1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "pre-RA-sched"
15 #include "ScheduleDAGSDNodes.h"
16 #include "llvm/InlineAsm.h"
17 #include "llvm/CodeGen/SchedulerRegistry.h"
18 #include "llvm/CodeGen/SelectionDAGISel.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetData.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29 
30 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
31 STATISTIC(NumDups,       "Number of duplicated nodes");
32 STATISTIC(NumPRCopies,   "Number of physical copies");
33 
34 static RegisterScheduler
35   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
36                    createFastDAGScheduler);
37 
38 namespace {
39   /// FastPriorityQueue - A degenerate priority queue that considers
40   /// all nodes to have the same priority.
41   ///
42   struct FastPriorityQueue {
43     SmallVector<SUnit *, 16> Queue;
44 
empty__anon6b58500a0111::FastPriorityQueue45     bool empty() const { return Queue.empty(); }
46 
push__anon6b58500a0111::FastPriorityQueue47     void push(SUnit *U) {
48       Queue.push_back(U);
49     }
50 
pop__anon6b58500a0111::FastPriorityQueue51     SUnit *pop() {
52       if (empty()) return NULL;
53       SUnit *V = Queue.back();
54       Queue.pop_back();
55       return V;
56     }
57   };
58 
59 //===----------------------------------------------------------------------===//
60 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
61 ///
62 class ScheduleDAGFast : public ScheduleDAGSDNodes {
63 private:
64   /// AvailableQueue - The priority queue to use for the available SUnits.
65   FastPriorityQueue AvailableQueue;
66 
67   /// LiveRegDefs - A set of physical registers and their definition
68   /// that are "live". These nodes must be scheduled before any other nodes that
69   /// modifies the registers can be scheduled.
70   unsigned NumLiveRegs;
71   std::vector<SUnit*> LiveRegDefs;
72   std::vector<unsigned> LiveRegCycles;
73 
74 public:
ScheduleDAGFast(MachineFunction & mf)75   ScheduleDAGFast(MachineFunction &mf)
76     : ScheduleDAGSDNodes(mf) {}
77 
78   void Schedule();
79 
80   /// AddPred - adds a predecessor edge to SUnit SU.
81   /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)82   void AddPred(SUnit *SU, const SDep &D) {
83     SU->addPred(D);
84   }
85 
86   /// RemovePred - removes a predecessor edge from SUnit SU.
87   /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)88   void RemovePred(SUnit *SU, const SDep &D) {
89     SU->removePred(D);
90   }
91 
92 private:
93   void ReleasePred(SUnit *SU, SDep *PredEdge);
94   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
95   void ScheduleNodeBottomUp(SUnit*, unsigned);
96   SUnit *CopyAndMoveSuccessors(SUnit*);
97   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
98                                 const TargetRegisterClass*,
99                                 const TargetRegisterClass*,
100                                 SmallVector<SUnit*, 2>&);
101   bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
102   void ListScheduleBottomUp();
103 
104   /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
ForceUnitLatencies() const105   bool ForceUnitLatencies() const { return true; }
106 };
107 }  // end anonymous namespace
108 
109 
110 /// Schedule - Schedule the DAG using list scheduling.
Schedule()111 void ScheduleDAGFast::Schedule() {
112   DEBUG(dbgs() << "********** List Scheduling **********\n");
113 
114   NumLiveRegs = 0;
115   LiveRegDefs.resize(TRI->getNumRegs(), NULL);
116   LiveRegCycles.resize(TRI->getNumRegs(), 0);
117 
118   // Build the scheduling graph.
119   BuildSchedGraph(NULL);
120 
121   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
122           SUnits[su].dumpAll(this));
123 
124   // Execute the actual scheduling loop.
125   ListScheduleBottomUp();
126 }
127 
128 //===----------------------------------------------------------------------===//
129 //  Bottom-Up Scheduling
130 //===----------------------------------------------------------------------===//
131 
132 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
133 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)134 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
135   SUnit *PredSU = PredEdge->getSUnit();
136 
137 #ifndef NDEBUG
138   if (PredSU->NumSuccsLeft == 0) {
139     dbgs() << "*** Scheduling failed! ***\n";
140     PredSU->dump(this);
141     dbgs() << " has been released too many times!\n";
142     llvm_unreachable(0);
143   }
144 #endif
145   --PredSU->NumSuccsLeft;
146 
147   // If all the node's successors are scheduled, this node is ready
148   // to be scheduled. Ignore the special EntrySU node.
149   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
150     PredSU->isAvailable = true;
151     AvailableQueue.push(PredSU);
152   }
153 }
154 
ReleasePredecessors(SUnit * SU,unsigned CurCycle)155 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
156   // Bottom up: release predecessors
157   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
158        I != E; ++I) {
159     ReleasePred(SU, &*I);
160     if (I->isAssignedRegDep()) {
161       // This is a physical register dependency and it's impossible or
162       // expensive to copy the register. Make sure nothing that can
163       // clobber the register is scheduled between the predecessor and
164       // this node.
165       if (!LiveRegDefs[I->getReg()]) {
166         ++NumLiveRegs;
167         LiveRegDefs[I->getReg()] = I->getSUnit();
168         LiveRegCycles[I->getReg()] = CurCycle;
169       }
170     }
171   }
172 }
173 
174 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
175 /// count of its predecessors. If a predecessor pending count is zero, add it to
176 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)177 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
178   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
179   DEBUG(SU->dump(this));
180 
181   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
182   SU->setHeightToAtLeast(CurCycle);
183   Sequence.push_back(SU);
184 
185   ReleasePredecessors(SU, CurCycle);
186 
187   // Release all the implicit physical register defs that are live.
188   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
189        I != E; ++I) {
190     if (I->isAssignedRegDep()) {
191       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
192         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
193         assert(LiveRegDefs[I->getReg()] == SU &&
194                "Physical register dependency violated?");
195         --NumLiveRegs;
196         LiveRegDefs[I->getReg()] = NULL;
197         LiveRegCycles[I->getReg()] = 0;
198       }
199     }
200   }
201 
202   SU->isScheduled = true;
203 }
204 
205 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
206 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)207 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
208   if (SU->getNode()->getGluedNode())
209     return NULL;
210 
211   SDNode *N = SU->getNode();
212   if (!N)
213     return NULL;
214 
215   SUnit *NewSU;
216   bool TryUnfold = false;
217   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
218     EVT VT = N->getValueType(i);
219     if (VT == MVT::Glue)
220       return NULL;
221     else if (VT == MVT::Other)
222       TryUnfold = true;
223   }
224   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
225     const SDValue &Op = N->getOperand(i);
226     EVT VT = Op.getNode()->getValueType(Op.getResNo());
227     if (VT == MVT::Glue)
228       return NULL;
229   }
230 
231   if (TryUnfold) {
232     SmallVector<SDNode*, 2> NewNodes;
233     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
234       return NULL;
235 
236     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
237     assert(NewNodes.size() == 2 && "Expected a load folding node!");
238 
239     N = NewNodes[1];
240     SDNode *LoadNode = NewNodes[0];
241     unsigned NumVals = N->getNumValues();
242     unsigned OldNumVals = SU->getNode()->getNumValues();
243     for (unsigned i = 0; i != NumVals; ++i)
244       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
245     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
246                                    SDValue(LoadNode, 1));
247 
248     SUnit *NewSU = NewSUnit(N);
249     assert(N->getNodeId() == -1 && "Node already inserted!");
250     N->setNodeId(NewSU->NodeNum);
251 
252     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
253     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
254       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
255         NewSU->isTwoAddress = true;
256         break;
257       }
258     }
259     if (MCID.isCommutable())
260       NewSU->isCommutable = true;
261 
262     // LoadNode may already exist. This can happen when there is another
263     // load from the same location and producing the same type of value
264     // but it has different alignment or volatileness.
265     bool isNewLoad = true;
266     SUnit *LoadSU;
267     if (LoadNode->getNodeId() != -1) {
268       LoadSU = &SUnits[LoadNode->getNodeId()];
269       isNewLoad = false;
270     } else {
271       LoadSU = NewSUnit(LoadNode);
272       LoadNode->setNodeId(LoadSU->NodeNum);
273     }
274 
275     SDep ChainPred;
276     SmallVector<SDep, 4> ChainSuccs;
277     SmallVector<SDep, 4> LoadPreds;
278     SmallVector<SDep, 4> NodePreds;
279     SmallVector<SDep, 4> NodeSuccs;
280     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
281          I != E; ++I) {
282       if (I->isCtrl())
283         ChainPred = *I;
284       else if (I->getSUnit()->getNode() &&
285                I->getSUnit()->getNode()->isOperandOf(LoadNode))
286         LoadPreds.push_back(*I);
287       else
288         NodePreds.push_back(*I);
289     }
290     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
291          I != E; ++I) {
292       if (I->isCtrl())
293         ChainSuccs.push_back(*I);
294       else
295         NodeSuccs.push_back(*I);
296     }
297 
298     if (ChainPred.getSUnit()) {
299       RemovePred(SU, ChainPred);
300       if (isNewLoad)
301         AddPred(LoadSU, ChainPred);
302     }
303     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
304       const SDep &Pred = LoadPreds[i];
305       RemovePred(SU, Pred);
306       if (isNewLoad) {
307         AddPred(LoadSU, Pred);
308       }
309     }
310     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
311       const SDep &Pred = NodePreds[i];
312       RemovePred(SU, Pred);
313       AddPred(NewSU, Pred);
314     }
315     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
316       SDep D = NodeSuccs[i];
317       SUnit *SuccDep = D.getSUnit();
318       D.setSUnit(SU);
319       RemovePred(SuccDep, D);
320       D.setSUnit(NewSU);
321       AddPred(SuccDep, D);
322     }
323     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
324       SDep D = ChainSuccs[i];
325       SUnit *SuccDep = D.getSUnit();
326       D.setSUnit(SU);
327       RemovePred(SuccDep, D);
328       if (isNewLoad) {
329         D.setSUnit(LoadSU);
330         AddPred(SuccDep, D);
331       }
332     }
333     if (isNewLoad) {
334       AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
335     }
336 
337     ++NumUnfolds;
338 
339     if (NewSU->NumSuccsLeft == 0) {
340       NewSU->isAvailable = true;
341       return NewSU;
342     }
343     SU = NewSU;
344   }
345 
346   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
347   NewSU = Clone(SU);
348 
349   // New SUnit has the exact same predecessors.
350   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
351        I != E; ++I)
352     if (!I->isArtificial())
353       AddPred(NewSU, *I);
354 
355   // Only copy scheduled successors. Cut them from old node's successor
356   // list and move them over.
357   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
358   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
359        I != E; ++I) {
360     if (I->isArtificial())
361       continue;
362     SUnit *SuccSU = I->getSUnit();
363     if (SuccSU->isScheduled) {
364       SDep D = *I;
365       D.setSUnit(NewSU);
366       AddPred(SuccSU, D);
367       D.setSUnit(SU);
368       DelDeps.push_back(std::make_pair(SuccSU, D));
369     }
370   }
371   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
372     RemovePred(DelDeps[i].first, DelDeps[i].second);
373 
374   ++NumDups;
375   return NewSU;
376 }
377 
378 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
379 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVector<SUnit *,2> & Copies)380 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
381                                               const TargetRegisterClass *DestRC,
382                                               const TargetRegisterClass *SrcRC,
383                                                SmallVector<SUnit*, 2> &Copies) {
384   SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
385   CopyFromSU->CopySrcRC = SrcRC;
386   CopyFromSU->CopyDstRC = DestRC;
387 
388   SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
389   CopyToSU->CopySrcRC = DestRC;
390   CopyToSU->CopyDstRC = SrcRC;
391 
392   // Only copy scheduled successors. Cut them from old node's successor
393   // list and move them over.
394   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
395   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
396        I != E; ++I) {
397     if (I->isArtificial())
398       continue;
399     SUnit *SuccSU = I->getSUnit();
400     if (SuccSU->isScheduled) {
401       SDep D = *I;
402       D.setSUnit(CopyToSU);
403       AddPred(SuccSU, D);
404       DelDeps.push_back(std::make_pair(SuccSU, *I));
405     }
406   }
407   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
408     RemovePred(DelDeps[i].first, DelDeps[i].second);
409   }
410 
411   AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
412   AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
413 
414   Copies.push_back(CopyFromSU);
415   Copies.push_back(CopyToSU);
416 
417   ++NumPRCopies;
418 }
419 
420 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
421 /// definition of the specified node.
422 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)423 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
424                                  const TargetInstrInfo *TII) {
425   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
426   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
427   unsigned NumRes = MCID.getNumDefs();
428   for (const unsigned *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
429     if (Reg == *ImpDef)
430       break;
431     ++NumRes;
432   }
433   return N->getValueType(NumRes);
434 }
435 
436 /// CheckForLiveRegDef - Return true and update live register vector if the
437 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVector<unsigned,4> & LRegs,const TargetRegisterInfo * TRI)438 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
439                                std::vector<SUnit*> &LiveRegDefs,
440                                SmallSet<unsigned, 4> &RegAdded,
441                                SmallVector<unsigned, 4> &LRegs,
442                                const TargetRegisterInfo *TRI) {
443   bool Added = false;
444   if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) {
445     if (RegAdded.insert(Reg)) {
446       LRegs.push_back(Reg);
447       Added = true;
448     }
449   }
450   for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
451     if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
452       if (RegAdded.insert(*Alias)) {
453         LRegs.push_back(*Alias);
454         Added = true;
455       }
456     }
457   return Added;
458 }
459 
460 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
461 /// scheduling of the given node to satisfy live physical register dependencies.
462 /// If the specific node is the last one that's available to schedule, do
463 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVector<unsigned,4> & LRegs)464 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
465                                                SmallVector<unsigned, 4> &LRegs){
466   if (NumLiveRegs == 0)
467     return false;
468 
469   SmallSet<unsigned, 4> RegAdded;
470   // If this node would clobber any "live" register, then it's not ready.
471   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
472        I != E; ++I) {
473     if (I->isAssignedRegDep()) {
474       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
475                          RegAdded, LRegs, TRI);
476     }
477   }
478 
479   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
480     if (Node->getOpcode() == ISD::INLINEASM) {
481       // Inline asm can clobber physical defs.
482       unsigned NumOps = Node->getNumOperands();
483       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
484         --NumOps;  // Ignore the glue operand.
485 
486       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
487         unsigned Flags =
488           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
489         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
490 
491         ++i; // Skip the ID value.
492         if (InlineAsm::isRegDefKind(Flags) ||
493             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
494             InlineAsm::isClobberKind(Flags)) {
495           // Check for def of register or earlyclobber register.
496           for (; NumVals; --NumVals, ++i) {
497             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
498             if (TargetRegisterInfo::isPhysicalRegister(Reg))
499               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
500           }
501         } else
502           i += NumVals;
503       }
504       continue;
505     }
506     if (!Node->isMachineOpcode())
507       continue;
508     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
509     if (!MCID.ImplicitDefs)
510       continue;
511     for (const unsigned *Reg = MCID.ImplicitDefs; *Reg; ++Reg) {
512       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
513     }
514   }
515   return !LRegs.empty();
516 }
517 
518 
519 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
520 /// schedulers.
ListScheduleBottomUp()521 void ScheduleDAGFast::ListScheduleBottomUp() {
522   unsigned CurCycle = 0;
523 
524   // Release any predecessors of the special Exit node.
525   ReleasePredecessors(&ExitSU, CurCycle);
526 
527   // Add root to Available queue.
528   if (!SUnits.empty()) {
529     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
530     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
531     RootSU->isAvailable = true;
532     AvailableQueue.push(RootSU);
533   }
534 
535   // While Available queue is not empty, grab the node with the highest
536   // priority. If it is not ready put it back.  Schedule the node.
537   SmallVector<SUnit*, 4> NotReady;
538   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
539   Sequence.reserve(SUnits.size());
540   while (!AvailableQueue.empty()) {
541     bool Delayed = false;
542     LRegsMap.clear();
543     SUnit *CurSU = AvailableQueue.pop();
544     while (CurSU) {
545       SmallVector<unsigned, 4> LRegs;
546       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
547         break;
548       Delayed = true;
549       LRegsMap.insert(std::make_pair(CurSU, LRegs));
550 
551       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
552       NotReady.push_back(CurSU);
553       CurSU = AvailableQueue.pop();
554     }
555 
556     // All candidates are delayed due to live physical reg dependencies.
557     // Try code duplication or inserting cross class copies
558     // to resolve it.
559     if (Delayed && !CurSU) {
560       if (!CurSU) {
561         // Try duplicating the nodes that produces these
562         // "expensive to copy" values to break the dependency. In case even
563         // that doesn't work, insert cross class copies.
564         SUnit *TrySU = NotReady[0];
565         SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
566         assert(LRegs.size() == 1 && "Can't handle this yet!");
567         unsigned Reg = LRegs[0];
568         SUnit *LRDef = LiveRegDefs[Reg];
569         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
570         const TargetRegisterClass *RC =
571           TRI->getMinimalPhysRegClass(Reg, VT);
572         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
573 
574         // If cross copy register class is the same as RC, then it must be
575         // possible copy the value directly. Do not try duplicate the def.
576         // If cross copy register class is not the same as RC, then it's
577         // possible to copy the value but it require cross register class copies
578         // and it is expensive.
579         // If cross copy register class is null, then it's not possible to copy
580         // the value at all.
581         SUnit *NewDef = 0;
582         if (DestRC != RC) {
583           NewDef = CopyAndMoveSuccessors(LRDef);
584           if (!DestRC && !NewDef)
585             report_fatal_error("Can't handle live physical "
586                                "register dependency!");
587         }
588         if (!NewDef) {
589           // Issue copies, these can be expensive cross register class copies.
590           SmallVector<SUnit*, 2> Copies;
591           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
592           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
593                        << " to SU #" << Copies.front()->NodeNum << "\n");
594           AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
595                               /*Reg=*/0, /*isNormalMemory=*/false,
596                               /*isMustAlias=*/false, /*isArtificial=*/true));
597           NewDef = Copies.back();
598         }
599 
600         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
601                      << " to SU #" << TrySU->NodeNum << "\n");
602         LiveRegDefs[Reg] = NewDef;
603         AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
604                              /*Reg=*/0, /*isNormalMemory=*/false,
605                              /*isMustAlias=*/false, /*isArtificial=*/true));
606         TrySU->isAvailable = false;
607         CurSU = NewDef;
608       }
609 
610       if (!CurSU) {
611         llvm_unreachable("Unable to resolve live physical register dependencies!");
612       }
613     }
614 
615     // Add the nodes that aren't ready back onto the available list.
616     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
617       NotReady[i]->isPending = false;
618       // May no longer be available due to backtracking.
619       if (NotReady[i]->isAvailable)
620         AvailableQueue.push(NotReady[i]);
621     }
622     NotReady.clear();
623 
624     if (CurSU)
625       ScheduleNodeBottomUp(CurSU, CurCycle);
626     ++CurCycle;
627   }
628 
629   // Reverse the order since it is bottom up.
630   std::reverse(Sequence.begin(), Sequence.end());
631 
632 #ifndef NDEBUG
633   VerifySchedule(/*isBottomUp=*/true);
634 #endif
635 }
636 
637 //===----------------------------------------------------------------------===//
638 //                         Public Constructor Functions
639 //===----------------------------------------------------------------------===//
640 
641 llvm::ScheduleDAGSDNodes *
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)642 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
643   return new ScheduleDAGFast(*IS->MF);
644 }
645