Make sure that this is just the function being called, not that it is
269       // passing into the function.
270       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
271         if (CI->getArgOperand(i) == V) return true;
272     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
273       // Make sure that this is just the function being called, not that it is
274       // passing into the function.
275       for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
276         if (II->getArgOperand(i) == V) return true;
277     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
278       if (CE->getOpcode() == Instruction::GetElementPtr ||
279           CE->getOpcode() == Instruction::BitCast) {
280         if (AnalyzeUsesOfPointer(CE, Readers, Writers))
281           return true;
282       } else {
283         return true;
284       }
285     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
286       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
287         return true;  // Allow comparison against null.
288     } else {
289       return true;
290     }
291   }
292 
293   return false;
294 }
295 
296 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
297 /// which holds a pointer type.  See if the global always points to non-aliased
298 /// heap memory: that is, all initializers of the globals are allocations, and
299 /// those allocations have no use other than initialization of the global.
300 /// Further, all loads out of GV must directly use the memory, not store the
301 /// pointer somewhere.  If this is true, we consider the memory pointed to by
302 /// GV to be owned by GV and can disambiguate other pointers from it.
AnalyzeIndirectGlobalMemory(GlobalValue * GV)303 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
304   // Keep track of values related to the allocation of the memory, f.e. the
305   // value produced by the malloc call and any casts.
306   std::vector<Value*> AllocRelatedValues;
307 
308   // Walk the user list of the global.  If we find anything other than a direct
309   // load or store, bail out.
310   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
311     User *U = *I;
312     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
313       // The pointer loaded from the global can only be used in simple ways:
314       // we allow addressing of it and loading storing to it.  We do *not* allow
315       // storing the loaded pointer somewhere else or passing to a function.
316       std::vector<Function*> ReadersWriters;
317       if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
318         return false;  // Loaded pointer escapes.
319       // TODO: Could try some IP mod/ref of the loaded pointer.
320     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
321       // Storing the global itself.
322       if (SI->getOperand(0) == GV) return false;
323 
324       // If storing the null pointer, ignore it.
325       if (isa<ConstantPointerNull>(SI->getOperand(0)))
326         continue;
327 
328       // Check the value being stored.
329       Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
330 
331       if (isMalloc(Ptr)) {
332         // Okay, easy case.
333       } else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
334         Function *F = CI->getCalledFunction();
335         if (!F || !F->isDeclaration()) return false;     // Too hard to analyze.
336         if (F->getName() != "calloc") return false;   // Not calloc.
337       } else {
338         return false;  // Too hard to analyze.
339       }
340 
341       // Analyze all uses of the allocation.  If any of them are used in a
342       // non-simple way (e.g. stored to another global) bail out.
343       std::vector<Function*> ReadersWriters;
344       if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
345         return false;  // Loaded pointer escapes.
346 
347       // Remember that this allocation is related to the indirect global.
348       AllocRelatedValues.push_back(Ptr);
349     } else {
350       // Something complex, bail out.
351       return false;
352     }
353   }
354 
355   // Okay, this is an indirect global.  Remember all of the allocations for
356   // this global in AllocsForIndirectGlobals.
357   while (!AllocRelatedValues.empty()) {
358     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
359     AllocRelatedValues.pop_back();
360   }
361   IndirectGlobals.insert(GV);
362   return true;
363 }
364 
365 /// AnalyzeCallGraph - At this point, we know the functions where globals are
366 /// immediately stored to and read from.  Propagate this information up the call
367 /// graph to all callers and compute the mod/ref info for all memory for each
368 /// function.
AnalyzeCallGraph(CallGraph & CG,Module & M)369 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
370   // We do a bottom-up SCC traversal of the call graph.  In other words, we
371   // visit all callees before callers (leaf-first).
372   for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
373        ++I) {
374     std::vector<CallGraphNode *> &SCC = *I;
375     assert(!SCC.empty() && "SCC with no functions?");
376 
377     if (!SCC[0]->getFunction()) {
378       // Calls externally - can't say anything useful.  Remove any existing
379       // function records (may have been created when scanning globals).
380       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
381         FunctionInfo.erase(SCC[i]->getFunction());
382       continue;
383     }
384 
385     FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
386 
387     bool KnowNothing = false;
388     unsigned FunctionEffect = 0;
389 
390     // Collect the mod/ref properties due to called functions.  We only compute
391     // one mod-ref set.
392     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
393       Function *F = SCC[i]->getFunction();
394       if (!F) {
395         KnowNothing = true;
396         break;
397       }
398 
399       if (F->isDeclaration()) {
400         // Try to get mod/ref behaviour from function attributes.
401         if (F->doesNotAccessMemory()) {
402           // Can't do better than that!
403         } else if (F->onlyReadsMemory()) {
404           FunctionEffect |= Ref;
405           if (!F->isIntrinsic())
406             // This function might call back into the module and read a global -
407             // consider every global as possibly being read by this function.
408             FR.MayReadAnyGlobal = true;
409         } else {
410           FunctionEffect |= ModRef;
411           // Can't say anything useful unless it's an intrinsic - they don't
412           // read or write global variables of the kind considered here.
413           KnowNothing = !F->isIntrinsic();
414         }
415         continue;
416       }
417 
418       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
419            CI != E && !KnowNothing; ++CI)
420         if (Function *Callee = CI->second->getFunction()) {
421           if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
422             // Propagate function effect up.
423             FunctionEffect |= CalleeFR->FunctionEffect;
424 
425             // Incorporate callee's effects on globals into our info.
426             for (std::map<const GlobalValue*, unsigned>::iterator GI =
427                    CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
428                  GI != E; ++GI)
429               FR.GlobalInfo[GI->first] |= GI->second;
430             FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
431           } else {
432             // Can't say anything about it.  However, if it is inside our SCC,
433             // then nothing needs to be done.
434             CallGraphNode *CalleeNode = CG[Callee];
435             if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
436               KnowNothing = true;
437           }
438         } else {
439           KnowNothing = true;
440         }
441     }
442 
443     // If we can't say anything useful about this SCC, remove all SCC functions
444     // from the FunctionInfo map.
445     if (KnowNothing) {
446       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
447         FunctionInfo.erase(SCC[i]->getFunction());
448       continue;
449     }
450 
451     // Scan the function bodies for explicit loads or stores.
452     for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
453       for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
454              E = inst_end(SCC[i]->getFunction());
455            II != E && FunctionEffect != ModRef; ++II)
456         if (isa<LoadInst>(*II)) {
457           FunctionEffect |= Ref;
458           if (cast<LoadInst>(*II).isVolatile())
459             // Volatile loads may have side-effects, so mark them as writing
460             // memory (for example, a flag inside the processor).
461             FunctionEffect |= Mod;
462         } else if (isa<StoreInst>(*II)) {
463           FunctionEffect |= Mod;
464           if (cast<StoreInst>(*II).isVolatile())
465             // Treat volatile stores as reading memory somewhere.
466             FunctionEffect |= Ref;
467         } else if (isMalloc(&cast<Instruction>(*II)) ||
468                    isFreeCall(&cast<Instruction>(*II))) {
469           FunctionEffect |= ModRef;
470         }
471 
472     if ((FunctionEffect & Mod) == 0)
473       ++NumReadMemFunctions;
474     if (FunctionEffect == 0)
475       ++NumNoMemFunctions;
476     FR.FunctionEffect = FunctionEffect;
477 
478     // Finally, now that we know the full effect on this SCC, clone the
479     // information to each function in the SCC.
480     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
481       FunctionInfo[SCC[i]->getFunction()] = FR;
482   }
483 }
484 
485 
486 
487 /// alias - If one of the pointers is to a global that we are tracking, and the
488 /// other is some random pointer, we know there cannot be an alias, because the
489 /// address of the global isn't taken.
490 AliasAnalysis::AliasResult
alias(const Location & LocA,const Location & LocB)491 GlobalsModRef::alias(const Location &LocA,
492                      const Location &LocB) {
493   // Get the base object these pointers point to.
494   const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
495   const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
496 
497   // If either of the underlying values is a global, they may be non-addr-taken
498   // globals, which we can answer queries about.
499   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
500   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
501   if (GV1 || GV2) {
502     // If the global's address is taken, pretend we don't know it's a pointer to
503     // the global.
504     if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
505     if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
506 
507     // If the two pointers are derived from two different non-addr-taken
508     // globals, or if one is and the other isn't, we know these can't alias.
509     if ((GV1 || GV2) && GV1 != GV2)
510       return NoAlias;
511 
512     // Otherwise if they are both derived from the same addr-taken global, we
513     // can't know the two accesses don't overlap.
514   }
515 
516   // These pointers may be based on the memory owned by an indirect global.  If
517   // so, we may be able to handle this.  First check to see if the base pointer
518   // is a direct load from an indirect global.
519   GV1 = GV2 = 0;
520   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
521     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
522       if (IndirectGlobals.count(GV))
523         GV1 = GV;
524   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
525     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
526       if (IndirectGlobals.count(GV))
527         GV2 = GV;
528 
529   // These pointers may also be from an allocation for the indirect global.  If
530   // so, also handle them.
531   if (AllocsForIndirectGlobals.count(UV1))
532     GV1 = AllocsForIndirectGlobals[UV1];
533   if (AllocsForIndirectGlobals.count(UV2))
534     GV2 = AllocsForIndirectGlobals[UV2];
535 
536   // Now that we know whether the two pointers are related to indirect globals,
537   // use this to disambiguate the pointers.  If either pointer is based on an
538   // indirect global and if they are not both based on the same indirect global,
539   // they cannot alias.
540   if ((GV1 || GV2) && GV1 != GV2)
541     return NoAlias;
542 
543   return AliasAnalysis::alias(LocA, LocB);
544 }
545 
546 AliasAnalysis::ModRefResult
getModRefInfo(ImmutableCallSite CS,const Location & Loc)547 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
548                              const Location &Loc) {
549   unsigned Known = ModRef;
550 
551   // If we are asking for mod/ref info of a direct call with a pointer to a
552   // global we are tracking, return information if we have it.
553   if (const GlobalValue *GV =
554         dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
555     if (GV->hasLocalLinkage())
556       if (const Function *F = CS.getCalledFunction())
557         if (NonAddressTakenGlobals.count(GV))
558           if (const FunctionRecord *FR = getFunctionInfo(F))
559             Known = FR->getInfoForGlobal(GV);
560 
561   if (Known == NoModRef)
562     return NoModRef; // No need to query other mod/ref analyses
563   return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
564 }
565 
566 
567 //===----------------------------------------------------------------------===//
568 // Methods to update the analysis as a result of the client transformation.
569 //
deleteValue(Value * V)570 void GlobalsModRef::deleteValue(Value *V) {
571   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
572     if (NonAddressTakenGlobals.erase(GV)) {
573       // This global might be an indirect global.  If so, remove it and remove
574       // any AllocRelatedValues for it.
575       if (IndirectGlobals.erase(GV)) {
576         // Remove any entries in AllocsForIndirectGlobals for this global.
577         for (std::map<const Value*, const GlobalValue*>::iterator
578              I = AllocsForIndirectGlobals.begin(),
579              E = AllocsForIndirectGlobals.end(); I != E; ) {
580           if (I->second == GV) {
581             AllocsForIndirectGlobals.erase(I++);
582           } else {
583             ++I;
584           }
585         }
586       }
587     }
588   }
589 
590   // Otherwise, if this is an allocation related to an indirect global, remove
591   // it.
592   AllocsForIndirectGlobals.erase(V);
593 
594   AliasAnalysis::deleteValue(V);
595 }
596 
copyValue(Value * From,Value * To)597 void GlobalsModRef::copyValue(Value *From, Value *To) {
598   AliasAnalysis::copyValue(From, To);
599 }
600 
addEscapingUse(Use & U)601 void GlobalsModRef::addEscapingUse(Use &U) {
602   // For the purposes of this analysis, it is conservatively correct to treat
603   // a newly escaping value equivalently to a deleted one.  We could perhaps
604   // be more precise by processing the new use and attempting to update our
605   // saved analysis results to accommodate it.
606   deleteValue(U);
607 
608   AliasAnalysis::addEscapingUse(U);
609 }
610