1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32
33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34 cl::desc("make the interpreter print every volatile load and store"));
35
36 //===----------------------------------------------------------------------===//
37 // Various Helper Functions
38 //===----------------------------------------------------------------------===//
39
SetValue(Value * V,GenericValue Val,ExecutionContext & SF)40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41 SF.Values[V] = Val;
42 }
43
44 //===----------------------------------------------------------------------===//
45 // Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
47
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49 case Type::TY##TyID: \
50 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51 break
52
executeFAddInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54 GenericValue Src2, Type *Ty) {
55 switch (Ty->getTypeID()) {
56 IMPLEMENT_BINARY_OPERATOR(+, Float);
57 IMPLEMENT_BINARY_OPERATOR(+, Double);
58 default:
59 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
60 llvm_unreachable(0);
61 }
62 }
63
executeFSubInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65 GenericValue Src2, Type *Ty) {
66 switch (Ty->getTypeID()) {
67 IMPLEMENT_BINARY_OPERATOR(-, Float);
68 IMPLEMENT_BINARY_OPERATOR(-, Double);
69 default:
70 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
71 llvm_unreachable(0);
72 }
73 }
74
executeFMulInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76 GenericValue Src2, Type *Ty) {
77 switch (Ty->getTypeID()) {
78 IMPLEMENT_BINARY_OPERATOR(*, Float);
79 IMPLEMENT_BINARY_OPERATOR(*, Double);
80 default:
81 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
82 llvm_unreachable(0);
83 }
84 }
85
executeFDivInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
87 GenericValue Src2, Type *Ty) {
88 switch (Ty->getTypeID()) {
89 IMPLEMENT_BINARY_OPERATOR(/, Float);
90 IMPLEMENT_BINARY_OPERATOR(/, Double);
91 default:
92 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
93 llvm_unreachable(0);
94 }
95 }
96
executeFRemInst(GenericValue & Dest,GenericValue Src1,GenericValue Src2,Type * Ty)97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
98 GenericValue Src2, Type *Ty) {
99 switch (Ty->getTypeID()) {
100 case Type::FloatTyID:
101 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102 break;
103 case Type::DoubleTyID:
104 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105 break;
106 default:
107 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108 llvm_unreachable(0);
109 }
110 }
111
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113 case Type::IntegerTyID: \
114 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115 break;
116
117 // Handle pointers specially because they must be compared with only as much
118 // width as the host has. We _do not_ want to be comparing 64 bit values when
119 // running on a 32-bit target, otherwise the upper 32 bits might mess up
120 // comparisons if they contain garbage.
121 #define IMPLEMENT_POINTER_ICMP(OP) \
122 case Type::PointerTyID: \
123 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
124 (void*)(intptr_t)Src2.PointerVal); \
125 break;
126
executeICMP_EQ(GenericValue Src1,GenericValue Src2,Type * Ty)127 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
128 Type *Ty) {
129 GenericValue Dest;
130 switch (Ty->getTypeID()) {
131 IMPLEMENT_INTEGER_ICMP(eq,Ty);
132 IMPLEMENT_POINTER_ICMP(==);
133 default:
134 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
135 llvm_unreachable(0);
136 }
137 return Dest;
138 }
139
executeICMP_NE(GenericValue Src1,GenericValue Src2,Type * Ty)140 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
141 Type *Ty) {
142 GenericValue Dest;
143 switch (Ty->getTypeID()) {
144 IMPLEMENT_INTEGER_ICMP(ne,Ty);
145 IMPLEMENT_POINTER_ICMP(!=);
146 default:
147 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
148 llvm_unreachable(0);
149 }
150 return Dest;
151 }
152
executeICMP_ULT(GenericValue Src1,GenericValue Src2,Type * Ty)153 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
154 Type *Ty) {
155 GenericValue Dest;
156 switch (Ty->getTypeID()) {
157 IMPLEMENT_INTEGER_ICMP(ult,Ty);
158 IMPLEMENT_POINTER_ICMP(<);
159 default:
160 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
161 llvm_unreachable(0);
162 }
163 return Dest;
164 }
165
executeICMP_SLT(GenericValue Src1,GenericValue Src2,Type * Ty)166 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
167 Type *Ty) {
168 GenericValue Dest;
169 switch (Ty->getTypeID()) {
170 IMPLEMENT_INTEGER_ICMP(slt,Ty);
171 IMPLEMENT_POINTER_ICMP(<);
172 default:
173 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
174 llvm_unreachable(0);
175 }
176 return Dest;
177 }
178
executeICMP_UGT(GenericValue Src1,GenericValue Src2,Type * Ty)179 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
180 Type *Ty) {
181 GenericValue Dest;
182 switch (Ty->getTypeID()) {
183 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
184 IMPLEMENT_POINTER_ICMP(>);
185 default:
186 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
187 llvm_unreachable(0);
188 }
189 return Dest;
190 }
191
executeICMP_SGT(GenericValue Src1,GenericValue Src2,Type * Ty)192 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
193 Type *Ty) {
194 GenericValue Dest;
195 switch (Ty->getTypeID()) {
196 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
197 IMPLEMENT_POINTER_ICMP(>);
198 default:
199 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
200 llvm_unreachable(0);
201 }
202 return Dest;
203 }
204
executeICMP_ULE(GenericValue Src1,GenericValue Src2,Type * Ty)205 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
206 Type *Ty) {
207 GenericValue Dest;
208 switch (Ty->getTypeID()) {
209 IMPLEMENT_INTEGER_ICMP(ule,Ty);
210 IMPLEMENT_POINTER_ICMP(<=);
211 default:
212 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
213 llvm_unreachable(0);
214 }
215 return Dest;
216 }
217
executeICMP_SLE(GenericValue Src1,GenericValue Src2,Type * Ty)218 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
219 Type *Ty) {
220 GenericValue Dest;
221 switch (Ty->getTypeID()) {
222 IMPLEMENT_INTEGER_ICMP(sle,Ty);
223 IMPLEMENT_POINTER_ICMP(<=);
224 default:
225 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
226 llvm_unreachable(0);
227 }
228 return Dest;
229 }
230
executeICMP_UGE(GenericValue Src1,GenericValue Src2,Type * Ty)231 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
232 Type *Ty) {
233 GenericValue Dest;
234 switch (Ty->getTypeID()) {
235 IMPLEMENT_INTEGER_ICMP(uge,Ty);
236 IMPLEMENT_POINTER_ICMP(>=);
237 default:
238 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
239 llvm_unreachable(0);
240 }
241 return Dest;
242 }
243
executeICMP_SGE(GenericValue Src1,GenericValue Src2,Type * Ty)244 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
245 Type *Ty) {
246 GenericValue Dest;
247 switch (Ty->getTypeID()) {
248 IMPLEMENT_INTEGER_ICMP(sge,Ty);
249 IMPLEMENT_POINTER_ICMP(>=);
250 default:
251 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
252 llvm_unreachable(0);
253 }
254 return Dest;
255 }
256
visitICmpInst(ICmpInst & I)257 void Interpreter::visitICmpInst(ICmpInst &I) {
258 ExecutionContext &SF = ECStack.back();
259 Type *Ty = I.getOperand(0)->getType();
260 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
261 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
262 GenericValue R; // Result
263
264 switch (I.getPredicate()) {
265 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
266 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
267 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
268 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
269 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
270 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
271 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
272 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
273 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
274 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
275 default:
276 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
277 llvm_unreachable(0);
278 }
279
280 SetValue(&I, R, SF);
281 }
282
283 #define IMPLEMENT_FCMP(OP, TY) \
284 case Type::TY##TyID: \
285 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
286 break
287
executeFCMP_OEQ(GenericValue Src1,GenericValue Src2,Type * Ty)288 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
289 Type *Ty) {
290 GenericValue Dest;
291 switch (Ty->getTypeID()) {
292 IMPLEMENT_FCMP(==, Float);
293 IMPLEMENT_FCMP(==, Double);
294 default:
295 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
296 llvm_unreachable(0);
297 }
298 return Dest;
299 }
300
executeFCMP_ONE(GenericValue Src1,GenericValue Src2,Type * Ty)301 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
302 Type *Ty) {
303 GenericValue Dest;
304 switch (Ty->getTypeID()) {
305 IMPLEMENT_FCMP(!=, Float);
306 IMPLEMENT_FCMP(!=, Double);
307
308 default:
309 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
310 llvm_unreachable(0);
311 }
312 return Dest;
313 }
314
executeFCMP_OLE(GenericValue Src1,GenericValue Src2,Type * Ty)315 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
316 Type *Ty) {
317 GenericValue Dest;
318 switch (Ty->getTypeID()) {
319 IMPLEMENT_FCMP(<=, Float);
320 IMPLEMENT_FCMP(<=, Double);
321 default:
322 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
323 llvm_unreachable(0);
324 }
325 return Dest;
326 }
327
executeFCMP_OGE(GenericValue Src1,GenericValue Src2,Type * Ty)328 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
329 Type *Ty) {
330 GenericValue Dest;
331 switch (Ty->getTypeID()) {
332 IMPLEMENT_FCMP(>=, Float);
333 IMPLEMENT_FCMP(>=, Double);
334 default:
335 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
336 llvm_unreachable(0);
337 }
338 return Dest;
339 }
340
executeFCMP_OLT(GenericValue Src1,GenericValue Src2,Type * Ty)341 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
342 Type *Ty) {
343 GenericValue Dest;
344 switch (Ty->getTypeID()) {
345 IMPLEMENT_FCMP(<, Float);
346 IMPLEMENT_FCMP(<, Double);
347 default:
348 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
349 llvm_unreachable(0);
350 }
351 return Dest;
352 }
353
executeFCMP_OGT(GenericValue Src1,GenericValue Src2,Type * Ty)354 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
355 Type *Ty) {
356 GenericValue Dest;
357 switch (Ty->getTypeID()) {
358 IMPLEMENT_FCMP(>, Float);
359 IMPLEMENT_FCMP(>, Double);
360 default:
361 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
362 llvm_unreachable(0);
363 }
364 return Dest;
365 }
366
367 #define IMPLEMENT_UNORDERED(TY, X,Y) \
368 if (TY->isFloatTy()) { \
369 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
370 Dest.IntVal = APInt(1,true); \
371 return Dest; \
372 } \
373 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
374 Dest.IntVal = APInt(1,true); \
375 return Dest; \
376 }
377
378
executeFCMP_UEQ(GenericValue Src1,GenericValue Src2,Type * Ty)379 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
380 Type *Ty) {
381 GenericValue Dest;
382 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
383 return executeFCMP_OEQ(Src1, Src2, Ty);
384 }
385
executeFCMP_UNE(GenericValue Src1,GenericValue Src2,Type * Ty)386 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
387 Type *Ty) {
388 GenericValue Dest;
389 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
390 return executeFCMP_ONE(Src1, Src2, Ty);
391 }
392
executeFCMP_ULE(GenericValue Src1,GenericValue Src2,Type * Ty)393 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
394 Type *Ty) {
395 GenericValue Dest;
396 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
397 return executeFCMP_OLE(Src1, Src2, Ty);
398 }
399
executeFCMP_UGE(GenericValue Src1,GenericValue Src2,Type * Ty)400 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
401 Type *Ty) {
402 GenericValue Dest;
403 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
404 return executeFCMP_OGE(Src1, Src2, Ty);
405 }
406
executeFCMP_ULT(GenericValue Src1,GenericValue Src2,Type * Ty)407 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
408 Type *Ty) {
409 GenericValue Dest;
410 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
411 return executeFCMP_OLT(Src1, Src2, Ty);
412 }
413
executeFCMP_UGT(GenericValue Src1,GenericValue Src2,Type * Ty)414 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
415 Type *Ty) {
416 GenericValue Dest;
417 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
418 return executeFCMP_OGT(Src1, Src2, Ty);
419 }
420
executeFCMP_ORD(GenericValue Src1,GenericValue Src2,Type * Ty)421 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
422 Type *Ty) {
423 GenericValue Dest;
424 if (Ty->isFloatTy())
425 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
426 Src2.FloatVal == Src2.FloatVal));
427 else
428 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
429 Src2.DoubleVal == Src2.DoubleVal));
430 return Dest;
431 }
432
executeFCMP_UNO(GenericValue Src1,GenericValue Src2,Type * Ty)433 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
434 Type *Ty) {
435 GenericValue Dest;
436 if (Ty->isFloatTy())
437 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
438 Src2.FloatVal != Src2.FloatVal));
439 else
440 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
441 Src2.DoubleVal != Src2.DoubleVal));
442 return Dest;
443 }
444
visitFCmpInst(FCmpInst & I)445 void Interpreter::visitFCmpInst(FCmpInst &I) {
446 ExecutionContext &SF = ECStack.back();
447 Type *Ty = I.getOperand(0)->getType();
448 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
449 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
450 GenericValue R; // Result
451
452 switch (I.getPredicate()) {
453 case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
454 case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
455 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
456 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
457 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
458 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
459 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
460 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
461 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
462 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
463 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
464 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
465 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
466 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
467 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
468 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
469 default:
470 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
471 llvm_unreachable(0);
472 }
473
474 SetValue(&I, R, SF);
475 }
476
executeCmpInst(unsigned predicate,GenericValue Src1,GenericValue Src2,Type * Ty)477 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
478 GenericValue Src2, Type *Ty) {
479 GenericValue Result;
480 switch (predicate) {
481 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
482 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
483 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
484 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
485 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
486 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
487 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
488 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
489 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
490 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
491 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
492 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
493 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
494 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
495 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
496 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
497 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
498 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
499 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
500 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
501 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
502 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
503 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
504 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
505 case FCmpInst::FCMP_FALSE: {
506 GenericValue Result;
507 Result.IntVal = APInt(1, false);
508 return Result;
509 }
510 case FCmpInst::FCMP_TRUE: {
511 GenericValue Result;
512 Result.IntVal = APInt(1, true);
513 return Result;
514 }
515 default:
516 dbgs() << "Unhandled Cmp predicate\n";
517 llvm_unreachable(0);
518 }
519 }
520
visitBinaryOperator(BinaryOperator & I)521 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
522 ExecutionContext &SF = ECStack.back();
523 Type *Ty = I.getOperand(0)->getType();
524 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
525 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
526 GenericValue R; // Result
527
528 switch (I.getOpcode()) {
529 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
530 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
531 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
532 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
533 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
534 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
535 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
536 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
537 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
538 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
539 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
540 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
541 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
542 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
543 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
544 default:
545 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
546 llvm_unreachable(0);
547 }
548
549 SetValue(&I, R, SF);
550 }
551
executeSelectInst(GenericValue Src1,GenericValue Src2,GenericValue Src3)552 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
553 GenericValue Src3) {
554 return Src1.IntVal == 0 ? Src3 : Src2;
555 }
556
visitSelectInst(SelectInst & I)557 void Interpreter::visitSelectInst(SelectInst &I) {
558 ExecutionContext &SF = ECStack.back();
559 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
560 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
561 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
562 GenericValue R = executeSelectInst(Src1, Src2, Src3);
563 SetValue(&I, R, SF);
564 }
565
566
567 //===----------------------------------------------------------------------===//
568 // Terminator Instruction Implementations
569 //===----------------------------------------------------------------------===//
570
exitCalled(GenericValue GV)571 void Interpreter::exitCalled(GenericValue GV) {
572 // runAtExitHandlers() assumes there are no stack frames, but
573 // if exit() was called, then it had a stack frame. Blow away
574 // the stack before interpreting atexit handlers.
575 ECStack.clear();
576 runAtExitHandlers();
577 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
578 }
579
580 /// Pop the last stack frame off of ECStack and then copy the result
581 /// back into the result variable if we are not returning void. The
582 /// result variable may be the ExitValue, or the Value of the calling
583 /// CallInst if there was a previous stack frame. This method may
584 /// invalidate any ECStack iterators you have. This method also takes
585 /// care of switching to the normal destination BB, if we are returning
586 /// from an invoke.
587 ///
popStackAndReturnValueToCaller(Type * RetTy,GenericValue Result)588 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
589 GenericValue Result) {
590 // Pop the current stack frame.
591 ECStack.pop_back();
592
593 if (ECStack.empty()) { // Finished main. Put result into exit code...
594 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
595 ExitValue = Result; // Capture the exit value of the program
596 } else {
597 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
598 }
599 } else {
600 // If we have a previous stack frame, and we have a previous call,
601 // fill in the return value...
602 ExecutionContext &CallingSF = ECStack.back();
603 if (Instruction *I = CallingSF.Caller.getInstruction()) {
604 // Save result...
605 if (!CallingSF.Caller.getType()->isVoidTy())
606 SetValue(I, Result, CallingSF);
607 if (InvokeInst *II = dyn_cast<InvokeInst> (I))
608 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
609 CallingSF.Caller = CallSite(); // We returned from the call...
610 }
611 }
612 }
613
visitReturnInst(ReturnInst & I)614 void Interpreter::visitReturnInst(ReturnInst &I) {
615 ExecutionContext &SF = ECStack.back();
616 Type *RetTy = Type::getVoidTy(I.getContext());
617 GenericValue Result;
618
619 // Save away the return value... (if we are not 'ret void')
620 if (I.getNumOperands()) {
621 RetTy = I.getReturnValue()->getType();
622 Result = getOperandValue(I.getReturnValue(), SF);
623 }
624
625 popStackAndReturnValueToCaller(RetTy, Result);
626 }
627
visitUnwindInst(UnwindInst & I)628 void Interpreter::visitUnwindInst(UnwindInst &I) {
629 // Unwind stack
630 Instruction *Inst;
631 do {
632 ECStack.pop_back();
633 if (ECStack.empty())
634 report_fatal_error("Empty stack during unwind!");
635 Inst = ECStack.back().Caller.getInstruction();
636 } while (!(Inst && isa<InvokeInst>(Inst)));
637
638 // Return from invoke
639 ExecutionContext &InvokingSF = ECStack.back();
640 InvokingSF.Caller = CallSite();
641
642 // Go to exceptional destination BB of invoke instruction
643 SwitchToNewBasicBlock(cast<InvokeInst>(Inst)->getUnwindDest(), InvokingSF);
644 }
645
visitUnreachableInst(UnreachableInst & I)646 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
647 report_fatal_error("Program executed an 'unreachable' instruction!");
648 }
649
visitBranchInst(BranchInst & I)650 void Interpreter::visitBranchInst(BranchInst &I) {
651 ExecutionContext &SF = ECStack.back();
652 BasicBlock *Dest;
653
654 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
655 if (!I.isUnconditional()) {
656 Value *Cond = I.getCondition();
657 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
658 Dest = I.getSuccessor(1);
659 }
660 SwitchToNewBasicBlock(Dest, SF);
661 }
662
visitSwitchInst(SwitchInst & I)663 void Interpreter::visitSwitchInst(SwitchInst &I) {
664 ExecutionContext &SF = ECStack.back();
665 Value* Cond = I.getCondition();
666 Type *ElTy = Cond->getType();
667 GenericValue CondVal = getOperandValue(Cond, SF);
668
669 // Check to see if any of the cases match...
670 BasicBlock *Dest = 0;
671 unsigned NumCases = I.getNumCases();
672 // Skip the first item since that's the default case.
673 for (unsigned i = 1; i < NumCases; ++i) {
674 GenericValue CaseVal = getOperandValue(I.getCaseValue(i), SF);
675 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
676 Dest = cast<BasicBlock>(I.getSuccessor(i));
677 break;
678 }
679 }
680 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
681 SwitchToNewBasicBlock(Dest, SF);
682 }
683
visitIndirectBrInst(IndirectBrInst & I)684 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
685 ExecutionContext &SF = ECStack.back();
686 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
687 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
688 }
689
690
691 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
692 // This function handles the actual updating of block and instruction iterators
693 // as well as execution of all of the PHI nodes in the destination block.
694 //
695 // This method does this because all of the PHI nodes must be executed
696 // atomically, reading their inputs before any of the results are updated. Not
697 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
698 // their inputs. If the input PHI node is updated before it is read, incorrect
699 // results can happen. Thus we use a two phase approach.
700 //
SwitchToNewBasicBlock(BasicBlock * Dest,ExecutionContext & SF)701 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
702 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
703 SF.CurBB = Dest; // Update CurBB to branch destination
704 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
705
706 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
707
708 // Loop over all of the PHI nodes in the current block, reading their inputs.
709 std::vector<GenericValue> ResultValues;
710
711 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
712 // Search for the value corresponding to this previous bb...
713 int i = PN->getBasicBlockIndex(PrevBB);
714 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
715 Value *IncomingValue = PN->getIncomingValue(i);
716
717 // Save the incoming value for this PHI node...
718 ResultValues.push_back(getOperandValue(IncomingValue, SF));
719 }
720
721 // Now loop over all of the PHI nodes setting their values...
722 SF.CurInst = SF.CurBB->begin();
723 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
724 PHINode *PN = cast<PHINode>(SF.CurInst);
725 SetValue(PN, ResultValues[i], SF);
726 }
727 }
728
729 //===----------------------------------------------------------------------===//
730 // Memory Instruction Implementations
731 //===----------------------------------------------------------------------===//
732
visitAllocaInst(AllocaInst & I)733 void Interpreter::visitAllocaInst(AllocaInst &I) {
734 ExecutionContext &SF = ECStack.back();
735
736 Type *Ty = I.getType()->getElementType(); // Type to be allocated
737
738 // Get the number of elements being allocated by the array...
739 unsigned NumElements =
740 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
741
742 unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
743
744 // Avoid malloc-ing zero bytes, use max()...
745 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
746
747 // Allocate enough memory to hold the type...
748 void *Memory = malloc(MemToAlloc);
749
750 DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
751 << NumElements << " (Total: " << MemToAlloc << ") at "
752 << uintptr_t(Memory) << '\n');
753
754 GenericValue Result = PTOGV(Memory);
755 assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
756 SetValue(&I, Result, SF);
757
758 if (I.getOpcode() == Instruction::Alloca)
759 ECStack.back().Allocas.add(Memory);
760 }
761
762 // getElementOffset - The workhorse for getelementptr.
763 //
executeGEPOperation(Value * Ptr,gep_type_iterator I,gep_type_iterator E,ExecutionContext & SF)764 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
765 gep_type_iterator E,
766 ExecutionContext &SF) {
767 assert(Ptr->getType()->isPointerTy() &&
768 "Cannot getElementOffset of a nonpointer type!");
769
770 uint64_t Total = 0;
771
772 for (; I != E; ++I) {
773 if (StructType *STy = dyn_cast<StructType>(*I)) {
774 const StructLayout *SLO = TD.getStructLayout(STy);
775
776 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
777 unsigned Index = unsigned(CPU->getZExtValue());
778
779 Total += SLO->getElementOffset(Index);
780 } else {
781 SequentialType *ST = cast<SequentialType>(*I);
782 // Get the index number for the array... which must be long type...
783 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
784
785 int64_t Idx;
786 unsigned BitWidth =
787 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
788 if (BitWidth == 32)
789 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
790 else {
791 assert(BitWidth == 64 && "Invalid index type for getelementptr");
792 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
793 }
794 Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
795 }
796 }
797
798 GenericValue Result;
799 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
800 DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
801 return Result;
802 }
803
visitGetElementPtrInst(GetElementPtrInst & I)804 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
805 ExecutionContext &SF = ECStack.back();
806 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
807 gep_type_begin(I), gep_type_end(I), SF), SF);
808 }
809
visitLoadInst(LoadInst & I)810 void Interpreter::visitLoadInst(LoadInst &I) {
811 ExecutionContext &SF = ECStack.back();
812 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
813 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
814 GenericValue Result;
815 LoadValueFromMemory(Result, Ptr, I.getType());
816 SetValue(&I, Result, SF);
817 if (I.isVolatile() && PrintVolatile)
818 dbgs() << "Volatile load " << I;
819 }
820
visitStoreInst(StoreInst & I)821 void Interpreter::visitStoreInst(StoreInst &I) {
822 ExecutionContext &SF = ECStack.back();
823 GenericValue Val = getOperandValue(I.getOperand(0), SF);
824 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
825 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
826 I.getOperand(0)->getType());
827 if (I.isVolatile() && PrintVolatile)
828 dbgs() << "Volatile store: " << I;
829 }
830
831 //===----------------------------------------------------------------------===//
832 // Miscellaneous Instruction Implementations
833 //===----------------------------------------------------------------------===//
834
visitCallSite(CallSite CS)835 void Interpreter::visitCallSite(CallSite CS) {
836 ExecutionContext &SF = ECStack.back();
837
838 // Check to see if this is an intrinsic function call...
839 Function *F = CS.getCalledFunction();
840 if (F && F->isDeclaration())
841 switch (F->getIntrinsicID()) {
842 case Intrinsic::not_intrinsic:
843 break;
844 case Intrinsic::vastart: { // va_start
845 GenericValue ArgIndex;
846 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
847 ArgIndex.UIntPairVal.second = 0;
848 SetValue(CS.getInstruction(), ArgIndex, SF);
849 return;
850 }
851 case Intrinsic::vaend: // va_end is a noop for the interpreter
852 return;
853 case Intrinsic::vacopy: // va_copy: dest = src
854 SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
855 return;
856 default:
857 // If it is an unknown intrinsic function, use the intrinsic lowering
858 // class to transform it into hopefully tasty LLVM code.
859 //
860 BasicBlock::iterator me(CS.getInstruction());
861 BasicBlock *Parent = CS.getInstruction()->getParent();
862 bool atBegin(Parent->begin() == me);
863 if (!atBegin)
864 --me;
865 IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
866
867 // Restore the CurInst pointer to the first instruction newly inserted, if
868 // any.
869 if (atBegin) {
870 SF.CurInst = Parent->begin();
871 } else {
872 SF.CurInst = me;
873 ++SF.CurInst;
874 }
875 return;
876 }
877
878
879 SF.Caller = CS;
880 std::vector<GenericValue> ArgVals;
881 const unsigned NumArgs = SF.Caller.arg_size();
882 ArgVals.reserve(NumArgs);
883 uint16_t pNum = 1;
884 for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
885 e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
886 Value *V = *i;
887 ArgVals.push_back(getOperandValue(V, SF));
888 }
889
890 // To handle indirect calls, we must get the pointer value from the argument
891 // and treat it as a function pointer.
892 GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
893 callFunction((Function*)GVTOP(SRC), ArgVals);
894 }
895
visitShl(BinaryOperator & I)896 void Interpreter::visitShl(BinaryOperator &I) {
897 ExecutionContext &SF = ECStack.back();
898 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
899 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
900 GenericValue Dest;
901 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
902 Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
903 else
904 Dest.IntVal = Src1.IntVal;
905
906 SetValue(&I, Dest, SF);
907 }
908
visitLShr(BinaryOperator & I)909 void Interpreter::visitLShr(BinaryOperator &I) {
910 ExecutionContext &SF = ECStack.back();
911 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
912 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
913 GenericValue Dest;
914 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
915 Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
916 else
917 Dest.IntVal = Src1.IntVal;
918
919 SetValue(&I, Dest, SF);
920 }
921
visitAShr(BinaryOperator & I)922 void Interpreter::visitAShr(BinaryOperator &I) {
923 ExecutionContext &SF = ECStack.back();
924 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
925 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
926 GenericValue Dest;
927 if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
928 Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
929 else
930 Dest.IntVal = Src1.IntVal;
931
932 SetValue(&I, Dest, SF);
933 }
934
executeTruncInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)935 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
936 ExecutionContext &SF) {
937 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
938 IntegerType *DITy = cast<IntegerType>(DstTy);
939 unsigned DBitWidth = DITy->getBitWidth();
940 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
941 return Dest;
942 }
943
executeSExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)944 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
945 ExecutionContext &SF) {
946 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
947 IntegerType *DITy = cast<IntegerType>(DstTy);
948 unsigned DBitWidth = DITy->getBitWidth();
949 Dest.IntVal = Src.IntVal.sext(DBitWidth);
950 return Dest;
951 }
952
executeZExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)953 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
954 ExecutionContext &SF) {
955 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
956 IntegerType *DITy = cast<IntegerType>(DstTy);
957 unsigned DBitWidth = DITy->getBitWidth();
958 Dest.IntVal = Src.IntVal.zext(DBitWidth);
959 return Dest;
960 }
961
executeFPTruncInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)962 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
963 ExecutionContext &SF) {
964 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
965 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
966 "Invalid FPTrunc instruction");
967 Dest.FloatVal = (float) Src.DoubleVal;
968 return Dest;
969 }
970
executeFPExtInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)971 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
972 ExecutionContext &SF) {
973 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
974 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
975 "Invalid FPTrunc instruction");
976 Dest.DoubleVal = (double) Src.FloatVal;
977 return Dest;
978 }
979
executeFPToUIInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)980 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
981 ExecutionContext &SF) {
982 Type *SrcTy = SrcVal->getType();
983 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
984 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
985 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
986
987 if (SrcTy->getTypeID() == Type::FloatTyID)
988 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
989 else
990 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
991 return Dest;
992 }
993
executeFPToSIInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)994 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
995 ExecutionContext &SF) {
996 Type *SrcTy = SrcVal->getType();
997 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
998 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
999 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1000
1001 if (SrcTy->getTypeID() == Type::FloatTyID)
1002 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1003 else
1004 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1005 return Dest;
1006 }
1007
executeUIToFPInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1008 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1009 ExecutionContext &SF) {
1010 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1011 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1012
1013 if (DstTy->getTypeID() == Type::FloatTyID)
1014 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1015 else
1016 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1017 return Dest;
1018 }
1019
executeSIToFPInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1020 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1021 ExecutionContext &SF) {
1022 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1023 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1024
1025 if (DstTy->getTypeID() == Type::FloatTyID)
1026 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1027 else
1028 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1029 return Dest;
1030
1031 }
1032
executePtrToIntInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1033 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1034 ExecutionContext &SF) {
1035 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1036 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1037 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1038
1039 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1040 return Dest;
1041 }
1042
executeIntToPtrInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1043 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1044 ExecutionContext &SF) {
1045 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1046 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1047
1048 uint32_t PtrSize = TD.getPointerSizeInBits();
1049 if (PtrSize != Src.IntVal.getBitWidth())
1050 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1051
1052 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1053 return Dest;
1054 }
1055
executeBitCastInst(Value * SrcVal,Type * DstTy,ExecutionContext & SF)1056 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1057 ExecutionContext &SF) {
1058
1059 Type *SrcTy = SrcVal->getType();
1060 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1061 if (DstTy->isPointerTy()) {
1062 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1063 Dest.PointerVal = Src.PointerVal;
1064 } else if (DstTy->isIntegerTy()) {
1065 if (SrcTy->isFloatTy()) {
1066 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1067 } else if (SrcTy->isDoubleTy()) {
1068 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1069 } else if (SrcTy->isIntegerTy()) {
1070 Dest.IntVal = Src.IntVal;
1071 } else
1072 llvm_unreachable("Invalid BitCast");
1073 } else if (DstTy->isFloatTy()) {
1074 if (SrcTy->isIntegerTy())
1075 Dest.FloatVal = Src.IntVal.bitsToFloat();
1076 else
1077 Dest.FloatVal = Src.FloatVal;
1078 } else if (DstTy->isDoubleTy()) {
1079 if (SrcTy->isIntegerTy())
1080 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1081 else
1082 Dest.DoubleVal = Src.DoubleVal;
1083 } else
1084 llvm_unreachable("Invalid Bitcast");
1085
1086 return Dest;
1087 }
1088
visitTruncInst(TruncInst & I)1089 void Interpreter::visitTruncInst(TruncInst &I) {
1090 ExecutionContext &SF = ECStack.back();
1091 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1092 }
1093
visitSExtInst(SExtInst & I)1094 void Interpreter::visitSExtInst(SExtInst &I) {
1095 ExecutionContext &SF = ECStack.back();
1096 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1097 }
1098
visitZExtInst(ZExtInst & I)1099 void Interpreter::visitZExtInst(ZExtInst &I) {
1100 ExecutionContext &SF = ECStack.back();
1101 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1102 }
1103
visitFPTruncInst(FPTruncInst & I)1104 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1105 ExecutionContext &SF = ECStack.back();
1106 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1107 }
1108
visitFPExtInst(FPExtInst & I)1109 void Interpreter::visitFPExtInst(FPExtInst &I) {
1110 ExecutionContext &SF = ECStack.back();
1111 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1112 }
1113
visitUIToFPInst(UIToFPInst & I)1114 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1115 ExecutionContext &SF = ECStack.back();
1116 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1117 }
1118
visitSIToFPInst(SIToFPInst & I)1119 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1120 ExecutionContext &SF = ECStack.back();
1121 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1122 }
1123
visitFPToUIInst(FPToUIInst & I)1124 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1125 ExecutionContext &SF = ECStack.back();
1126 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1127 }
1128
visitFPToSIInst(FPToSIInst & I)1129 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1130 ExecutionContext &SF = ECStack.back();
1131 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1132 }
1133
visitPtrToIntInst(PtrToIntInst & I)1134 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1135 ExecutionContext &SF = ECStack.back();
1136 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1137 }
1138
visitIntToPtrInst(IntToPtrInst & I)1139 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1140 ExecutionContext &SF = ECStack.back();
1141 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1142 }
1143
visitBitCastInst(BitCastInst & I)1144 void Interpreter::visitBitCastInst(BitCastInst &I) {
1145 ExecutionContext &SF = ECStack.back();
1146 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1147 }
1148
1149 #define IMPLEMENT_VAARG(TY) \
1150 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1151
visitVAArgInst(VAArgInst & I)1152 void Interpreter::visitVAArgInst(VAArgInst &I) {
1153 ExecutionContext &SF = ECStack.back();
1154
1155 // Get the incoming valist parameter. LLI treats the valist as a
1156 // (ec-stack-depth var-arg-index) pair.
1157 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1158 GenericValue Dest;
1159 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1160 .VarArgs[VAList.UIntPairVal.second];
1161 Type *Ty = I.getType();
1162 switch (Ty->getTypeID()) {
1163 case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
1164 IMPLEMENT_VAARG(Pointer);
1165 IMPLEMENT_VAARG(Float);
1166 IMPLEMENT_VAARG(Double);
1167 default:
1168 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1169 llvm_unreachable(0);
1170 }
1171
1172 // Set the Value of this Instruction.
1173 SetValue(&I, Dest, SF);
1174
1175 // Move the pointer to the next vararg.
1176 ++VAList.UIntPairVal.second;
1177 }
1178
getConstantExprValue(ConstantExpr * CE,ExecutionContext & SF)1179 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1180 ExecutionContext &SF) {
1181 switch (CE->getOpcode()) {
1182 case Instruction::Trunc:
1183 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1184 case Instruction::ZExt:
1185 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1186 case Instruction::SExt:
1187 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1188 case Instruction::FPTrunc:
1189 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1190 case Instruction::FPExt:
1191 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1192 case Instruction::UIToFP:
1193 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1194 case Instruction::SIToFP:
1195 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1196 case Instruction::FPToUI:
1197 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1198 case Instruction::FPToSI:
1199 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1200 case Instruction::PtrToInt:
1201 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1202 case Instruction::IntToPtr:
1203 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1204 case Instruction::BitCast:
1205 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1206 case Instruction::GetElementPtr:
1207 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1208 gep_type_end(CE), SF);
1209 case Instruction::FCmp:
1210 case Instruction::ICmp:
1211 return executeCmpInst(CE->getPredicate(),
1212 getOperandValue(CE->getOperand(0), SF),
1213 getOperandValue(CE->getOperand(1), SF),
1214 CE->getOperand(0)->getType());
1215 case Instruction::Select:
1216 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1217 getOperandValue(CE->getOperand(1), SF),
1218 getOperandValue(CE->getOperand(2), SF));
1219 default :
1220 break;
1221 }
1222
1223 // The cases below here require a GenericValue parameter for the result
1224 // so we initialize one, compute it and then return it.
1225 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1226 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1227 GenericValue Dest;
1228 Type * Ty = CE->getOperand(0)->getType();
1229 switch (CE->getOpcode()) {
1230 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
1231 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
1232 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
1233 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
1234 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
1235 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
1236 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1237 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1238 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1239 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1240 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1241 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
1242 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
1243 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
1244 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
1245 case Instruction::Shl:
1246 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1247 break;
1248 case Instruction::LShr:
1249 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1250 break;
1251 case Instruction::AShr:
1252 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1253 break;
1254 default:
1255 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
1256 llvm_unreachable(0);
1257 return GenericValue();
1258 }
1259 return Dest;
1260 }
1261
getOperandValue(Value * V,ExecutionContext & SF)1262 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1263 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1264 return getConstantExprValue(CE, SF);
1265 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1266 return getConstantValue(CPV);
1267 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1268 return PTOGV(getPointerToGlobal(GV));
1269 } else {
1270 return SF.Values[V];
1271 }
1272 }
1273
1274 //===----------------------------------------------------------------------===//
1275 // Dispatch and Execution Code
1276 //===----------------------------------------------------------------------===//
1277
1278 //===----------------------------------------------------------------------===//
1279 // callFunction - Execute the specified function...
1280 //
callFunction(Function * F,const std::vector<GenericValue> & ArgVals)1281 void Interpreter::callFunction(Function *F,
1282 const std::vector<GenericValue> &ArgVals) {
1283 assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1284 ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1285 "Incorrect number of arguments passed into function call!");
1286 // Make a new stack frame... and fill it in.
1287 ECStack.push_back(ExecutionContext());
1288 ExecutionContext &StackFrame = ECStack.back();
1289 StackFrame.CurFunction = F;
1290
1291 // Special handling for external functions.
1292 if (F->isDeclaration()) {
1293 GenericValue Result = callExternalFunction (F, ArgVals);
1294 // Simulate a 'ret' instruction of the appropriate type.
1295 popStackAndReturnValueToCaller (F->getReturnType (), Result);
1296 return;
1297 }
1298
1299 // Get pointers to first LLVM BB & Instruction in function.
1300 StackFrame.CurBB = F->begin();
1301 StackFrame.CurInst = StackFrame.CurBB->begin();
1302
1303 // Run through the function arguments and initialize their values...
1304 assert((ArgVals.size() == F->arg_size() ||
1305 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1306 "Invalid number of values passed to function invocation!");
1307
1308 // Handle non-varargs arguments...
1309 unsigned i = 0;
1310 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1311 AI != E; ++AI, ++i)
1312 SetValue(AI, ArgVals[i], StackFrame);
1313
1314 // Handle varargs arguments...
1315 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1316 }
1317
1318
run()1319 void Interpreter::run() {
1320 while (!ECStack.empty()) {
1321 // Interpret a single instruction & increment the "PC".
1322 ExecutionContext &SF = ECStack.back(); // Current stack frame
1323 Instruction &I = *SF.CurInst++; // Increment before execute
1324
1325 // Track the number of dynamic instructions executed.
1326 ++NumDynamicInsts;
1327
1328 DEBUG(dbgs() << "About to interpret: " << I);
1329 visit(I); // Dispatch to one of the visit* methods...
1330 #if 0
1331 // This is not safe, as visiting the instruction could lower it and free I.
1332 DEBUG(
1333 if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
1334 I.getType() != Type::VoidTy) {
1335 dbgs() << " --> ";
1336 const GenericValue &Val = SF.Values[&I];
1337 switch (I.getType()->getTypeID()) {
1338 default: llvm_unreachable("Invalid GenericValue Type");
1339 case Type::VoidTyID: dbgs() << "void"; break;
1340 case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
1341 case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
1342 case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
1343 break;
1344 case Type::IntegerTyID:
1345 dbgs() << "i" << Val.IntVal.getBitWidth() << " "
1346 << Val.IntVal.toStringUnsigned(10)
1347 << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1348 break;
1349 }
1350 });
1351 #endif
1352 }
1353 }
1354