1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Target/Mangler.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Assembly/Writer.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/Timer.h"
49 using namespace llvm;
50
51 static const char *DWARFGroupName = "DWARF Emission";
52 static const char *DbgTimerName = "DWARF Debug Writer";
53 static const char *EHTimerName = "DWARF Exception Writer";
54
55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
56
57 char AsmPrinter::ID = 0;
58
59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
getGCMap(void * & P)60 static gcp_map_type &getGCMap(void *&P) {
61 if (P == 0)
62 P = new gcp_map_type();
63 return *(gcp_map_type*)P;
64 }
65
66
67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
68 /// value in log2 form. This rounds up to the preferred alignment if possible
69 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const TargetData & TD,unsigned InBits=0)70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71 unsigned InBits = 0) {
72 unsigned NumBits = 0;
73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74 NumBits = TD.getPreferredAlignmentLog(GVar);
75
76 // If InBits is specified, round it to it.
77 if (InBits > NumBits)
78 NumBits = InBits;
79
80 // If the GV has a specified alignment, take it into account.
81 if (GV->getAlignment() == 0)
82 return NumBits;
83
84 unsigned GVAlign = Log2_32(GV->getAlignment());
85
86 // If the GVAlign is larger than NumBits, or if we are required to obey
87 // NumBits because the GV has an assigned section, obey it.
88 if (GVAlign > NumBits || GV->hasSection())
89 NumBits = GVAlign;
90 return NumBits;
91 }
92
93
94
95
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97 : MachineFunctionPass(ID),
98 TM(tm), MAI(tm.getMCAsmInfo()),
99 OutContext(Streamer.getContext()),
100 OutStreamer(Streamer),
101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102 DD = 0; DE = 0; MMI = 0; LI = 0;
103 GCMetadataPrinters = 0;
104 VerboseAsm = Streamer.isVerboseAsm();
105 }
106
~AsmPrinter()107 AsmPrinter::~AsmPrinter() {
108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110 if (GCMetadataPrinters != 0) {
111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114 delete I->second;
115 delete &GCMap;
116 GCMetadataPrinters = 0;
117 }
118
119 delete &OutStreamer;
120 }
121
122 /// getFunctionNumber - Return a unique ID for the current function.
123 ///
getFunctionNumber() const124 unsigned AsmPrinter::getFunctionNumber() const {
125 return MF->getFunctionNumber();
126 }
127
getObjFileLowering() const128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129 return TM.getTargetLowering()->getObjFileLowering();
130 }
131
132
133 /// getTargetData - Return information about data layout.
getTargetData() const134 const TargetData &AsmPrinter::getTargetData() const {
135 return *TM.getTargetData();
136 }
137
138 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const139 const MCSection *AsmPrinter::getCurrentSection() const {
140 return OutStreamer.getCurrentSection();
141 }
142
143
144
getAnalysisUsage(AnalysisUsage & AU) const145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.setPreservesAll();
147 MachineFunctionPass::getAnalysisUsage(AU);
148 AU.addRequired<MachineModuleInfo>();
149 AU.addRequired<GCModuleInfo>();
150 if (isVerbose())
151 AU.addRequired<MachineLoopInfo>();
152 }
153
doInitialization(Module & M)154 bool AsmPrinter::doInitialization(Module &M) {
155 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156 MMI->AnalyzeModule(M);
157
158 // Initialize TargetLoweringObjectFile.
159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160 .Initialize(OutContext, TM);
161
162 Mang = new Mangler(OutContext, *TM.getTargetData());
163
164 // Allow the target to emit any magic that it wants at the start of the file.
165 EmitStartOfAsmFile(M);
166
167 // Very minimal debug info. It is ignored if we emit actual debug info. If we
168 // don't, this at least helps the user find where a global came from.
169 if (MAI->hasSingleParameterDotFile()) {
170 // .file "foo.c"
171 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
172 }
173
174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178 MP->beginAssembly(*this);
179
180 // Emit module-level inline asm if it exists.
181 if (!M.getModuleInlineAsm().empty()) {
182 OutStreamer.AddComment("Start of file scope inline assembly");
183 OutStreamer.AddBlankLine();
184 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185 OutStreamer.AddComment("End of file scope inline assembly");
186 OutStreamer.AddBlankLine();
187 }
188
189 if (MAI->doesSupportDebugInformation())
190 DD = new DwarfDebug(this, &M);
191
192 switch (MAI->getExceptionHandlingType()) {
193 case ExceptionHandling::None:
194 return false;
195 case ExceptionHandling::SjLj:
196 case ExceptionHandling::DwarfCFI:
197 DE = new DwarfCFIException(this);
198 return false;
199 case ExceptionHandling::ARM:
200 DE = new ARMException(this);
201 return false;
202 case ExceptionHandling::Win64:
203 DE = new Win64Exception(this);
204 return false;
205 }
206
207 llvm_unreachable("Unknown exception type.");
208 }
209
EmitLinkage(unsigned Linkage,MCSymbol * GVSym) const210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211 switch ((GlobalValue::LinkageTypes)Linkage) {
212 case GlobalValue::CommonLinkage:
213 case GlobalValue::LinkOnceAnyLinkage:
214 case GlobalValue::LinkOnceODRLinkage:
215 case GlobalValue::WeakAnyLinkage:
216 case GlobalValue::WeakODRLinkage:
217 case GlobalValue::LinkerPrivateWeakLinkage:
218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
219 if (MAI->getWeakDefDirective() != 0) {
220 // .globl _foo
221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
222
223 if ((GlobalValue::LinkageTypes)Linkage !=
224 GlobalValue::LinkerPrivateWeakDefAutoLinkage)
225 // .weak_definition _foo
226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227 else
228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229 } else if (MAI->getLinkOnceDirective() != 0) {
230 // .globl _foo
231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232 //NOTE: linkonce is handled by the section the symbol was assigned to.
233 } else {
234 // .weak _foo
235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
236 }
237 break;
238 case GlobalValue::DLLExportLinkage:
239 case GlobalValue::AppendingLinkage:
240 // FIXME: appending linkage variables should go into a section of
241 // their name or something. For now, just emit them as external.
242 case GlobalValue::ExternalLinkage:
243 // If external or appending, declare as a global symbol.
244 // .globl _foo
245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246 break;
247 case GlobalValue::PrivateLinkage:
248 case GlobalValue::InternalLinkage:
249 case GlobalValue::LinkerPrivateLinkage:
250 break;
251 default:
252 llvm_unreachable("Unknown linkage type!");
253 }
254 }
255
256
257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259 if (GV->hasInitializer()) {
260 // Check to see if this is a special global used by LLVM, if so, emit it.
261 if (EmitSpecialLLVMGlobal(GV))
262 return;
263
264 if (isVerbose()) {
265 WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266 /*PrintType=*/false, GV->getParent());
267 OutStreamer.GetCommentOS() << '\n';
268 }
269 }
270
271 MCSymbol *GVSym = Mang->getSymbol(GV);
272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
273
274 if (!GV->hasInitializer()) // External globals require no extra code.
275 return;
276
277 if (MAI->hasDotTypeDotSizeDirective())
278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
279
280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
281
282 const TargetData *TD = TM.getTargetData();
283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
284
285 // If the alignment is specified, we *must* obey it. Overaligning a global
286 // with a specified alignment is a prompt way to break globals emitted to
287 // sections and expected to be contiguous (e.g. ObjC metadata).
288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
289
290 // Handle common and BSS local symbols (.lcomm).
291 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
293 unsigned Align = 1 << AlignLog;
294
295 // Handle common symbols.
296 if (GVKind.isCommon()) {
297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298 Align = 0;
299
300 // .comm _foo, 42, 4
301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302 return;
303 }
304
305 // Handle local BSS symbols.
306 if (MAI->hasMachoZeroFillDirective()) {
307 const MCSection *TheSection =
308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309 // .zerofill __DATA, __bss, _foo, 400, 5
310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
311 return;
312 }
313
314 if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
316 // .lcomm _foo, 42
317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
318 return;
319 }
320
321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322 Align = 0;
323
324 // .local _foo
325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326 // .comm _foo, 42, 4
327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328 return;
329 }
330
331 const MCSection *TheSection =
332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
333
334 // Handle the zerofill directive on darwin, which is a special form of BSS
335 // emission.
336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
338
339 // .globl _foo
340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341 // .zerofill __DATA, __common, _foo, 400, 5
342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343 return;
344 }
345
346 // Handle thread local data for mach-o which requires us to output an
347 // additional structure of data and mangle the original symbol so that we
348 // can reference it later.
349 //
350 // TODO: This should become an "emit thread local global" method on TLOF.
351 // All of this macho specific stuff should be sunk down into TLOFMachO and
352 // stuff like "TLSExtraDataSection" should no longer be part of the parent
353 // TLOF class. This will also make it more obvious that stuff like
354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355 // specific code.
356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357 // Emit the .tbss symbol
358 MCSymbol *MangSym =
359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
360
361 if (GVKind.isThreadBSS())
362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363 else if (GVKind.isThreadData()) {
364 OutStreamer.SwitchSection(TheSection);
365
366 EmitAlignment(AlignLog, GV);
367 OutStreamer.EmitLabel(MangSym);
368
369 EmitGlobalConstant(GV->getInitializer());
370 }
371
372 OutStreamer.AddBlankLine();
373
374 // Emit the variable struct for the runtime.
375 const MCSection *TLVSect
376 = getObjFileLowering().getTLSExtraDataSection();
377
378 OutStreamer.SwitchSection(TLVSect);
379 // Emit the linkage here.
380 EmitLinkage(GV->getLinkage(), GVSym);
381 OutStreamer.EmitLabel(GVSym);
382
383 // Three pointers in size:
384 // - __tlv_bootstrap - used to make sure support exists
385 // - spare pointer, used when mapped by the runtime
386 // - pointer to mangled symbol above with initializer
387 unsigned PtrSize = TD->getPointerSizeInBits()/8;
388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389 PtrSize, 0);
390 OutStreamer.EmitIntValue(0, PtrSize, 0);
391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
392
393 OutStreamer.AddBlankLine();
394 return;
395 }
396
397 OutStreamer.SwitchSection(TheSection);
398
399 EmitLinkage(GV->getLinkage(), GVSym);
400 EmitAlignment(AlignLog, GV);
401
402 OutStreamer.EmitLabel(GVSym);
403
404 EmitGlobalConstant(GV->getInitializer());
405
406 if (MAI->hasDotTypeDotSizeDirective())
407 // .size foo, 42
408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
409
410 OutStreamer.AddBlankLine();
411 }
412
413 /// EmitFunctionHeader - This method emits the header for the current
414 /// function.
EmitFunctionHeader()415 void AsmPrinter::EmitFunctionHeader() {
416 // Print out constants referenced by the function
417 EmitConstantPool();
418
419 // Print the 'header' of function.
420 const Function *F = MF->getFunction();
421
422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423 EmitVisibility(CurrentFnSym, F->getVisibility());
424
425 EmitLinkage(F->getLinkage(), CurrentFnSym);
426 EmitAlignment(MF->getAlignment(), F);
427
428 if (MAI->hasDotTypeDotSizeDirective())
429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
430
431 if (isVerbose()) {
432 WriteAsOperand(OutStreamer.GetCommentOS(), F,
433 /*PrintType=*/false, F->getParent());
434 OutStreamer.GetCommentOS() << '\n';
435 }
436
437 // Emit the CurrentFnSym. This is a virtual function to allow targets to
438 // do their wild and crazy things as required.
439 EmitFunctionEntryLabel();
440
441 // If the function had address-taken blocks that got deleted, then we have
442 // references to the dangling symbols. Emit them at the start of the function
443 // so that we don't get references to undefined symbols.
444 std::vector<MCSymbol*> DeadBlockSyms;
445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447 OutStreamer.AddComment("Address taken block that was later removed");
448 OutStreamer.EmitLabel(DeadBlockSyms[i]);
449 }
450
451 // Add some workaround for linkonce linkage on Cygwin\MinGW.
452 if (MAI->getLinkOnceDirective() != 0 &&
453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454 // FIXME: What is this?
455 MCSymbol *FakeStub =
456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457 CurrentFnSym->getName());
458 OutStreamer.EmitLabel(FakeStub);
459 }
460
461 // Emit pre-function debug and/or EH information.
462 if (DE) {
463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464 DE->BeginFunction(MF);
465 }
466 if (DD) {
467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468 DD->beginFunction(MF);
469 }
470 }
471
472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()474 void AsmPrinter::EmitFunctionEntryLabel() {
475 // The function label could have already been emitted if two symbols end up
476 // conflicting due to asm renaming. Detect this and emit an error.
477 if (CurrentFnSym->isUndefined()) {
478 OutStreamer.ForceCodeRegion();
479 return OutStreamer.EmitLabel(CurrentFnSym);
480 }
481
482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
483 "' label emitted multiple times to assembly file");
484 }
485
486
487 /// EmitComments - Pretty-print comments for instructions.
EmitComments(const MachineInstr & MI,raw_ostream & CommentOS)488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
489 const MachineFunction *MF = MI.getParent()->getParent();
490 const TargetMachine &TM = MF->getTarget();
491
492 // Check for spills and reloads
493 int FI;
494
495 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
496
497 // We assume a single instruction only has a spill or reload, not
498 // both.
499 const MachineMemOperand *MMO;
500 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
501 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
502 MMO = *MI.memoperands_begin();
503 CommentOS << MMO->getSize() << "-byte Reload\n";
504 }
505 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
506 if (FrameInfo->isSpillSlotObjectIndex(FI))
507 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
508 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
509 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
510 MMO = *MI.memoperands_begin();
511 CommentOS << MMO->getSize() << "-byte Spill\n";
512 }
513 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
514 if (FrameInfo->isSpillSlotObjectIndex(FI))
515 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
516 }
517
518 // Check for spill-induced copies
519 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
520 CommentOS << " Reload Reuse\n";
521 }
522
523 /// EmitImplicitDef - This method emits the specified machine instruction
524 /// that is an implicit def.
EmitImplicitDef(const MachineInstr * MI,AsmPrinter & AP)525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
526 unsigned RegNo = MI->getOperand(0).getReg();
527 AP.OutStreamer.AddComment(Twine("implicit-def: ") +
528 AP.TM.getRegisterInfo()->getName(RegNo));
529 AP.OutStreamer.AddBlankLine();
530 }
531
EmitKill(const MachineInstr * MI,AsmPrinter & AP)532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
533 std::string Str = "kill:";
534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
535 const MachineOperand &Op = MI->getOperand(i);
536 assert(Op.isReg() && "KILL instruction must have only register operands");
537 Str += ' ';
538 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
539 Str += (Op.isDef() ? "<def>" : "<kill>");
540 }
541 AP.OutStreamer.AddComment(Str);
542 AP.OutStreamer.AddBlankLine();
543 }
544
545 /// EmitDebugValueComment - This method handles the target-independent form
546 /// of DBG_VALUE, returning true if it was able to do so. A false return
547 /// means the target will need to handle MI in EmitInstruction.
EmitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
549 // This code handles only the 3-operand target-independent form.
550 if (MI->getNumOperands() != 3)
551 return false;
552
553 SmallString<128> Str;
554 raw_svector_ostream OS(Str);
555 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
556
557 // cast away const; DIetc do not take const operands for some reason.
558 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
559 if (V.getContext().isSubprogram())
560 OS << DISubprogram(V.getContext()).getDisplayName() << ":";
561 OS << V.getName() << " <- ";
562
563 // Register or immediate value. Register 0 means undef.
564 if (MI->getOperand(0).isFPImm()) {
565 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
566 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
567 OS << (double)APF.convertToFloat();
568 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
569 OS << APF.convertToDouble();
570 } else {
571 // There is no good way to print long double. Convert a copy to
572 // double. Ah well, it's only a comment.
573 bool ignored;
574 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
575 &ignored);
576 OS << "(long double) " << APF.convertToDouble();
577 }
578 } else if (MI->getOperand(0).isImm()) {
579 OS << MI->getOperand(0).getImm();
580 } else if (MI->getOperand(0).isCImm()) {
581 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
582 } else {
583 assert(MI->getOperand(0).isReg() && "Unknown operand type");
584 if (MI->getOperand(0).getReg() == 0) {
585 // Suppress offset, it is not meaningful here.
586 OS << "undef";
587 // NOTE: Want this comment at start of line, don't emit with AddComment.
588 AP.OutStreamer.EmitRawText(OS.str());
589 return true;
590 }
591 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
592 }
593
594 OS << '+' << MI->getOperand(1).getImm();
595 // NOTE: Want this comment at start of line, don't emit with AddComment.
596 AP.OutStreamer.EmitRawText(OS.str());
597 return true;
598 }
599
needsCFIMoves()600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
601 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
602 MF->getFunction()->needsUnwindTableEntry())
603 return CFI_M_EH;
604
605 if (MMI->hasDebugInfo())
606 return CFI_M_Debug;
607
608 return CFI_M_None;
609 }
610
needsSEHMoves()611 bool AsmPrinter::needsSEHMoves() {
612 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
613 MF->getFunction()->needsUnwindTableEntry();
614 }
615
emitPrologLabel(const MachineInstr & MI)616 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
617 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
618
619 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
620 return;
621
622 if (needsCFIMoves() == CFI_M_None)
623 return;
624
625 if (MMI->getCompactUnwindEncoding() != 0)
626 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
627
628 MachineModuleInfo &MMI = MF->getMMI();
629 std::vector<MachineMove> &Moves = MMI.getFrameMoves();
630 bool FoundOne = false;
631 (void)FoundOne;
632 for (std::vector<MachineMove>::iterator I = Moves.begin(),
633 E = Moves.end(); I != E; ++I) {
634 if (I->getLabel() == Label) {
635 EmitCFIFrameMove(*I);
636 FoundOne = true;
637 }
638 }
639 assert(FoundOne);
640 }
641
642 /// EmitFunctionBody - This method emits the body and trailer for a
643 /// function.
EmitFunctionBody()644 void AsmPrinter::EmitFunctionBody() {
645 // Emit target-specific gunk before the function body.
646 EmitFunctionBodyStart();
647
648 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
649
650 // Print out code for the function.
651 bool HasAnyRealCode = false;
652 const MachineInstr *LastMI = 0;
653 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
654 I != E; ++I) {
655 // Print a label for the basic block.
656 EmitBasicBlockStart(I);
657 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
658 II != IE; ++II) {
659 LastMI = II;
660
661 // Print the assembly for the instruction.
662 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
663 !II->isDebugValue()) {
664 HasAnyRealCode = true;
665 ++EmittedInsts;
666 }
667
668 if (ShouldPrintDebugScopes) {
669 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
670 DD->beginInstruction(II);
671 }
672
673 if (isVerbose())
674 EmitComments(*II, OutStreamer.GetCommentOS());
675
676 switch (II->getOpcode()) {
677 case TargetOpcode::PROLOG_LABEL:
678 emitPrologLabel(*II);
679 break;
680
681 case TargetOpcode::EH_LABEL:
682 case TargetOpcode::GC_LABEL:
683 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
684 break;
685 case TargetOpcode::INLINEASM:
686 EmitInlineAsm(II);
687 break;
688 case TargetOpcode::DBG_VALUE:
689 if (isVerbose()) {
690 if (!EmitDebugValueComment(II, *this))
691 EmitInstruction(II);
692 }
693 break;
694 case TargetOpcode::IMPLICIT_DEF:
695 if (isVerbose()) EmitImplicitDef(II, *this);
696 break;
697 case TargetOpcode::KILL:
698 if (isVerbose()) EmitKill(II, *this);
699 break;
700 default:
701 if (!TM.hasMCUseLoc())
702 MCLineEntry::Make(&OutStreamer, getCurrentSection());
703
704 EmitInstruction(II);
705 break;
706 }
707
708 if (ShouldPrintDebugScopes) {
709 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
710 DD->endInstruction(II);
711 }
712 }
713 }
714
715 // If the last instruction was a prolog label, then we have a situation where
716 // we emitted a prolog but no function body. This results in the ending prolog
717 // label equaling the end of function label and an invalid "row" in the
718 // FDE. We need to emit a noop in this situation so that the FDE's rows are
719 // valid.
720 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
721
722 // If the function is empty and the object file uses .subsections_via_symbols,
723 // then we need to emit *something* to the function body to prevent the
724 // labels from collapsing together. Just emit a noop.
725 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
726 MCInst Noop;
727 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
728 if (Noop.getOpcode()) {
729 OutStreamer.AddComment("avoids zero-length function");
730 OutStreamer.EmitInstruction(Noop);
731 } else // Target not mc-ized yet.
732 OutStreamer.EmitRawText(StringRef("\tnop\n"));
733 }
734
735 // Emit target-specific gunk after the function body.
736 EmitFunctionBodyEnd();
737
738 // If the target wants a .size directive for the size of the function, emit
739 // it.
740 if (MAI->hasDotTypeDotSizeDirective()) {
741 // Create a symbol for the end of function, so we can get the size as
742 // difference between the function label and the temp label.
743 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
744 OutStreamer.EmitLabel(FnEndLabel);
745
746 const MCExpr *SizeExp =
747 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
748 MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
749 OutContext);
750 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
751 }
752
753 // Emit post-function debug information.
754 if (DD) {
755 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
756 DD->endFunction(MF);
757 }
758 if (DE) {
759 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
760 DE->EndFunction();
761 }
762 MMI->EndFunction();
763
764 // Print out jump tables referenced by the function.
765 EmitJumpTableInfo();
766
767 OutStreamer.AddBlankLine();
768 }
769
770 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
771 /// operands.
772 MachineLocation AsmPrinter::
getDebugValueLocation(const MachineInstr * MI) const773 getDebugValueLocation(const MachineInstr *MI) const {
774 // Target specific DBG_VALUE instructions are handled by each target.
775 return MachineLocation();
776 }
777
778 /// EmitDwarfRegOp - Emit dwarf register operation.
EmitDwarfRegOp(const MachineLocation & MLoc) const779 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
780 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
781 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
782
783 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
784 *SR && Reg < 0; ++SR) {
785 Reg = TRI->getDwarfRegNum(*SR, false);
786 // FIXME: Get the bit range this register uses of the superregister
787 // so that we can produce a DW_OP_bit_piece
788 }
789
790 // FIXME: Handle cases like a super register being encoded as
791 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
792
793 // FIXME: We have no reasonable way of handling errors in here. The
794 // caller might be in the middle of an dwarf expression. We should
795 // probably assert that Reg >= 0 once debug info generation is more mature.
796
797 if (int Offset = MLoc.getOffset()) {
798 if (Reg < 32) {
799 OutStreamer.AddComment(
800 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
801 EmitInt8(dwarf::DW_OP_breg0 + Reg);
802 } else {
803 OutStreamer.AddComment("DW_OP_bregx");
804 EmitInt8(dwarf::DW_OP_bregx);
805 OutStreamer.AddComment(Twine(Reg));
806 EmitULEB128(Reg);
807 }
808 EmitSLEB128(Offset);
809 } else {
810 if (Reg < 32) {
811 OutStreamer.AddComment(
812 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
813 EmitInt8(dwarf::DW_OP_reg0 + Reg);
814 } else {
815 OutStreamer.AddComment("DW_OP_regx");
816 EmitInt8(dwarf::DW_OP_regx);
817 OutStreamer.AddComment(Twine(Reg));
818 EmitULEB128(Reg);
819 }
820 }
821
822 // FIXME: Produce a DW_OP_bit_piece if we used a superregister
823 }
824
doFinalization(Module & M)825 bool AsmPrinter::doFinalization(Module &M) {
826 // Emit global variables.
827 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
828 I != E; ++I)
829 EmitGlobalVariable(I);
830
831 // Emit visibility info for declarations
832 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
833 const Function &F = *I;
834 if (!F.isDeclaration())
835 continue;
836 GlobalValue::VisibilityTypes V = F.getVisibility();
837 if (V == GlobalValue::DefaultVisibility)
838 continue;
839
840 MCSymbol *Name = Mang->getSymbol(&F);
841 EmitVisibility(Name, V, false);
842 }
843
844 // Finalize debug and EH information.
845 if (DE) {
846 {
847 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
848 DE->EndModule();
849 }
850 delete DE; DE = 0;
851 }
852 if (DD) {
853 {
854 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
855 DD->endModule();
856 }
857 delete DD; DD = 0;
858 }
859
860 // If the target wants to know about weak references, print them all.
861 if (MAI->getWeakRefDirective()) {
862 // FIXME: This is not lazy, it would be nice to only print weak references
863 // to stuff that is actually used. Note that doing so would require targets
864 // to notice uses in operands (due to constant exprs etc). This should
865 // happen with the MC stuff eventually.
866
867 // Print out module-level global variables here.
868 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
869 I != E; ++I) {
870 if (!I->hasExternalWeakLinkage()) continue;
871 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
872 }
873
874 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
875 if (!I->hasExternalWeakLinkage()) continue;
876 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
877 }
878 }
879
880 if (MAI->hasSetDirective()) {
881 OutStreamer.AddBlankLine();
882 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
883 I != E; ++I) {
884 MCSymbol *Name = Mang->getSymbol(I);
885
886 const GlobalValue *GV = I->getAliasedGlobal();
887 MCSymbol *Target = Mang->getSymbol(GV);
888
889 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
890 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
891 else if (I->hasWeakLinkage())
892 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
893 else
894 assert(I->hasLocalLinkage() && "Invalid alias linkage");
895
896 EmitVisibility(Name, I->getVisibility());
897
898 // Emit the directives as assignments aka .set:
899 OutStreamer.EmitAssignment(Name,
900 MCSymbolRefExpr::Create(Target, OutContext));
901 }
902 }
903
904 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
905 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
906 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
907 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
908 MP->finishAssembly(*this);
909
910 // If we don't have any trampolines, then we don't require stack memory
911 // to be executable. Some targets have a directive to declare this.
912 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
913 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
914 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
915 OutStreamer.SwitchSection(S);
916
917 // Allow the target to emit any magic that it wants at the end of the file,
918 // after everything else has gone out.
919 EmitEndOfAsmFile(M);
920
921 delete Mang; Mang = 0;
922 MMI = 0;
923
924 OutStreamer.Finish();
925 return false;
926 }
927
SetupMachineFunction(MachineFunction & MF)928 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
929 this->MF = &MF;
930 // Get the function symbol.
931 CurrentFnSym = Mang->getSymbol(MF.getFunction());
932
933 if (isVerbose())
934 LI = &getAnalysis<MachineLoopInfo>();
935 }
936
937 namespace {
938 // SectionCPs - Keep track the alignment, constpool entries per Section.
939 struct SectionCPs {
940 const MCSection *S;
941 unsigned Alignment;
942 SmallVector<unsigned, 4> CPEs;
SectionCPs__anon10121f7b0111::SectionCPs943 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
944 };
945 }
946
947 /// EmitConstantPool - Print to the current output stream assembly
948 /// representations of the constants in the constant pool MCP. This is
949 /// used to print out constants which have been "spilled to memory" by
950 /// the code generator.
951 ///
EmitConstantPool()952 void AsmPrinter::EmitConstantPool() {
953 const MachineConstantPool *MCP = MF->getConstantPool();
954 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
955 if (CP.empty()) return;
956
957 // Calculate sections for constant pool entries. We collect entries to go into
958 // the same section together to reduce amount of section switch statements.
959 SmallVector<SectionCPs, 4> CPSections;
960 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
961 const MachineConstantPoolEntry &CPE = CP[i];
962 unsigned Align = CPE.getAlignment();
963
964 SectionKind Kind;
965 switch (CPE.getRelocationInfo()) {
966 default: llvm_unreachable("Unknown section kind");
967 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
968 case 1:
969 Kind = SectionKind::getReadOnlyWithRelLocal();
970 break;
971 case 0:
972 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
973 case 4: Kind = SectionKind::getMergeableConst4(); break;
974 case 8: Kind = SectionKind::getMergeableConst8(); break;
975 case 16: Kind = SectionKind::getMergeableConst16();break;
976 default: Kind = SectionKind::getMergeableConst(); break;
977 }
978 }
979
980 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
981
982 // The number of sections are small, just do a linear search from the
983 // last section to the first.
984 bool Found = false;
985 unsigned SecIdx = CPSections.size();
986 while (SecIdx != 0) {
987 if (CPSections[--SecIdx].S == S) {
988 Found = true;
989 break;
990 }
991 }
992 if (!Found) {
993 SecIdx = CPSections.size();
994 CPSections.push_back(SectionCPs(S, Align));
995 }
996
997 if (Align > CPSections[SecIdx].Alignment)
998 CPSections[SecIdx].Alignment = Align;
999 CPSections[SecIdx].CPEs.push_back(i);
1000 }
1001
1002 // Now print stuff into the calculated sections.
1003 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1004 OutStreamer.SwitchSection(CPSections[i].S);
1005 EmitAlignment(Log2_32(CPSections[i].Alignment));
1006
1007 unsigned Offset = 0;
1008 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1009 unsigned CPI = CPSections[i].CPEs[j];
1010 MachineConstantPoolEntry CPE = CP[CPI];
1011
1012 // Emit inter-object padding for alignment.
1013 unsigned AlignMask = CPE.getAlignment() - 1;
1014 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1015 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1016
1017 Type *Ty = CPE.getType();
1018 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1019 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1020
1021 if (CPE.isMachineConstantPoolEntry())
1022 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1023 else
1024 EmitGlobalConstant(CPE.Val.ConstVal);
1025 }
1026 }
1027 }
1028
1029 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1030 /// by the current function to the current output stream.
1031 ///
EmitJumpTableInfo()1032 void AsmPrinter::EmitJumpTableInfo() {
1033 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1034 if (MJTI == 0) return;
1035 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1036 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1037 if (JT.empty()) return;
1038
1039 // Pick the directive to use to print the jump table entries, and switch to
1040 // the appropriate section.
1041 const Function *F = MF->getFunction();
1042 bool JTInDiffSection = false;
1043 if (// In PIC mode, we need to emit the jump table to the same section as the
1044 // function body itself, otherwise the label differences won't make sense.
1045 // FIXME: Need a better predicate for this: what about custom entries?
1046 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1047 // We should also do if the section name is NULL or function is declared
1048 // in discardable section
1049 // FIXME: this isn't the right predicate, should be based on the MCSection
1050 // for the function.
1051 F->isWeakForLinker()) {
1052 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1053 } else {
1054 // Otherwise, drop it in the readonly section.
1055 const MCSection *ReadOnlySection =
1056 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1057 OutStreamer.SwitchSection(ReadOnlySection);
1058 JTInDiffSection = true;
1059 }
1060
1061 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1062
1063 // If we know the form of the jump table, go ahead and tag it as such.
1064 if (!JTInDiffSection) {
1065 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1066 OutStreamer.EmitJumpTable32Region();
1067 } else {
1068 OutStreamer.EmitDataRegion();
1069 }
1070 }
1071
1072 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1073 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1074
1075 // If this jump table was deleted, ignore it.
1076 if (JTBBs.empty()) continue;
1077
1078 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1079 // .set directive for each unique entry. This reduces the number of
1080 // relocations the assembler will generate for the jump table.
1081 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1082 MAI->hasSetDirective()) {
1083 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1084 const TargetLowering *TLI = TM.getTargetLowering();
1085 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1086 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1087 const MachineBasicBlock *MBB = JTBBs[ii];
1088 if (!EmittedSets.insert(MBB)) continue;
1089
1090 // .set LJTSet, LBB32-base
1091 const MCExpr *LHS =
1092 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1093 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1094 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1095 }
1096 }
1097
1098 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1099 // before each jump table. The first label is never referenced, but tells
1100 // the assembler and linker the extents of the jump table object. The
1101 // second label is actually referenced by the code.
1102 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1103 // FIXME: This doesn't have to have any specific name, just any randomly
1104 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1105 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1106
1107 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1108
1109 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1110 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1111 }
1112 }
1113
1114 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1115 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1116 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1117 const MachineBasicBlock *MBB,
1118 unsigned UID) const {
1119 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1120 const MCExpr *Value = 0;
1121 switch (MJTI->getEntryKind()) {
1122 case MachineJumpTableInfo::EK_Inline:
1123 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break;
1124 case MachineJumpTableInfo::EK_Custom32:
1125 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1126 OutContext);
1127 break;
1128 case MachineJumpTableInfo::EK_BlockAddress:
1129 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1130 // .word LBB123
1131 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1132 break;
1133 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1134 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1135 // with a relocation as gp-relative, e.g.:
1136 // .gprel32 LBB123
1137 MCSymbol *MBBSym = MBB->getSymbol();
1138 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1139 return;
1140 }
1141
1142 case MachineJumpTableInfo::EK_LabelDifference32: {
1143 // EK_LabelDifference32 - Each entry is the address of the block minus
1144 // the address of the jump table. This is used for PIC jump tables where
1145 // gprel32 is not supported. e.g.:
1146 // .word LBB123 - LJTI1_2
1147 // If the .set directive is supported, this is emitted as:
1148 // .set L4_5_set_123, LBB123 - LJTI1_2
1149 // .word L4_5_set_123
1150
1151 // If we have emitted set directives for the jump table entries, print
1152 // them rather than the entries themselves. If we're emitting PIC, then
1153 // emit the table entries as differences between two text section labels.
1154 if (MAI->hasSetDirective()) {
1155 // If we used .set, reference the .set's symbol.
1156 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1157 OutContext);
1158 break;
1159 }
1160 // Otherwise, use the difference as the jump table entry.
1161 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1162 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1163 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1164 break;
1165 }
1166 }
1167
1168 assert(Value && "Unknown entry kind!");
1169
1170 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1171 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1172 }
1173
1174
1175 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1176 /// special global used by LLVM. If so, emit it and return true, otherwise
1177 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1178 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1179 if (GV->getName() == "llvm.used") {
1180 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1181 EmitLLVMUsedList(GV->getInitializer());
1182 return true;
1183 }
1184
1185 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1186 if (GV->getSection() == "llvm.metadata" ||
1187 GV->hasAvailableExternallyLinkage())
1188 return true;
1189
1190 if (!GV->hasAppendingLinkage()) return false;
1191
1192 assert(GV->hasInitializer() && "Not a special LLVM global!");
1193
1194 const TargetData *TD = TM.getTargetData();
1195 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1196 if (GV->getName() == "llvm.global_ctors") {
1197 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection());
1198 EmitAlignment(Align);
1199 EmitXXStructorList(GV->getInitializer());
1200
1201 if (TM.getRelocationModel() == Reloc::Static &&
1202 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1203 StringRef Sym(".constructors_used");
1204 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1205 MCSA_Reference);
1206 }
1207 return true;
1208 }
1209
1210 if (GV->getName() == "llvm.global_dtors") {
1211 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection());
1212 EmitAlignment(Align);
1213 EmitXXStructorList(GV->getInitializer());
1214
1215 if (TM.getRelocationModel() == Reloc::Static &&
1216 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1217 StringRef Sym(".destructors_used");
1218 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1219 MCSA_Reference);
1220 }
1221 return true;
1222 }
1223
1224 return false;
1225 }
1226
1227 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1228 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1229 /// is true, as being used with this directive.
EmitLLVMUsedList(const Constant * List)1230 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1231 // Should be an array of 'i8*'.
1232 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1233 if (InitList == 0) return;
1234
1235 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1236 const GlobalValue *GV =
1237 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1238 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1239 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1240 }
1241 }
1242
1243 typedef std::pair<int, Constant*> Structor;
1244
priority_order(const Structor & lhs,const Structor & rhs)1245 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1246 return lhs.first < rhs.first;
1247 }
1248
1249 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1250 /// priority.
EmitXXStructorList(const Constant * List)1251 void AsmPrinter::EmitXXStructorList(const Constant *List) {
1252 // Should be an array of '{ int, void ()* }' structs. The first value is the
1253 // init priority.
1254 if (!isa<ConstantArray>(List)) return;
1255
1256 // Sanity check the structors list.
1257 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1258 if (!InitList) return; // Not an array!
1259 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1260 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1261 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1262 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1263
1264 // Gather the structors in a form that's convenient for sorting by priority.
1265 SmallVector<Structor, 8> Structors;
1266 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1267 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1268 if (!CS) continue; // Malformed.
1269 if (CS->getOperand(1)->isNullValue())
1270 break; // Found a null terminator, skip the rest.
1271 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1272 if (!Priority) continue; // Malformed.
1273 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1274 CS->getOperand(1)));
1275 }
1276
1277 // Emit the function pointers in reverse priority order.
1278 switch (MAI->getStructorOutputOrder()) {
1279 case Structors::None:
1280 break;
1281 case Structors::PriorityOrder:
1282 std::sort(Structors.begin(), Structors.end(), priority_order);
1283 break;
1284 case Structors::ReversePriorityOrder:
1285 std::sort(Structors.rbegin(), Structors.rend(), priority_order);
1286 break;
1287 }
1288 for (unsigned i = 0, e = Structors.size(); i != e; ++i)
1289 EmitGlobalConstant(Structors[i].second);
1290 }
1291
1292 //===--------------------------------------------------------------------===//
1293 // Emission and print routines
1294 //
1295
1296 /// EmitInt8 - Emit a byte directive and value.
1297 ///
EmitInt8(int Value) const1298 void AsmPrinter::EmitInt8(int Value) const {
1299 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1300 }
1301
1302 /// EmitInt16 - Emit a short directive and value.
1303 ///
EmitInt16(int Value) const1304 void AsmPrinter::EmitInt16(int Value) const {
1305 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1306 }
1307
1308 /// EmitInt32 - Emit a long directive and value.
1309 ///
EmitInt32(int Value) const1310 void AsmPrinter::EmitInt32(int Value) const {
1311 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1312 }
1313
1314 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1315 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1316 /// labels. This implicitly uses .set if it is available.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1317 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1318 unsigned Size) const {
1319 // Get the Hi-Lo expression.
1320 const MCExpr *Diff =
1321 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1322 MCSymbolRefExpr::Create(Lo, OutContext),
1323 OutContext);
1324
1325 if (!MAI->hasSetDirective()) {
1326 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1327 return;
1328 }
1329
1330 // Otherwise, emit with .set (aka assignment).
1331 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1332 OutStreamer.EmitAssignment(SetLabel, Diff);
1333 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1334 }
1335
1336 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1337 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1338 /// specify the labels. This implicitly uses .set if it is available.
EmitLabelOffsetDifference(const MCSymbol * Hi,uint64_t Offset,const MCSymbol * Lo,unsigned Size) const1339 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1340 const MCSymbol *Lo, unsigned Size)
1341 const {
1342
1343 // Emit Hi+Offset - Lo
1344 // Get the Hi+Offset expression.
1345 const MCExpr *Plus =
1346 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1347 MCConstantExpr::Create(Offset, OutContext),
1348 OutContext);
1349
1350 // Get the Hi+Offset-Lo expression.
1351 const MCExpr *Diff =
1352 MCBinaryExpr::CreateSub(Plus,
1353 MCSymbolRefExpr::Create(Lo, OutContext),
1354 OutContext);
1355
1356 if (!MAI->hasSetDirective())
1357 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1358 else {
1359 // Otherwise, emit with .set (aka assignment).
1360 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1361 OutStreamer.EmitAssignment(SetLabel, Diff);
1362 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1363 }
1364 }
1365
1366 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1367 /// where the size in bytes of the directive is specified by Size and Label
1368 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size) const1369 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1370 unsigned Size)
1371 const {
1372
1373 // Emit Label+Offset
1374 const MCExpr *Plus =
1375 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1376 MCConstantExpr::Create(Offset, OutContext),
1377 OutContext);
1378
1379 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1380 }
1381
1382
1383 //===----------------------------------------------------------------------===//
1384
1385 // EmitAlignment - Emit an alignment directive to the specified power of
1386 // two boundary. For example, if you pass in 3 here, you will get an 8
1387 // byte alignment. If a global value is specified, and if that global has
1388 // an explicit alignment requested, it will override the alignment request
1389 // if required for correctness.
1390 //
EmitAlignment(unsigned NumBits,const GlobalValue * GV) const1391 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1392 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1393
1394 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1395
1396 if (getCurrentSection()->getKind().isText())
1397 OutStreamer.EmitCodeAlignment(1 << NumBits);
1398 else
1399 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1400 }
1401
1402 //===----------------------------------------------------------------------===//
1403 // Constant emission.
1404 //===----------------------------------------------------------------------===//
1405
1406 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1407 ///
LowerConstant(const Constant * CV,AsmPrinter & AP)1408 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1409 MCContext &Ctx = AP.OutContext;
1410
1411 if (CV->isNullValue() || isa<UndefValue>(CV))
1412 return MCConstantExpr::Create(0, Ctx);
1413
1414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1415 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1416
1417 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1418 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1419
1420 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1421 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1422
1423 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1424 if (CE == 0) {
1425 llvm_unreachable("Unknown constant value to lower!");
1426 return MCConstantExpr::Create(0, Ctx);
1427 }
1428
1429 switch (CE->getOpcode()) {
1430 default:
1431 // If the code isn't optimized, there may be outstanding folding
1432 // opportunities. Attempt to fold the expression using TargetData as a
1433 // last resort before giving up.
1434 if (Constant *C =
1435 ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1436 if (C != CE)
1437 return LowerConstant(C, AP);
1438
1439 // Otherwise report the problem to the user.
1440 {
1441 std::string S;
1442 raw_string_ostream OS(S);
1443 OS << "Unsupported expression in static initializer: ";
1444 WriteAsOperand(OS, CE, /*PrintType=*/false,
1445 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1446 report_fatal_error(OS.str());
1447 }
1448 return MCConstantExpr::Create(0, Ctx);
1449 case Instruction::GetElementPtr: {
1450 const TargetData &TD = *AP.TM.getTargetData();
1451 // Generate a symbolic expression for the byte address
1452 const Constant *PtrVal = CE->getOperand(0);
1453 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1454 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1455
1456 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1457 if (Offset == 0)
1458 return Base;
1459
1460 // Truncate/sext the offset to the pointer size.
1461 if (TD.getPointerSizeInBits() != 64) {
1462 int SExtAmount = 64-TD.getPointerSizeInBits();
1463 Offset = (Offset << SExtAmount) >> SExtAmount;
1464 }
1465
1466 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1467 Ctx);
1468 }
1469
1470 case Instruction::Trunc:
1471 // We emit the value and depend on the assembler to truncate the generated
1472 // expression properly. This is important for differences between
1473 // blockaddress labels. Since the two labels are in the same function, it
1474 // is reasonable to treat their delta as a 32-bit value.
1475 // FALL THROUGH.
1476 case Instruction::BitCast:
1477 return LowerConstant(CE->getOperand(0), AP);
1478
1479 case Instruction::IntToPtr: {
1480 const TargetData &TD = *AP.TM.getTargetData();
1481 // Handle casts to pointers by changing them into casts to the appropriate
1482 // integer type. This promotes constant folding and simplifies this code.
1483 Constant *Op = CE->getOperand(0);
1484 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1485 false/*ZExt*/);
1486 return LowerConstant(Op, AP);
1487 }
1488
1489 case Instruction::PtrToInt: {
1490 const TargetData &TD = *AP.TM.getTargetData();
1491 // Support only foldable casts to/from pointers that can be eliminated by
1492 // changing the pointer to the appropriately sized integer type.
1493 Constant *Op = CE->getOperand(0);
1494 Type *Ty = CE->getType();
1495
1496 const MCExpr *OpExpr = LowerConstant(Op, AP);
1497
1498 // We can emit the pointer value into this slot if the slot is an
1499 // integer slot equal to the size of the pointer.
1500 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1501 return OpExpr;
1502
1503 // Otherwise the pointer is smaller than the resultant integer, mask off
1504 // the high bits so we are sure to get a proper truncation if the input is
1505 // a constant expr.
1506 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1507 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1508 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1509 }
1510
1511 // The MC library also has a right-shift operator, but it isn't consistently
1512 // signed or unsigned between different targets.
1513 case Instruction::Add:
1514 case Instruction::Sub:
1515 case Instruction::Mul:
1516 case Instruction::SDiv:
1517 case Instruction::SRem:
1518 case Instruction::Shl:
1519 case Instruction::And:
1520 case Instruction::Or:
1521 case Instruction::Xor: {
1522 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1523 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1524 switch (CE->getOpcode()) {
1525 default: llvm_unreachable("Unknown binary operator constant cast expr");
1526 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1527 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1528 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1529 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1530 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1531 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1532 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1533 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1534 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1535 }
1536 }
1537 }
1538 }
1539
1540 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1541 AsmPrinter &AP);
1542
1543 /// isRepeatedByteSequence - Determine whether the given value is
1544 /// composed of a repeated sequence of identical bytes and return the
1545 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1546 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1547
1548 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1549 if (CI->getBitWidth() > 64) return -1;
1550
1551 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1552 uint64_t Value = CI->getZExtValue();
1553
1554 // Make sure the constant is at least 8 bits long and has a power
1555 // of 2 bit width. This guarantees the constant bit width is
1556 // always a multiple of 8 bits, avoiding issues with padding out
1557 // to Size and other such corner cases.
1558 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1559
1560 uint8_t Byte = static_cast<uint8_t>(Value);
1561
1562 for (unsigned i = 1; i < Size; ++i) {
1563 Value >>= 8;
1564 if (static_cast<uint8_t>(Value) != Byte) return -1;
1565 }
1566 return Byte;
1567 }
1568 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1569 // Make sure all array elements are sequences of the same repeated
1570 // byte.
1571 if (CA->getNumOperands() == 0) return -1;
1572
1573 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1574 if (Byte == -1) return -1;
1575
1576 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1577 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1578 if (ThisByte == -1) return -1;
1579 if (Byte != ThisByte) return -1;
1580 }
1581 return Byte;
1582 }
1583
1584 return -1;
1585 }
1586
EmitGlobalConstantArray(const ConstantArray * CA,unsigned AddrSpace,AsmPrinter & AP)1587 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1588 AsmPrinter &AP) {
1589 if (AddrSpace != 0 || !CA->isString()) {
1590 // Not a string. Print the values in successive locations.
1591
1592 // See if we can aggregate some values. Make sure it can be
1593 // represented as a series of bytes of the constant value.
1594 int Value = isRepeatedByteSequence(CA, AP.TM);
1595
1596 if (Value != -1) {
1597 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1598 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1599 }
1600 else {
1601 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1602 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1603 }
1604 return;
1605 }
1606
1607 // Otherwise, it can be emitted as .ascii.
1608 SmallVector<char, 128> TmpVec;
1609 TmpVec.reserve(CA->getNumOperands());
1610 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1611 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
1612
1613 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
1614 }
1615
EmitGlobalConstantVector(const ConstantVector * CV,unsigned AddrSpace,AsmPrinter & AP)1616 static void EmitGlobalConstantVector(const ConstantVector *CV,
1617 unsigned AddrSpace, AsmPrinter &AP) {
1618 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1619 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1620
1621 const TargetData &TD = *AP.TM.getTargetData();
1622 unsigned Size = TD.getTypeAllocSize(CV->getType());
1623 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1624 CV->getType()->getNumElements();
1625 if (unsigned Padding = Size - EmittedSize)
1626 AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1627 }
1628
EmitGlobalConstantStruct(const ConstantStruct * CS,unsigned AddrSpace,AsmPrinter & AP)1629 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1630 unsigned AddrSpace, AsmPrinter &AP) {
1631 // Print the fields in successive locations. Pad to align if needed!
1632 const TargetData *TD = AP.TM.getTargetData();
1633 unsigned Size = TD->getTypeAllocSize(CS->getType());
1634 const StructLayout *Layout = TD->getStructLayout(CS->getType());
1635 uint64_t SizeSoFar = 0;
1636 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1637 const Constant *Field = CS->getOperand(i);
1638
1639 // Check if padding is needed and insert one or more 0s.
1640 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1641 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1642 - Layout->getElementOffset(i)) - FieldSize;
1643 SizeSoFar += FieldSize + PadSize;
1644
1645 // Now print the actual field value.
1646 EmitGlobalConstantImpl(Field, AddrSpace, AP);
1647
1648 // Insert padding - this may include padding to increase the size of the
1649 // current field up to the ABI size (if the struct is not packed) as well
1650 // as padding to ensure that the next field starts at the right offset.
1651 AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1652 }
1653 assert(SizeSoFar == Layout->getSizeInBytes() &&
1654 "Layout of constant struct may be incorrect!");
1655 }
1656
EmitGlobalConstantFP(const ConstantFP * CFP,unsigned AddrSpace,AsmPrinter & AP)1657 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1658 AsmPrinter &AP) {
1659 // FP Constants are printed as integer constants to avoid losing
1660 // precision.
1661 if (CFP->getType()->isDoubleTy()) {
1662 if (AP.isVerbose()) {
1663 double Val = CFP->getValueAPF().convertToDouble();
1664 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
1665 }
1666
1667 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1668 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1669 return;
1670 }
1671
1672 if (CFP->getType()->isFloatTy()) {
1673 if (AP.isVerbose()) {
1674 float Val = CFP->getValueAPF().convertToFloat();
1675 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
1676 }
1677 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1678 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1679 return;
1680 }
1681
1682 if (CFP->getType()->isX86_FP80Ty()) {
1683 // all long double variants are printed as hex
1684 // API needed to prevent premature destruction
1685 APInt API = CFP->getValueAPF().bitcastToAPInt();
1686 const uint64_t *p = API.getRawData();
1687 if (AP.isVerbose()) {
1688 // Convert to double so we can print the approximate val as a comment.
1689 APFloat DoubleVal = CFP->getValueAPF();
1690 bool ignored;
1691 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1692 &ignored);
1693 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1694 << DoubleVal.convertToDouble() << '\n';
1695 }
1696
1697 if (AP.TM.getTargetData()->isBigEndian()) {
1698 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1699 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1700 } else {
1701 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1702 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1703 }
1704
1705 // Emit the tail padding for the long double.
1706 const TargetData &TD = *AP.TM.getTargetData();
1707 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1708 TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1709 return;
1710 }
1711
1712 assert(CFP->getType()->isPPC_FP128Ty() &&
1713 "Floating point constant type not handled");
1714 // All long double variants are printed as hex
1715 // API needed to prevent premature destruction.
1716 APInt API = CFP->getValueAPF().bitcastToAPInt();
1717 const uint64_t *p = API.getRawData();
1718 if (AP.TM.getTargetData()->isBigEndian()) {
1719 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1720 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1721 } else {
1722 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1723 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1724 }
1725 }
1726
EmitGlobalConstantLargeInt(const ConstantInt * CI,unsigned AddrSpace,AsmPrinter & AP)1727 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1728 unsigned AddrSpace, AsmPrinter &AP) {
1729 const TargetData *TD = AP.TM.getTargetData();
1730 unsigned BitWidth = CI->getBitWidth();
1731 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1732
1733 // We don't expect assemblers to support integer data directives
1734 // for more than 64 bits, so we emit the data in at most 64-bit
1735 // quantities at a time.
1736 const uint64_t *RawData = CI->getValue().getRawData();
1737 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1738 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1739 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1740 }
1741 }
1742
EmitGlobalConstantImpl(const Constant * CV,unsigned AddrSpace,AsmPrinter & AP)1743 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1744 AsmPrinter &AP) {
1745 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
1746 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1747 return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1748 }
1749
1750 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1751 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1752 switch (Size) {
1753 case 1:
1754 case 2:
1755 case 4:
1756 case 8:
1757 if (AP.isVerbose())
1758 AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue());
1759 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1760 return;
1761 default:
1762 EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1763 return;
1764 }
1765 }
1766
1767 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1768 return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1769
1770 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1771 return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1772
1773 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1774 return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1775
1776 if (isa<ConstantPointerNull>(CV)) {
1777 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1778 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1779 return;
1780 }
1781
1782 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1783 return EmitGlobalConstantVector(V, AddrSpace, AP);
1784
1785 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
1786 // thread the streamer with EmitValue.
1787 AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
1788 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
1789 AddrSpace);
1790 }
1791
1792 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV,unsigned AddrSpace)1793 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1794 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1795 if (Size)
1796 EmitGlobalConstantImpl(CV, AddrSpace, *this);
1797 else if (MAI->hasSubsectionsViaSymbols()) {
1798 // If the global has zero size, emit a single byte so that two labels don't
1799 // look like they are at the same location.
1800 OutStreamer.EmitIntValue(0, 1, AddrSpace);
1801 }
1802 }
1803
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)1804 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1805 // Target doesn't support this yet!
1806 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1807 }
1808
printOffset(int64_t Offset,raw_ostream & OS) const1809 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1810 if (Offset > 0)
1811 OS << '+' << Offset;
1812 else if (Offset < 0)
1813 OS << Offset;
1814 }
1815
1816 //===----------------------------------------------------------------------===//
1817 // Symbol Lowering Routines.
1818 //===----------------------------------------------------------------------===//
1819
1820 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1821 /// temporary label with the specified stem and unique ID.
GetTempSymbol(StringRef Name,unsigned ID) const1822 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1823 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1824 Name + Twine(ID));
1825 }
1826
1827 /// GetTempSymbol - Return an assembler temporary label with the specified
1828 /// stem.
GetTempSymbol(StringRef Name) const1829 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1830 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1831 Name);
1832 }
1833
1834
GetBlockAddressSymbol(const BlockAddress * BA) const1835 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1836 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1837 }
1838
GetBlockAddressSymbol(const BasicBlock * BB) const1839 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1840 return MMI->getAddrLabelSymbol(BB);
1841 }
1842
1843 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const1844 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1845 return OutContext.GetOrCreateSymbol
1846 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1847 + "_" + Twine(CPID));
1848 }
1849
1850 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const1851 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1852 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1853 }
1854
1855 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1856 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const1857 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1858 return OutContext.GetOrCreateSymbol
1859 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1860 Twine(UID) + "_set_" + Twine(MBBID));
1861 }
1862
1863 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1864 /// global value name as its base, with the specified suffix, and where the
1865 /// symbol is forced to have private linkage if ForcePrivate is true.
GetSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix,bool ForcePrivate) const1866 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1867 StringRef Suffix,
1868 bool ForcePrivate) const {
1869 SmallString<60> NameStr;
1870 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1871 NameStr.append(Suffix.begin(), Suffix.end());
1872 return OutContext.GetOrCreateSymbol(NameStr.str());
1873 }
1874
1875 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1876 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const1877 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1878 SmallString<60> NameStr;
1879 Mang->getNameWithPrefix(NameStr, Sym);
1880 return OutContext.GetOrCreateSymbol(NameStr.str());
1881 }
1882
1883
1884
1885 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)1886 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1887 unsigned FunctionNumber) {
1888 if (Loop == 0) return;
1889 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
1890 OS.indent(Loop->getLoopDepth()*2)
1891 << "Parent Loop BB" << FunctionNumber << "_"
1892 << Loop->getHeader()->getNumber()
1893 << " Depth=" << Loop->getLoopDepth() << '\n';
1894 }
1895
1896
1897 /// PrintChildLoopComment - Print comments about child loops within
1898 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)1899 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
1900 unsigned FunctionNumber) {
1901 // Add child loop information
1902 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
1903 OS.indent((*CL)->getLoopDepth()*2)
1904 << "Child Loop BB" << FunctionNumber << "_"
1905 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
1906 << '\n';
1907 PrintChildLoopComment(OS, *CL, FunctionNumber);
1908 }
1909 }
1910
1911 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
EmitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)1912 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
1913 const MachineLoopInfo *LI,
1914 const AsmPrinter &AP) {
1915 // Add loop depth information
1916 const MachineLoop *Loop = LI->getLoopFor(&MBB);
1917 if (Loop == 0) return;
1918
1919 MachineBasicBlock *Header = Loop->getHeader();
1920 assert(Header && "No header for loop");
1921
1922 // If this block is not a loop header, just print out what is the loop header
1923 // and return.
1924 if (Header != &MBB) {
1925 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
1926 Twine(AP.getFunctionNumber())+"_" +
1927 Twine(Loop->getHeader()->getNumber())+
1928 " Depth="+Twine(Loop->getLoopDepth()));
1929 return;
1930 }
1931
1932 // Otherwise, it is a loop header. Print out information about child and
1933 // parent loops.
1934 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
1935
1936 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
1937
1938 OS << "=>";
1939 OS.indent(Loop->getLoopDepth()*2-2);
1940
1941 OS << "This ";
1942 if (Loop->empty())
1943 OS << "Inner ";
1944 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
1945
1946 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
1947 }
1948
1949
1950 /// EmitBasicBlockStart - This method prints the label for the specified
1951 /// MachineBasicBlock, an alignment (if present) and a comment describing
1952 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock * MBB) const1953 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
1954 // Emit an alignment directive for this block, if needed.
1955 if (unsigned Align = MBB->getAlignment())
1956 EmitAlignment(Log2_32(Align));
1957
1958 // If the block has its address taken, emit any labels that were used to
1959 // reference the block. It is possible that there is more than one label
1960 // here, because multiple LLVM BB's may have been RAUW'd to this block after
1961 // the references were generated.
1962 if (MBB->hasAddressTaken()) {
1963 const BasicBlock *BB = MBB->getBasicBlock();
1964 if (isVerbose())
1965 OutStreamer.AddComment("Block address taken");
1966
1967 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
1968
1969 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
1970 OutStreamer.EmitLabel(Syms[i]);
1971 }
1972
1973 // Print the main label for the block.
1974 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
1975 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
1976 if (const BasicBlock *BB = MBB->getBasicBlock())
1977 if (BB->hasName())
1978 OutStreamer.AddComment("%" + BB->getName());
1979
1980 EmitBasicBlockLoopComments(*MBB, LI, *this);
1981
1982 // NOTE: Want this comment at start of line, don't emit with AddComment.
1983 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
1984 Twine(MBB->getNumber()) + ":");
1985 }
1986 } else {
1987 if (isVerbose()) {
1988 if (const BasicBlock *BB = MBB->getBasicBlock())
1989 if (BB->hasName())
1990 OutStreamer.AddComment("%" + BB->getName());
1991 EmitBasicBlockLoopComments(*MBB, LI, *this);
1992 }
1993
1994 OutStreamer.EmitLabel(MBB->getSymbol());
1995 }
1996 }
1997
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const1998 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
1999 bool IsDefinition) const {
2000 MCSymbolAttr Attr = MCSA_Invalid;
2001
2002 switch (Visibility) {
2003 default: break;
2004 case GlobalValue::HiddenVisibility:
2005 if (IsDefinition)
2006 Attr = MAI->getHiddenVisibilityAttr();
2007 else
2008 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2009 break;
2010 case GlobalValue::ProtectedVisibility:
2011 Attr = MAI->getProtectedVisibilityAttr();
2012 break;
2013 }
2014
2015 if (Attr != MCSA_Invalid)
2016 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2017 }
2018
2019 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2020 /// exactly one predecessor and the control transfer mechanism between
2021 /// the predecessor and this block is a fall-through.
2022 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2023 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2024 // If this is a landing pad, it isn't a fall through. If it has no preds,
2025 // then nothing falls through to it.
2026 if (MBB->isLandingPad() || MBB->pred_empty())
2027 return false;
2028
2029 // If there isn't exactly one predecessor, it can't be a fall through.
2030 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2031 ++PI2;
2032 if (PI2 != MBB->pred_end())
2033 return false;
2034
2035 // The predecessor has to be immediately before this block.
2036 MachineBasicBlock *Pred = *PI;
2037
2038 if (!Pred->isLayoutSuccessor(MBB))
2039 return false;
2040
2041 // If the block is completely empty, then it definitely does fall through.
2042 if (Pred->empty())
2043 return true;
2044
2045 // Check the terminators in the previous blocks
2046 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2047 IE = Pred->end(); II != IE; ++II) {
2048 MachineInstr &MI = *II;
2049
2050 // If it is not a simple branch, we are in a table somewhere.
2051 if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch())
2052 return false;
2053
2054 // If we are the operands of one of the branches, this is not
2055 // a fall through.
2056 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2057 OE = MI.operands_end(); OI != OE; ++OI) {
2058 const MachineOperand& OP = *OI;
2059 if (OP.isJTI())
2060 return false;
2061 if (OP.isMBB() && OP.getMBB() == MBB)
2062 return false;
2063 }
2064 }
2065
2066 return true;
2067 }
2068
2069
2070
GetOrCreateGCPrinter(GCStrategy * S)2071 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2072 if (!S->usesMetadata())
2073 return 0;
2074
2075 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2076 gcp_map_type::iterator GCPI = GCMap.find(S);
2077 if (GCPI != GCMap.end())
2078 return GCPI->second;
2079
2080 const char *Name = S->getName().c_str();
2081
2082 for (GCMetadataPrinterRegistry::iterator
2083 I = GCMetadataPrinterRegistry::begin(),
2084 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2085 if (strcmp(Name, I->getName()) == 0) {
2086 GCMetadataPrinter *GMP = I->instantiate();
2087 GMP->S = S;
2088 GCMap.insert(std::make_pair(S, GMP));
2089 return GMP;
2090 }
2091
2092 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2093 return 0;
2094 }
2095
2096