1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Linker.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DerivedTypes.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Module.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Support/Path.h"
22 #include "llvm/Transforms/Utils/Cloning.h"
23 #include "llvm/Transforms/Utils/ValueMapper.h"
24 using namespace llvm;
25
26 //===----------------------------------------------------------------------===//
27 // TypeMap implementation.
28 //===----------------------------------------------------------------------===//
29
30 namespace {
31 class TypeMapTy : public ValueMapTypeRemapper {
32 /// MappedTypes - This is a mapping from a source type to a destination type
33 /// to use.
34 DenseMap<Type*, Type*> MappedTypes;
35
36 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
37 /// we speculatively add types to MappedTypes, but keep track of them here in
38 /// case we need to roll back.
39 SmallVector<Type*, 16> SpeculativeTypes;
40
41 /// DefinitionsToResolve - This is a list of non-opaque structs in the source
42 /// module that are mapped to an opaque struct in the destination module.
43 SmallVector<StructType*, 16> DefinitionsToResolve;
44 public:
45
46 /// addTypeMapping - Indicate that the specified type in the destination
47 /// module is conceptually equivalent to the specified type in the source
48 /// module.
49 void addTypeMapping(Type *DstTy, Type *SrcTy);
50
51 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
52 /// module from a type definition in the source module.
53 void linkDefinedTypeBodies();
54
55 /// get - Return the mapped type to use for the specified input type from the
56 /// source module.
57 Type *get(Type *SrcTy);
58
get(FunctionType * T)59 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
60
61 private:
62 Type *getImpl(Type *T);
63 /// remapType - Implement the ValueMapTypeRemapper interface.
remapType(Type * SrcTy)64 Type *remapType(Type *SrcTy) {
65 return get(SrcTy);
66 }
67
68 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
69 };
70 }
71
addTypeMapping(Type * DstTy,Type * SrcTy)72 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
73 Type *&Entry = MappedTypes[SrcTy];
74 if (Entry) return;
75
76 if (DstTy == SrcTy) {
77 Entry = DstTy;
78 return;
79 }
80
81 // Check to see if these types are recursively isomorphic and establish a
82 // mapping between them if so.
83 if (!areTypesIsomorphic(DstTy, SrcTy)) {
84 // Oops, they aren't isomorphic. Just discard this request by rolling out
85 // any speculative mappings we've established.
86 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
87 MappedTypes.erase(SpeculativeTypes[i]);
88 }
89 SpeculativeTypes.clear();
90 }
91
92 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
93 /// if they are isomorphic, false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)94 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
95 // Two types with differing kinds are clearly not isomorphic.
96 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
97
98 // If we have an entry in the MappedTypes table, then we have our answer.
99 Type *&Entry = MappedTypes[SrcTy];
100 if (Entry)
101 return Entry == DstTy;
102
103 // Two identical types are clearly isomorphic. Remember this
104 // non-speculatively.
105 if (DstTy == SrcTy) {
106 Entry = DstTy;
107 return true;
108 }
109
110 // Okay, we have two types with identical kinds that we haven't seen before.
111
112 // If this is an opaque struct type, special case it.
113 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
114 // Mapping an opaque type to any struct, just keep the dest struct.
115 if (SSTy->isOpaque()) {
116 Entry = DstTy;
117 SpeculativeTypes.push_back(SrcTy);
118 return true;
119 }
120
121 // Mapping a non-opaque source type to an opaque dest. Keep the dest, but
122 // fill it in later. This doesn't need to be speculative.
123 if (cast<StructType>(DstTy)->isOpaque()) {
124 Entry = DstTy;
125 DefinitionsToResolve.push_back(SSTy);
126 return true;
127 }
128 }
129
130 // If the number of subtypes disagree between the two types, then we fail.
131 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
132 return false;
133
134 // Fail if any of the extra properties (e.g. array size) of the type disagree.
135 if (isa<IntegerType>(DstTy))
136 return false; // bitwidth disagrees.
137 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
138 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
139 return false;
140 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
141 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
142 return false;
143 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
144 StructType *SSTy = cast<StructType>(SrcTy);
145 if (DSTy->isLiteral() != SSTy->isLiteral() ||
146 DSTy->isPacked() != SSTy->isPacked())
147 return false;
148 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
149 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
150 return false;
151 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
152 if (DVTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
153 return false;
154 }
155
156 // Otherwise, we speculate that these two types will line up and recursively
157 // check the subelements.
158 Entry = DstTy;
159 SpeculativeTypes.push_back(SrcTy);
160
161 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
162 if (!areTypesIsomorphic(DstTy->getContainedType(i),
163 SrcTy->getContainedType(i)))
164 return false;
165
166 // If everything seems to have lined up, then everything is great.
167 return true;
168 }
169
170 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
171 /// module from a type definition in the source module.
linkDefinedTypeBodies()172 void TypeMapTy::linkDefinedTypeBodies() {
173 SmallVector<Type*, 16> Elements;
174 SmallString<16> TmpName;
175
176 // Note that processing entries in this loop (calling 'get') can add new
177 // entries to the DefinitionsToResolve vector.
178 while (!DefinitionsToResolve.empty()) {
179 StructType *SrcSTy = DefinitionsToResolve.pop_back_val();
180 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
181
182 // TypeMap is a many-to-one mapping, if there were multiple types that
183 // provide a body for DstSTy then previous iterations of this loop may have
184 // already handled it. Just ignore this case.
185 if (!DstSTy->isOpaque()) continue;
186 assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
187
188 // Map the body of the source type over to a new body for the dest type.
189 Elements.resize(SrcSTy->getNumElements());
190 for (unsigned i = 0, e = Elements.size(); i != e; ++i)
191 Elements[i] = getImpl(SrcSTy->getElementType(i));
192
193 DstSTy->setBody(Elements, SrcSTy->isPacked());
194
195 // If DstSTy has no name or has a longer name than STy, then viciously steal
196 // STy's name.
197 if (!SrcSTy->hasName()) continue;
198 StringRef SrcName = SrcSTy->getName();
199
200 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
201 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
202 SrcSTy->setName("");
203 DstSTy->setName(TmpName.str());
204 TmpName.clear();
205 }
206 }
207 }
208
209
210 /// get - Return the mapped type to use for the specified input type from the
211 /// source module.
get(Type * Ty)212 Type *TypeMapTy::get(Type *Ty) {
213 Type *Result = getImpl(Ty);
214
215 // If this caused a reference to any struct type, resolve it before returning.
216 if (!DefinitionsToResolve.empty())
217 linkDefinedTypeBodies();
218 return Result;
219 }
220
221 /// getImpl - This is the recursive version of get().
getImpl(Type * Ty)222 Type *TypeMapTy::getImpl(Type *Ty) {
223 // If we already have an entry for this type, return it.
224 Type **Entry = &MappedTypes[Ty];
225 if (*Entry) return *Entry;
226
227 // If this is not a named struct type, then just map all of the elements and
228 // then rebuild the type from inside out.
229 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
230 // If there are no element types to map, then the type is itself. This is
231 // true for the anonymous {} struct, things like 'float', integers, etc.
232 if (Ty->getNumContainedTypes() == 0)
233 return *Entry = Ty;
234
235 // Remap all of the elements, keeping track of whether any of them change.
236 bool AnyChange = false;
237 SmallVector<Type*, 4> ElementTypes;
238 ElementTypes.resize(Ty->getNumContainedTypes());
239 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
240 ElementTypes[i] = getImpl(Ty->getContainedType(i));
241 AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
242 }
243
244 // If we found our type while recursively processing stuff, just use it.
245 Entry = &MappedTypes[Ty];
246 if (*Entry) return *Entry;
247
248 // If all of the element types mapped directly over, then the type is usable
249 // as-is.
250 if (!AnyChange)
251 return *Entry = Ty;
252
253 // Otherwise, rebuild a modified type.
254 switch (Ty->getTypeID()) {
255 default: assert(0 && "unknown derived type to remap");
256 case Type::ArrayTyID:
257 return *Entry = ArrayType::get(ElementTypes[0],
258 cast<ArrayType>(Ty)->getNumElements());
259 case Type::VectorTyID:
260 return *Entry = VectorType::get(ElementTypes[0],
261 cast<VectorType>(Ty)->getNumElements());
262 case Type::PointerTyID:
263 return *Entry = PointerType::get(ElementTypes[0],
264 cast<PointerType>(Ty)->getAddressSpace());
265 case Type::FunctionTyID:
266 return *Entry = FunctionType::get(ElementTypes[0],
267 makeArrayRef(ElementTypes).slice(1),
268 cast<FunctionType>(Ty)->isVarArg());
269 case Type::StructTyID:
270 // Note that this is only reached for anonymous structs.
271 return *Entry = StructType::get(Ty->getContext(), ElementTypes,
272 cast<StructType>(Ty)->isPacked());
273 }
274 }
275
276 // Otherwise, this is an unmapped named struct. If the struct can be directly
277 // mapped over, just use it as-is. This happens in a case when the linked-in
278 // module has something like:
279 // %T = type {%T*, i32}
280 // @GV = global %T* null
281 // where T does not exist at all in the destination module.
282 //
283 // The other case we watch for is when the type is not in the destination
284 // module, but that it has to be rebuilt because it refers to something that
285 // is already mapped. For example, if the destination module has:
286 // %A = type { i32 }
287 // and the source module has something like
288 // %A' = type { i32 }
289 // %B = type { %A'* }
290 // @GV = global %B* null
291 // then we want to create a new type: "%B = type { %A*}" and have it take the
292 // pristine "%B" name from the source module.
293 //
294 // To determine which case this is, we have to recursively walk the type graph
295 // speculating that we'll be able to reuse it unmodified. Only if this is
296 // safe would we map the entire thing over. Because this is an optimization,
297 // and is not required for the prettiness of the linked module, we just skip
298 // it and always rebuild a type here.
299 StructType *STy = cast<StructType>(Ty);
300
301 // If the type is opaque, we can just use it directly.
302 if (STy->isOpaque())
303 return *Entry = STy;
304
305 // Otherwise we create a new type and resolve its body later. This will be
306 // resolved by the top level of get().
307 DefinitionsToResolve.push_back(STy);
308 return *Entry = StructType::create(STy->getContext());
309 }
310
311
312
313 //===----------------------------------------------------------------------===//
314 // ModuleLinker implementation.
315 //===----------------------------------------------------------------------===//
316
317 namespace {
318 /// ModuleLinker - This is an implementation class for the LinkModules
319 /// function, which is the entrypoint for this file.
320 class ModuleLinker {
321 Module *DstM, *SrcM;
322
323 TypeMapTy TypeMap;
324
325 /// ValueMap - Mapping of values from what they used to be in Src, to what
326 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
327 /// some overhead due to the use of Value handles which the Linker doesn't
328 /// actually need, but this allows us to reuse the ValueMapper code.
329 ValueToValueMapTy ValueMap;
330
331 struct AppendingVarInfo {
332 GlobalVariable *NewGV; // New aggregate global in dest module.
333 Constant *DstInit; // Old initializer from dest module.
334 Constant *SrcInit; // Old initializer from src module.
335 };
336
337 std::vector<AppendingVarInfo> AppendingVars;
338
339 unsigned Mode; // Mode to treat source module.
340
341 // Set of items not to link in from source.
342 SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
343
344 public:
345 std::string ErrorMsg;
346
ModuleLinker(Module * dstM,Module * srcM,unsigned mode)347 ModuleLinker(Module *dstM, Module *srcM, unsigned mode)
348 : DstM(dstM), SrcM(srcM), Mode(mode) { }
349
350 bool run();
351
352 private:
353 /// emitError - Helper method for setting a message and returning an error
354 /// code.
emitError(const Twine & Message)355 bool emitError(const Twine &Message) {
356 ErrorMsg = Message.str();
357 return true;
358 }
359
360 /// getLinkageResult - This analyzes the two global values and determines
361 /// what the result will look like in the destination module.
362 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
363 GlobalValue::LinkageTypes <, bool &LinkFromSrc);
364
365 /// getLinkedToGlobal - Given a global in the source module, return the
366 /// global in the destination module that is being linked to, if any.
getLinkedToGlobal(GlobalValue * SrcGV)367 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
368 // If the source has no name it can't link. If it has local linkage,
369 // there is no name match-up going on.
370 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
371 return 0;
372
373 // Otherwise see if we have a match in the destination module's symtab.
374 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
375 if (DGV == 0) return 0;
376
377 // If we found a global with the same name in the dest module, but it has
378 // internal linkage, we are really not doing any linkage here.
379 if (DGV->hasLocalLinkage())
380 return 0;
381
382 // Otherwise, we do in fact link to the destination global.
383 return DGV;
384 }
385
386 void computeTypeMapping();
387
388 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
389 bool linkGlobalProto(GlobalVariable *SrcGV);
390 bool linkFunctionProto(Function *SrcF);
391 bool linkAliasProto(GlobalAlias *SrcA);
392
393 void linkAppendingVarInit(const AppendingVarInfo &AVI);
394 void linkGlobalInits();
395 void linkFunctionBody(Function *Dst, Function *Src);
396 void linkAliasBodies();
397 void linkNamedMDNodes();
398 };
399 }
400
401
402
403 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
404 /// in the symbol table. This is good for all clients except for us. Go
405 /// through the trouble to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)406 static void forceRenaming(GlobalValue *GV, StringRef Name) {
407 // If the global doesn't force its name or if it already has the right name,
408 // there is nothing for us to do.
409 if (GV->hasLocalLinkage() || GV->getName() == Name)
410 return;
411
412 Module *M = GV->getParent();
413
414 // If there is a conflict, rename the conflict.
415 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
416 GV->takeName(ConflictGV);
417 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
418 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
419 } else {
420 GV->setName(Name); // Force the name back
421 }
422 }
423
424 /// CopyGVAttributes - copy additional attributes (those not needed to construct
425 /// a GlobalValue) from the SrcGV to the DestGV.
CopyGVAttributes(GlobalValue * DestGV,const GlobalValue * SrcGV)426 static void CopyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
427 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
428 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
429 DestGV->copyAttributesFrom(SrcGV);
430 DestGV->setAlignment(Alignment);
431
432 forceRenaming(DestGV, SrcGV->getName());
433 }
434
435 /// getLinkageResult - This analyzes the two global values and determines what
436 /// the result will look like in the destination module. In particular, it
437 /// computes the resultant linkage type, computes whether the global in the
438 /// source should be copied over to the destination (replacing the existing
439 /// one), and computes whether this linkage is an error or not. It also performs
440 /// visibility checks: we cannot link together two symbols with different
441 /// visibilities.
getLinkageResult(GlobalValue * Dest,const GlobalValue * Src,GlobalValue::LinkageTypes & LT,bool & LinkFromSrc)442 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
443 GlobalValue::LinkageTypes <,
444 bool &LinkFromSrc) {
445 assert(Dest && "Must have two globals being queried");
446 assert(!Src->hasLocalLinkage() &&
447 "If Src has internal linkage, Dest shouldn't be set!");
448
449 bool SrcIsDeclaration = Src->isDeclaration();
450 bool DestIsDeclaration = Dest->isDeclaration();
451
452 if (SrcIsDeclaration) {
453 // If Src is external or if both Src & Dest are external.. Just link the
454 // external globals, we aren't adding anything.
455 if (Src->hasDLLImportLinkage()) {
456 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
457 if (DestIsDeclaration) {
458 LinkFromSrc = true;
459 LT = Src->getLinkage();
460 }
461 } else if (Dest->hasExternalWeakLinkage()) {
462 // If the Dest is weak, use the source linkage.
463 LinkFromSrc = true;
464 LT = Src->getLinkage();
465 } else {
466 LinkFromSrc = false;
467 LT = Dest->getLinkage();
468 }
469 } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
470 // If Dest is external but Src is not:
471 LinkFromSrc = true;
472 LT = Src->getLinkage();
473 } else if (Src->isWeakForLinker()) {
474 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
475 // or DLL* linkage.
476 if (Dest->hasExternalWeakLinkage() ||
477 Dest->hasAvailableExternallyLinkage() ||
478 (Dest->hasLinkOnceLinkage() &&
479 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
480 LinkFromSrc = true;
481 LT = Src->getLinkage();
482 } else {
483 LinkFromSrc = false;
484 LT = Dest->getLinkage();
485 }
486 } else if (Dest->isWeakForLinker()) {
487 // At this point we know that Src has External* or DLL* linkage.
488 if (Src->hasExternalWeakLinkage()) {
489 LinkFromSrc = false;
490 LT = Dest->getLinkage();
491 } else {
492 LinkFromSrc = true;
493 LT = GlobalValue::ExternalLinkage;
494 }
495 } else {
496 assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
497 Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
498 (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
499 Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
500 "Unexpected linkage type!");
501 return emitError("Linking globals named '" + Src->getName() +
502 "': symbol multiply defined!");
503 }
504
505 // Check visibility
506 if (Src->getVisibility() != Dest->getVisibility() &&
507 !SrcIsDeclaration && !DestIsDeclaration &&
508 !Src->hasAvailableExternallyLinkage() &&
509 !Dest->hasAvailableExternallyLinkage())
510 return emitError("Linking globals named '" + Src->getName() +
511 "': symbols have different visibilities!");
512 return false;
513 }
514
515 /// computeTypeMapping - Loop over all of the linked values to compute type
516 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
517 /// we have two struct types 'Foo' but one got renamed when the module was
518 /// loaded into the same LLVMContext.
computeTypeMapping()519 void ModuleLinker::computeTypeMapping() {
520 // Incorporate globals.
521 for (Module::global_iterator I = SrcM->global_begin(),
522 E = SrcM->global_end(); I != E; ++I) {
523 GlobalValue *DGV = getLinkedToGlobal(I);
524 if (DGV == 0) continue;
525
526 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
527 TypeMap.addTypeMapping(DGV->getType(), I->getType());
528 continue;
529 }
530
531 // Unify the element type of appending arrays.
532 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
533 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
534 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
535 }
536
537 // Incorporate functions.
538 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
539 if (GlobalValue *DGV = getLinkedToGlobal(I))
540 TypeMap.addTypeMapping(DGV->getType(), I->getType());
541 }
542
543 // Don't bother incorporating aliases, they aren't generally typed well.
544
545 // Now that we have discovered all of the type equivalences, get a body for
546 // any 'opaque' types in the dest module that are now resolved.
547 TypeMap.linkDefinedTypeBodies();
548 }
549
550 /// linkAppendingVarProto - If there were any appending global variables, link
551 /// them together now. Return true on error.
linkAppendingVarProto(GlobalVariable * DstGV,GlobalVariable * SrcGV)552 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
553 GlobalVariable *SrcGV) {
554
555 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
556 return emitError("Linking globals named '" + SrcGV->getName() +
557 "': can only link appending global with another appending global!");
558
559 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
560 ArrayType *SrcTy =
561 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
562 Type *EltTy = DstTy->getElementType();
563
564 // Check to see that they two arrays agree on type.
565 if (EltTy != SrcTy->getElementType())
566 return emitError("Appending variables with different element types!");
567 if (DstGV->isConstant() != SrcGV->isConstant())
568 return emitError("Appending variables linked with different const'ness!");
569
570 if (DstGV->getAlignment() != SrcGV->getAlignment())
571 return emitError(
572 "Appending variables with different alignment need to be linked!");
573
574 if (DstGV->getVisibility() != SrcGV->getVisibility())
575 return emitError(
576 "Appending variables with different visibility need to be linked!");
577
578 if (DstGV->getSection() != SrcGV->getSection())
579 return emitError(
580 "Appending variables with different section name need to be linked!");
581
582 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
583 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
584
585 // Create the new global variable.
586 GlobalVariable *NG =
587 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
588 DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
589 DstGV->isThreadLocal(),
590 DstGV->getType()->getAddressSpace());
591
592 // Propagate alignment, visibility and section info.
593 CopyGVAttributes(NG, DstGV);
594
595 AppendingVarInfo AVI;
596 AVI.NewGV = NG;
597 AVI.DstInit = DstGV->getInitializer();
598 AVI.SrcInit = SrcGV->getInitializer();
599 AppendingVars.push_back(AVI);
600
601 // Replace any uses of the two global variables with uses of the new
602 // global.
603 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
604
605 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
606 DstGV->eraseFromParent();
607
608 // Track the source variable so we don't try to link it.
609 DoNotLinkFromSource.insert(SrcGV);
610
611 return false;
612 }
613
614 /// linkGlobalProto - Loop through the global variables in the src module and
615 /// merge them into the dest module.
linkGlobalProto(GlobalVariable * SGV)616 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
617 GlobalValue *DGV = getLinkedToGlobal(SGV);
618
619 if (DGV) {
620 // Concatenation of appending linkage variables is magic and handled later.
621 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
622 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
623
624 // Determine whether linkage of these two globals follows the source
625 // module's definition or the destination module's definition.
626 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
627 bool LinkFromSrc = false;
628 if (getLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc))
629 return true;
630
631 // If we're not linking from the source, then keep the definition that we
632 // have.
633 if (!LinkFromSrc) {
634 // Special case for const propagation.
635 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
636 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
637 DGVar->setConstant(true);
638
639 // Set calculated linkage.
640 DGV->setLinkage(NewLinkage);
641
642 // Make sure to remember this mapping.
643 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
644
645 // Track the source global so that we don't attempt to copy it over when
646 // processing global initializers.
647 DoNotLinkFromSource.insert(SGV);
648
649 return false;
650 }
651 }
652
653 // No linking to be performed or linking from the source: simply create an
654 // identical version of the symbol over in the dest module... the
655 // initializer will be filled in later by LinkGlobalInits.
656 GlobalVariable *NewDGV =
657 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
658 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
659 SGV->getName(), /*insertbefore*/0,
660 SGV->isThreadLocal(),
661 SGV->getType()->getAddressSpace());
662 // Propagate alignment, visibility and section info.
663 CopyGVAttributes(NewDGV, SGV);
664
665 if (DGV) {
666 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
667 DGV->eraseFromParent();
668 }
669
670 // Make sure to remember this mapping.
671 ValueMap[SGV] = NewDGV;
672 return false;
673 }
674
675 /// linkFunctionProto - Link the function in the source module into the
676 /// destination module if needed, setting up mapping information.
linkFunctionProto(Function * SF)677 bool ModuleLinker::linkFunctionProto(Function *SF) {
678 GlobalValue *DGV = getLinkedToGlobal(SF);
679
680 if (DGV) {
681 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
682 bool LinkFromSrc = false;
683 if (getLinkageResult(DGV, SF, NewLinkage, LinkFromSrc))
684 return true;
685
686 if (!LinkFromSrc) {
687 // Set calculated linkage
688 DGV->setLinkage(NewLinkage);
689
690 // Make sure to remember this mapping.
691 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
692
693 // Track the function from the source module so we don't attempt to remap
694 // it.
695 DoNotLinkFromSource.insert(SF);
696
697 return false;
698 }
699 }
700
701 // If there is no linkage to be performed or we are linking from the source,
702 // bring SF over.
703 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
704 SF->getLinkage(), SF->getName(), DstM);
705 CopyGVAttributes(NewDF, SF);
706
707 if (DGV) {
708 // Any uses of DF need to change to NewDF, with cast.
709 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
710 DGV->eraseFromParent();
711 }
712
713 ValueMap[SF] = NewDF;
714 return false;
715 }
716
717 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
718 /// source module.
linkAliasProto(GlobalAlias * SGA)719 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
720 GlobalValue *DGV = getLinkedToGlobal(SGA);
721
722 if (DGV) {
723 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
724 bool LinkFromSrc = false;
725 if (getLinkageResult(DGV, SGA, NewLinkage, LinkFromSrc))
726 return true;
727
728 if (!LinkFromSrc) {
729 // Set calculated linkage.
730 DGV->setLinkage(NewLinkage);
731
732 // Make sure to remember this mapping.
733 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
734
735 // Track the alias from the source module so we don't attempt to remap it.
736 DoNotLinkFromSource.insert(SGA);
737
738 return false;
739 }
740 }
741
742 // If there is no linkage to be performed or we're linking from the source,
743 // bring over SGA.
744 GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
745 SGA->getLinkage(), SGA->getName(),
746 /*aliasee*/0, DstM);
747 CopyGVAttributes(NewDA, SGA);
748
749 if (DGV) {
750 // Any uses of DGV need to change to NewDA, with cast.
751 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
752 DGV->eraseFromParent();
753 }
754
755 ValueMap[SGA] = NewDA;
756 return false;
757 }
758
linkAppendingVarInit(const AppendingVarInfo & AVI)759 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
760 // Merge the initializer.
761 SmallVector<Constant*, 16> Elements;
762 if (ConstantArray *I = dyn_cast<ConstantArray>(AVI.DstInit)) {
763 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
764 Elements.push_back(I->getOperand(i));
765 } else {
766 assert(isa<ConstantAggregateZero>(AVI.DstInit));
767 ArrayType *DstAT = cast<ArrayType>(AVI.DstInit->getType());
768 Type *EltTy = DstAT->getElementType();
769 Elements.append(DstAT->getNumElements(), Constant::getNullValue(EltTy));
770 }
771
772 Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap);
773 if (const ConstantArray *I = dyn_cast<ConstantArray>(SrcInit)) {
774 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
775 Elements.push_back(I->getOperand(i));
776 } else {
777 assert(isa<ConstantAggregateZero>(SrcInit));
778 ArrayType *SrcAT = cast<ArrayType>(SrcInit->getType());
779 Type *EltTy = SrcAT->getElementType();
780 Elements.append(SrcAT->getNumElements(), Constant::getNullValue(EltTy));
781 }
782 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
783 AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
784 }
785
786
787 // linkGlobalInits - Update the initializers in the Dest module now that all
788 // globals that may be referenced are in Dest.
linkGlobalInits()789 void ModuleLinker::linkGlobalInits() {
790 // Loop over all of the globals in the src module, mapping them over as we go
791 for (Module::const_global_iterator I = SrcM->global_begin(),
792 E = SrcM->global_end(); I != E; ++I) {
793
794 // Only process initialized GV's or ones not already in dest.
795 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
796
797 // Grab destination global variable.
798 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
799 // Figure out what the initializer looks like in the dest module.
800 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
801 RF_None, &TypeMap));
802 }
803 }
804
805 // linkFunctionBody - Copy the source function over into the dest function and
806 // fix up references to values. At this point we know that Dest is an external
807 // function, and that Src is not.
linkFunctionBody(Function * Dst,Function * Src)808 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
809 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
810
811 // Go through and convert function arguments over, remembering the mapping.
812 Function::arg_iterator DI = Dst->arg_begin();
813 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
814 I != E; ++I, ++DI) {
815 DI->setName(I->getName()); // Copy the name over.
816
817 // Add a mapping to our mapping.
818 ValueMap[I] = DI;
819 }
820
821 if (Mode == Linker::DestroySource) {
822 // Splice the body of the source function into the dest function.
823 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
824
825 // At this point, all of the instructions and values of the function are now
826 // copied over. The only problem is that they are still referencing values in
827 // the Source function as operands. Loop through all of the operands of the
828 // functions and patch them up to point to the local versions.
829 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
830 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
831 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
832
833 } else {
834 // Clone the body of the function into the dest function.
835 SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
836 CloneFunctionInto(Dst, Src, ValueMap, false, Returns);
837 }
838
839 // There is no need to map the arguments anymore.
840 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
841 I != E; ++I)
842 ValueMap.erase(I);
843
844 }
845
846
linkAliasBodies()847 void ModuleLinker::linkAliasBodies() {
848 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
849 I != E; ++I) {
850 if (DoNotLinkFromSource.count(I))
851 continue;
852 if (Constant *Aliasee = I->getAliasee()) {
853 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
854 DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None, &TypeMap));
855 }
856 }
857 }
858
859 /// linkNamedMDNodes - Insert all of the named mdnodes in Src into the Dest
860 /// module.
linkNamedMDNodes()861 void ModuleLinker::linkNamedMDNodes() {
862 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
863 E = SrcM->named_metadata_end(); I != E; ++I) {
864 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
865 // Add Src elements into Dest node.
866 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
867 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
868 RF_None, &TypeMap));
869 }
870 }
871
run()872 bool ModuleLinker::run() {
873 assert(DstM && "Null Destination module");
874 assert(SrcM && "Null Source Module");
875
876 // Inherit the target data from the source module if the destination module
877 // doesn't have one already.
878 if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
879 DstM->setDataLayout(SrcM->getDataLayout());
880
881 // Copy the target triple from the source to dest if the dest's is empty.
882 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
883 DstM->setTargetTriple(SrcM->getTargetTriple());
884
885 if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
886 SrcM->getDataLayout() != DstM->getDataLayout())
887 errs() << "WARNING: Linking two modules of different data layouts!\n";
888 if (!SrcM->getTargetTriple().empty() &&
889 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
890 errs() << "WARNING: Linking two modules of different target triples: ";
891 if (!SrcM->getModuleIdentifier().empty())
892 errs() << SrcM->getModuleIdentifier() << ": ";
893 errs() << "'" << SrcM->getTargetTriple() << "' and '"
894 << DstM->getTargetTriple() << "'\n";
895 }
896
897 // Append the module inline asm string.
898 if (!SrcM->getModuleInlineAsm().empty()) {
899 if (DstM->getModuleInlineAsm().empty())
900 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
901 else
902 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
903 SrcM->getModuleInlineAsm());
904 }
905
906 // Update the destination module's dependent libraries list with the libraries
907 // from the source module. There's no opportunity for duplicates here as the
908 // Module ensures that duplicate insertions are discarded.
909 for (Module::lib_iterator SI = SrcM->lib_begin(), SE = SrcM->lib_end();
910 SI != SE; ++SI)
911 DstM->addLibrary(*SI);
912
913 // If the source library's module id is in the dependent library list of the
914 // destination library, remove it since that module is now linked in.
915 StringRef ModuleId = SrcM->getModuleIdentifier();
916 if (!ModuleId.empty())
917 DstM->removeLibrary(sys::path::stem(ModuleId));
918
919 // Loop over all of the linked values to compute type mappings.
920 computeTypeMapping();
921
922 // Insert all of the globals in src into the DstM module... without linking
923 // initializers (which could refer to functions not yet mapped over).
924 for (Module::global_iterator I = SrcM->global_begin(),
925 E = SrcM->global_end(); I != E; ++I)
926 if (linkGlobalProto(I))
927 return true;
928
929 // Link the functions together between the two modules, without doing function
930 // bodies... this just adds external function prototypes to the DstM
931 // function... We do this so that when we begin processing function bodies,
932 // all of the global values that may be referenced are available in our
933 // ValueMap.
934 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
935 if (linkFunctionProto(I))
936 return true;
937
938 // If there were any aliases, link them now.
939 for (Module::alias_iterator I = SrcM->alias_begin(),
940 E = SrcM->alias_end(); I != E; ++I)
941 if (linkAliasProto(I))
942 return true;
943
944 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
945 linkAppendingVarInit(AppendingVars[i]);
946
947 // Update the initializers in the DstM module now that all globals that may
948 // be referenced are in DstM.
949 linkGlobalInits();
950
951 // Link in the function bodies that are defined in the source module into
952 // DstM.
953 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
954
955 // Skip if not linking from source.
956 if (DoNotLinkFromSource.count(SF)) continue;
957
958 // Skip if no body (function is external) or materialize.
959 if (SF->isDeclaration()) {
960 if (!SF->isMaterializable())
961 continue;
962 if (SF->Materialize(&ErrorMsg))
963 return true;
964 }
965
966 linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
967 }
968
969 // Resolve all uses of aliases with aliasees.
970 linkAliasBodies();
971
972 // Remap all of the named mdnoes in Src into the DstM module. We do this
973 // after linking GlobalValues so that MDNodes that reference GlobalValues
974 // are properly remapped.
975 linkNamedMDNodes();
976
977 // Now that all of the types from the source are used, resolve any structs
978 // copied over to the dest that didn't exist there.
979 TypeMap.linkDefinedTypeBodies();
980
981 return false;
982 }
983
984 //===----------------------------------------------------------------------===//
985 // LinkModules entrypoint.
986 //===----------------------------------------------------------------------===//
987
988 // LinkModules - This function links two modules together, with the resulting
989 // left module modified to be the composite of the two input modules. If an
990 // error occurs, true is returned and ErrorMsg (if not null) is set to indicate
991 // the problem. Upon failure, the Dest module could be in a modified state, and
992 // shouldn't be relied on to be consistent.
LinkModules(Module * Dest,Module * Src,unsigned Mode,std::string * ErrorMsg)993 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
994 std::string *ErrorMsg) {
995 ModuleLinker TheLinker(Dest, Src, Mode);
996 if (TheLinker.run()) {
997 if (ErrorMsg) *ErrorMsg = TheLinker.ErrorMsg;
998 return true;
999 }
1000
1001 return false;
1002 }
1003