1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMRegisterInfo.h"
20 #include "ARMTargetMachine.h"
21 #include "ARMSubtarget.h"
22 #include "ARMConstantPoolValue.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GetElementPtrTypeIterator.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
51
52 static cl::opt<bool>
53 DisableARMFastISel("disable-arm-fast-isel",
54 cl::desc("Turn off experimental ARM fast-isel support"),
55 cl::init(false), cl::Hidden);
56
57 extern cl::opt<bool> EnableARMLongCalls;
58
59 namespace {
60
61 // All possible address modes, plus some.
62 typedef struct Address {
63 enum {
64 RegBase,
65 FrameIndexBase
66 } BaseType;
67
68 union {
69 unsigned Reg;
70 int FI;
71 } Base;
72
73 int Offset;
74
75 // Innocuous defaults for our address.
Address__anonfb417fbe0111::Address76 Address()
77 : BaseType(RegBase), Offset(0) {
78 Base.Reg = 0;
79 }
80 } Address;
81
82 class ARMFastISel : public FastISel {
83
84 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85 /// make the right decision when generating code for different targets.
86 const ARMSubtarget *Subtarget;
87 const TargetMachine &TM;
88 const TargetInstrInfo &TII;
89 const TargetLowering &TLI;
90 ARMFunctionInfo *AFI;
91
92 // Convenience variables to avoid some queries.
93 bool isThumb;
94 LLVMContext *Context;
95
96 public:
ARMFastISel(FunctionLoweringInfo & funcInfo)97 explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98 : FastISel(funcInfo),
99 TM(funcInfo.MF->getTarget()),
100 TII(*TM.getInstrInfo()),
101 TLI(*TM.getTargetLowering()) {
102 Subtarget = &TM.getSubtarget<ARMSubtarget>();
103 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104 isThumb = AFI->isThumbFunction();
105 Context = &funcInfo.Fn->getContext();
106 }
107
108 // Code from FastISel.cpp.
109 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110 const TargetRegisterClass *RC);
111 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112 const TargetRegisterClass *RC,
113 unsigned Op0, bool Op0IsKill);
114 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115 const TargetRegisterClass *RC,
116 unsigned Op0, bool Op0IsKill,
117 unsigned Op1, bool Op1IsKill);
118 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, bool Op0IsKill,
121 unsigned Op1, bool Op1IsKill,
122 unsigned Op2, bool Op2IsKill);
123 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124 const TargetRegisterClass *RC,
125 unsigned Op0, bool Op0IsKill,
126 uint64_t Imm);
127 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128 const TargetRegisterClass *RC,
129 unsigned Op0, bool Op0IsKill,
130 const ConstantFP *FPImm);
131 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132 const TargetRegisterClass *RC,
133 unsigned Op0, bool Op0IsKill,
134 unsigned Op1, bool Op1IsKill,
135 uint64_t Imm);
136 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137 const TargetRegisterClass *RC,
138 uint64_t Imm);
139 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140 const TargetRegisterClass *RC,
141 uint64_t Imm1, uint64_t Imm2);
142
143 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144 unsigned Op0, bool Op0IsKill,
145 uint32_t Idx);
146
147 // Backend specific FastISel code.
148 virtual bool TargetSelectInstruction(const Instruction *I);
149 virtual unsigned TargetMaterializeConstant(const Constant *C);
150 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151
152 #include "ARMGenFastISel.inc"
153
154 // Instruction selection routines.
155 private:
156 bool SelectLoad(const Instruction *I);
157 bool SelectStore(const Instruction *I);
158 bool SelectBranch(const Instruction *I);
159 bool SelectCmp(const Instruction *I);
160 bool SelectFPExt(const Instruction *I);
161 bool SelectFPTrunc(const Instruction *I);
162 bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163 bool SelectSIToFP(const Instruction *I);
164 bool SelectFPToSI(const Instruction *I);
165 bool SelectSDiv(const Instruction *I);
166 bool SelectSRem(const Instruction *I);
167 bool SelectCall(const Instruction *I);
168 bool SelectSelect(const Instruction *I);
169 bool SelectRet(const Instruction *I);
170 bool SelectIntCast(const Instruction *I);
171
172 // Utility routines.
173 private:
174 bool isTypeLegal(Type *Ty, MVT &VT);
175 bool isLoadTypeLegal(Type *Ty, MVT &VT);
176 bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
177 bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
178 bool ARMComputeAddress(const Value *Obj, Address &Addr);
179 void ARMSimplifyAddress(Address &Addr, EVT VT);
180 unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
181 unsigned ARMMaterializeInt(const Constant *C, EVT VT);
182 unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
183 unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
184 unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
185 unsigned ARMSelectCallOp(const GlobalValue *GV);
186
187 // Call handling routines.
188 private:
189 bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
190 unsigned &ResultReg);
191 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
192 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
193 SmallVectorImpl<unsigned> &ArgRegs,
194 SmallVectorImpl<MVT> &ArgVTs,
195 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
196 SmallVectorImpl<unsigned> &RegArgs,
197 CallingConv::ID CC,
198 unsigned &NumBytes);
199 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
200 const Instruction *I, CallingConv::ID CC,
201 unsigned &NumBytes);
202 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
203
204 // OptionalDef handling routines.
205 private:
206 bool isARMNEONPred(const MachineInstr *MI);
207 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
208 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
209 void AddLoadStoreOperands(EVT VT, Address &Addr,
210 const MachineInstrBuilder &MIB,
211 unsigned Flags);
212 };
213
214 } // end anonymous namespace
215
216 #include "ARMGenCallingConv.inc"
217
218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
219 // we don't care about implicit defs here, just places we'll need to add a
220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
222 const MCInstrDesc &MCID = MI->getDesc();
223 if (!MCID.hasOptionalDef())
224 return false;
225
226 // Look to see if our OptionalDef is defining CPSR or CCR.
227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228 const MachineOperand &MO = MI->getOperand(i);
229 if (!MO.isReg() || !MO.isDef()) continue;
230 if (MO.getReg() == ARM::CPSR)
231 *CPSR = true;
232 }
233 return true;
234 }
235
isARMNEONPred(const MachineInstr * MI)236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237 const MCInstrDesc &MCID = MI->getDesc();
238
239 // If we're a thumb2 or not NEON function we were handled via isPredicable.
240 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241 AFI->isThumb2Function())
242 return false;
243
244 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
245 if (MCID.OpInfo[i].isPredicate())
246 return true;
247
248 return false;
249 }
250
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258 MachineInstr *MI = &*MIB;
259
260 // Do we use a predicate? or...
261 // Are we NEON in ARM mode and have a predicate operand? If so, I know
262 // we're not predicable but add it anyways.
263 if (TII.isPredicable(MI) || isARMNEONPred(MI))
264 AddDefaultPred(MIB);
265
266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
267 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268 bool CPSR = false;
269 if (DefinesOptionalPredicate(MI, &CPSR)) {
270 if (CPSR)
271 AddDefaultT1CC(MIB);
272 else
273 AddDefaultCC(MIB);
274 }
275 return MIB;
276 }
277
FastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
279 const TargetRegisterClass* RC) {
280 unsigned ResultReg = createResultReg(RC);
281 const MCInstrDesc &II = TII.get(MachineInstOpcode);
282
283 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
284 return ResultReg;
285 }
286
FastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
288 const TargetRegisterClass *RC,
289 unsigned Op0, bool Op0IsKill) {
290 unsigned ResultReg = createResultReg(RC);
291 const MCInstrDesc &II = TII.get(MachineInstOpcode);
292
293 if (II.getNumDefs() >= 1)
294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295 .addReg(Op0, Op0IsKill * RegState::Kill));
296 else {
297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
298 .addReg(Op0, Op0IsKill * RegState::Kill));
299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300 TII.get(TargetOpcode::COPY), ResultReg)
301 .addReg(II.ImplicitDefs[0]));
302 }
303 return ResultReg;
304 }
305
FastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
307 const TargetRegisterClass *RC,
308 unsigned Op0, bool Op0IsKill,
309 unsigned Op1, bool Op1IsKill) {
310 unsigned ResultReg = createResultReg(RC);
311 const MCInstrDesc &II = TII.get(MachineInstOpcode);
312
313 if (II.getNumDefs() >= 1)
314 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
315 .addReg(Op0, Op0IsKill * RegState::Kill)
316 .addReg(Op1, Op1IsKill * RegState::Kill));
317 else {
318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
319 .addReg(Op0, Op0IsKill * RegState::Kill)
320 .addReg(Op1, Op1IsKill * RegState::Kill));
321 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
322 TII.get(TargetOpcode::COPY), ResultReg)
323 .addReg(II.ImplicitDefs[0]));
324 }
325 return ResultReg;
326 }
327
FastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
329 const TargetRegisterClass *RC,
330 unsigned Op0, bool Op0IsKill,
331 unsigned Op1, bool Op1IsKill,
332 unsigned Op2, bool Op2IsKill) {
333 unsigned ResultReg = createResultReg(RC);
334 const MCInstrDesc &II = TII.get(MachineInstOpcode);
335
336 if (II.getNumDefs() >= 1)
337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
338 .addReg(Op0, Op0IsKill * RegState::Kill)
339 .addReg(Op1, Op1IsKill * RegState::Kill)
340 .addReg(Op2, Op2IsKill * RegState::Kill));
341 else {
342 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
343 .addReg(Op0, Op0IsKill * RegState::Kill)
344 .addReg(Op1, Op1IsKill * RegState::Kill)
345 .addReg(Op2, Op2IsKill * RegState::Kill));
346 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
347 TII.get(TargetOpcode::COPY), ResultReg)
348 .addReg(II.ImplicitDefs[0]));
349 }
350 return ResultReg;
351 }
352
FastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
354 const TargetRegisterClass *RC,
355 unsigned Op0, bool Op0IsKill,
356 uint64_t Imm) {
357 unsigned ResultReg = createResultReg(RC);
358 const MCInstrDesc &II = TII.get(MachineInstOpcode);
359
360 if (II.getNumDefs() >= 1)
361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
362 .addReg(Op0, Op0IsKill * RegState::Kill)
363 .addImm(Imm));
364 else {
365 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
366 .addReg(Op0, Op0IsKill * RegState::Kill)
367 .addImm(Imm));
368 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369 TII.get(TargetOpcode::COPY), ResultReg)
370 .addReg(II.ImplicitDefs[0]));
371 }
372 return ResultReg;
373 }
374
FastEmitInst_rf(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,const ConstantFP * FPImm)375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
376 const TargetRegisterClass *RC,
377 unsigned Op0, bool Op0IsKill,
378 const ConstantFP *FPImm) {
379 unsigned ResultReg = createResultReg(RC);
380 const MCInstrDesc &II = TII.get(MachineInstOpcode);
381
382 if (II.getNumDefs() >= 1)
383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
384 .addReg(Op0, Op0IsKill * RegState::Kill)
385 .addFPImm(FPImm));
386 else {
387 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
388 .addReg(Op0, Op0IsKill * RegState::Kill)
389 .addFPImm(FPImm));
390 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
391 TII.get(TargetOpcode::COPY), ResultReg)
392 .addReg(II.ImplicitDefs[0]));
393 }
394 return ResultReg;
395 }
396
FastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
398 const TargetRegisterClass *RC,
399 unsigned Op0, bool Op0IsKill,
400 unsigned Op1, bool Op1IsKill,
401 uint64_t Imm) {
402 unsigned ResultReg = createResultReg(RC);
403 const MCInstrDesc &II = TII.get(MachineInstOpcode);
404
405 if (II.getNumDefs() >= 1)
406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
407 .addReg(Op0, Op0IsKill * RegState::Kill)
408 .addReg(Op1, Op1IsKill * RegState::Kill)
409 .addImm(Imm));
410 else {
411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
412 .addReg(Op0, Op0IsKill * RegState::Kill)
413 .addReg(Op1, Op1IsKill * RegState::Kill)
414 .addImm(Imm));
415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
416 TII.get(TargetOpcode::COPY), ResultReg)
417 .addReg(II.ImplicitDefs[0]));
418 }
419 return ResultReg;
420 }
421
FastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
423 const TargetRegisterClass *RC,
424 uint64_t Imm) {
425 unsigned ResultReg = createResultReg(RC);
426 const MCInstrDesc &II = TII.get(MachineInstOpcode);
427
428 if (II.getNumDefs() >= 1)
429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
430 .addImm(Imm));
431 else {
432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
433 .addImm(Imm));
434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
435 TII.get(TargetOpcode::COPY), ResultReg)
436 .addReg(II.ImplicitDefs[0]));
437 }
438 return ResultReg;
439 }
440
FastEmitInst_ii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm1,uint64_t Imm2)441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
442 const TargetRegisterClass *RC,
443 uint64_t Imm1, uint64_t Imm2) {
444 unsigned ResultReg = createResultReg(RC);
445 const MCInstrDesc &II = TII.get(MachineInstOpcode);
446
447 if (II.getNumDefs() >= 1)
448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
449 .addImm(Imm1).addImm(Imm2));
450 else {
451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
452 .addImm(Imm1).addImm(Imm2));
453 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
454 TII.get(TargetOpcode::COPY),
455 ResultReg)
456 .addReg(II.ImplicitDefs[0]));
457 }
458 return ResultReg;
459 }
460
FastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
462 unsigned Op0, bool Op0IsKill,
463 uint32_t Idx) {
464 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
465 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
466 "Cannot yet extract from physregs");
467 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
468 DL, TII.get(TargetOpcode::COPY), ResultReg)
469 .addReg(Op0, getKillRegState(Op0IsKill), Idx));
470 return ResultReg;
471 }
472
473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
474 // checks from the various callers.
ARMMoveToFPReg(EVT VT,unsigned SrcReg)475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
476 if (VT == MVT::f64) return 0;
477
478 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
480 TII.get(ARM::VMOVRS), MoveReg)
481 .addReg(SrcReg));
482 return MoveReg;
483 }
484
ARMMoveToIntReg(EVT VT,unsigned SrcReg)485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
486 if (VT == MVT::i64) return 0;
487
488 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
489 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490 TII.get(ARM::VMOVSR), MoveReg)
491 .addReg(SrcReg));
492 return MoveReg;
493 }
494
495 // For double width floating point we need to materialize two constants
496 // (the high and the low) into integer registers then use a move to get
497 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,EVT VT)498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
499 const APFloat Val = CFP->getValueAPF();
500 bool is64bit = VT == MVT::f64;
501
502 // This checks to see if we can use VFP3 instructions to materialize
503 // a constant, otherwise we have to go through the constant pool.
504 if (TLI.isFPImmLegal(Val, VT)) {
505 int Imm;
506 unsigned Opc;
507 if (is64bit) {
508 Imm = ARM_AM::getFP64Imm(Val);
509 Opc = ARM::FCONSTD;
510 } else {
511 Imm = ARM_AM::getFP32Imm(Val);
512 Opc = ARM::FCONSTS;
513 }
514 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
515 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
516 DestReg)
517 .addImm(Imm));
518 return DestReg;
519 }
520
521 // Require VFP2 for loading fp constants.
522 if (!Subtarget->hasVFP2()) return false;
523
524 // MachineConstantPool wants an explicit alignment.
525 unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
526 if (Align == 0) {
527 // TODO: Figure out if this is correct.
528 Align = TD.getTypeAllocSize(CFP->getType());
529 }
530 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
531 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
532 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
533
534 // The extra reg is for addrmode5.
535 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
536 DestReg)
537 .addConstantPoolIndex(Idx)
538 .addReg(0));
539 return DestReg;
540 }
541
ARMMaterializeInt(const Constant * C,EVT VT)542 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
543
544 // For now 32-bit only.
545 if (VT != MVT::i32) return false;
546
547 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
548
549 // If we can do this in a single instruction without a constant pool entry
550 // do so now.
551 const ConstantInt *CI = cast<ConstantInt>(C);
552 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
553 unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
554 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
555 TII.get(Opc), DestReg)
556 .addImm(CI->getSExtValue()));
557 return DestReg;
558 }
559
560 // MachineConstantPool wants an explicit alignment.
561 unsigned Align = TD.getPrefTypeAlignment(C->getType());
562 if (Align == 0) {
563 // TODO: Figure out if this is correct.
564 Align = TD.getTypeAllocSize(C->getType());
565 }
566 unsigned Idx = MCP.getConstantPoolIndex(C, Align);
567
568 if (isThumb)
569 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
570 TII.get(ARM::t2LDRpci), DestReg)
571 .addConstantPoolIndex(Idx));
572 else
573 // The extra immediate is for addrmode2.
574 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
575 TII.get(ARM::LDRcp), DestReg)
576 .addConstantPoolIndex(Idx)
577 .addImm(0));
578
579 return DestReg;
580 }
581
ARMMaterializeGV(const GlobalValue * GV,EVT VT)582 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
583 // For now 32-bit only.
584 if (VT != MVT::i32) return 0;
585
586 Reloc::Model RelocM = TM.getRelocationModel();
587
588 // TODO: Need more magic for ARM PIC.
589 if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
590
591 // MachineConstantPool wants an explicit alignment.
592 unsigned Align = TD.getPrefTypeAlignment(GV->getType());
593 if (Align == 0) {
594 // TODO: Figure out if this is correct.
595 Align = TD.getTypeAllocSize(GV->getType());
596 }
597
598 // Grab index.
599 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
600 unsigned Id = AFI->createPICLabelUId();
601 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
602 ARMCP::CPValue,
603 PCAdj);
604 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
605
606 // Load value.
607 MachineInstrBuilder MIB;
608 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
609 if (isThumb) {
610 unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
611 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
612 .addConstantPoolIndex(Idx);
613 if (RelocM == Reloc::PIC_)
614 MIB.addImm(Id);
615 } else {
616 // The extra immediate is for addrmode2.
617 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
618 DestReg)
619 .addConstantPoolIndex(Idx)
620 .addImm(0);
621 }
622 AddOptionalDefs(MIB);
623
624 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
625 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
626 if (isThumb)
627 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
628 TII.get(ARM::t2LDRi12), NewDestReg)
629 .addReg(DestReg)
630 .addImm(0);
631 else
632 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
633 NewDestReg)
634 .addReg(DestReg)
635 .addImm(0);
636 DestReg = NewDestReg;
637 AddOptionalDefs(MIB);
638 }
639
640 return DestReg;
641 }
642
TargetMaterializeConstant(const Constant * C)643 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
644 EVT VT = TLI.getValueType(C->getType(), true);
645
646 // Only handle simple types.
647 if (!VT.isSimple()) return 0;
648
649 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
650 return ARMMaterializeFP(CFP, VT);
651 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
652 return ARMMaterializeGV(GV, VT);
653 else if (isa<ConstantInt>(C))
654 return ARMMaterializeInt(C, VT);
655
656 return 0;
657 }
658
TargetMaterializeAlloca(const AllocaInst * AI)659 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
660 // Don't handle dynamic allocas.
661 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
662
663 MVT VT;
664 if (!isLoadTypeLegal(AI->getType(), VT)) return false;
665
666 DenseMap<const AllocaInst*, int>::iterator SI =
667 FuncInfo.StaticAllocaMap.find(AI);
668
669 // This will get lowered later into the correct offsets and registers
670 // via rewriteXFrameIndex.
671 if (SI != FuncInfo.StaticAllocaMap.end()) {
672 TargetRegisterClass* RC = TLI.getRegClassFor(VT);
673 unsigned ResultReg = createResultReg(RC);
674 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
675 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
676 TII.get(Opc), ResultReg)
677 .addFrameIndex(SI->second)
678 .addImm(0));
679 return ResultReg;
680 }
681
682 return 0;
683 }
684
isTypeLegal(Type * Ty,MVT & VT)685 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
686 EVT evt = TLI.getValueType(Ty, true);
687
688 // Only handle simple types.
689 if (evt == MVT::Other || !evt.isSimple()) return false;
690 VT = evt.getSimpleVT();
691
692 // Handle all legal types, i.e. a register that will directly hold this
693 // value.
694 return TLI.isTypeLegal(VT);
695 }
696
isLoadTypeLegal(Type * Ty,MVT & VT)697 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
698 if (isTypeLegal(Ty, VT)) return true;
699
700 // If this is a type than can be sign or zero-extended to a basic operation
701 // go ahead and accept it now.
702 if (VT == MVT::i8 || VT == MVT::i16)
703 return true;
704
705 return false;
706 }
707
708 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)709 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
710 // Some boilerplate from the X86 FastISel.
711 const User *U = NULL;
712 unsigned Opcode = Instruction::UserOp1;
713 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
714 // Don't walk into other basic blocks unless the object is an alloca from
715 // another block, otherwise it may not have a virtual register assigned.
716 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
717 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
718 Opcode = I->getOpcode();
719 U = I;
720 }
721 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
722 Opcode = C->getOpcode();
723 U = C;
724 }
725
726 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
727 if (Ty->getAddressSpace() > 255)
728 // Fast instruction selection doesn't support the special
729 // address spaces.
730 return false;
731
732 switch (Opcode) {
733 default:
734 break;
735 case Instruction::BitCast: {
736 // Look through bitcasts.
737 return ARMComputeAddress(U->getOperand(0), Addr);
738 }
739 case Instruction::IntToPtr: {
740 // Look past no-op inttoptrs.
741 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
742 return ARMComputeAddress(U->getOperand(0), Addr);
743 break;
744 }
745 case Instruction::PtrToInt: {
746 // Look past no-op ptrtoints.
747 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
748 return ARMComputeAddress(U->getOperand(0), Addr);
749 break;
750 }
751 case Instruction::GetElementPtr: {
752 Address SavedAddr = Addr;
753 int TmpOffset = Addr.Offset;
754
755 // Iterate through the GEP folding the constants into offsets where
756 // we can.
757 gep_type_iterator GTI = gep_type_begin(U);
758 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
759 i != e; ++i, ++GTI) {
760 const Value *Op = *i;
761 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
762 const StructLayout *SL = TD.getStructLayout(STy);
763 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
764 TmpOffset += SL->getElementOffset(Idx);
765 } else {
766 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
767 for (;;) {
768 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
769 // Constant-offset addressing.
770 TmpOffset += CI->getSExtValue() * S;
771 break;
772 }
773 if (isa<AddOperator>(Op) &&
774 (!isa<Instruction>(Op) ||
775 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
776 == FuncInfo.MBB) &&
777 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
778 // An add (in the same block) with a constant operand. Fold the
779 // constant.
780 ConstantInt *CI =
781 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
782 TmpOffset += CI->getSExtValue() * S;
783 // Iterate on the other operand.
784 Op = cast<AddOperator>(Op)->getOperand(0);
785 continue;
786 }
787 // Unsupported
788 goto unsupported_gep;
789 }
790 }
791 }
792
793 // Try to grab the base operand now.
794 Addr.Offset = TmpOffset;
795 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
796
797 // We failed, restore everything and try the other options.
798 Addr = SavedAddr;
799
800 unsupported_gep:
801 break;
802 }
803 case Instruction::Alloca: {
804 const AllocaInst *AI = cast<AllocaInst>(Obj);
805 DenseMap<const AllocaInst*, int>::iterator SI =
806 FuncInfo.StaticAllocaMap.find(AI);
807 if (SI != FuncInfo.StaticAllocaMap.end()) {
808 Addr.BaseType = Address::FrameIndexBase;
809 Addr.Base.FI = SI->second;
810 return true;
811 }
812 break;
813 }
814 }
815
816 // Materialize the global variable's address into a reg which can
817 // then be used later to load the variable.
818 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
819 unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
820 if (Tmp == 0) return false;
821
822 Addr.Base.Reg = Tmp;
823 return true;
824 }
825
826 // Try to get this in a register if nothing else has worked.
827 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
828 return Addr.Base.Reg != 0;
829 }
830
ARMSimplifyAddress(Address & Addr,EVT VT)831 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
832
833 assert(VT.isSimple() && "Non-simple types are invalid here!");
834
835 bool needsLowering = false;
836 switch (VT.getSimpleVT().SimpleTy) {
837 default:
838 assert(false && "Unhandled load/store type!");
839 case MVT::i1:
840 case MVT::i8:
841 case MVT::i16:
842 case MVT::i32:
843 // Integer loads/stores handle 12-bit offsets.
844 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
845 break;
846 case MVT::f32:
847 case MVT::f64:
848 // Floating point operands handle 8-bit offsets.
849 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
850 break;
851 }
852
853 // If this is a stack pointer and the offset needs to be simplified then
854 // put the alloca address into a register, set the base type back to
855 // register and continue. This should almost never happen.
856 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
857 TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
858 ARM::GPRRegisterClass;
859 unsigned ResultReg = createResultReg(RC);
860 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
861 AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
862 TII.get(Opc), ResultReg)
863 .addFrameIndex(Addr.Base.FI)
864 .addImm(0));
865 Addr.Base.Reg = ResultReg;
866 Addr.BaseType = Address::RegBase;
867 }
868
869 // Since the offset is too large for the load/store instruction
870 // get the reg+offset into a register.
871 if (needsLowering) {
872 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
873 /*Op0IsKill*/false, Addr.Offset, MVT::i32);
874 Addr.Offset = 0;
875 }
876 }
877
AddLoadStoreOperands(EVT VT,Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags)878 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
879 const MachineInstrBuilder &MIB,
880 unsigned Flags) {
881 // addrmode5 output depends on the selection dag addressing dividing the
882 // offset by 4 that it then later multiplies. Do this here as well.
883 if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
884 VT.getSimpleVT().SimpleTy == MVT::f64)
885 Addr.Offset /= 4;
886
887 // Frame base works a bit differently. Handle it separately.
888 if (Addr.BaseType == Address::FrameIndexBase) {
889 int FI = Addr.Base.FI;
890 int Offset = Addr.Offset;
891 MachineMemOperand *MMO =
892 FuncInfo.MF->getMachineMemOperand(
893 MachinePointerInfo::getFixedStack(FI, Offset),
894 Flags,
895 MFI.getObjectSize(FI),
896 MFI.getObjectAlignment(FI));
897 // Now add the rest of the operands.
898 MIB.addFrameIndex(FI);
899
900 // ARM halfword load/stores need an additional operand.
901 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
902
903 MIB.addImm(Addr.Offset);
904 MIB.addMemOperand(MMO);
905 } else {
906 // Now add the rest of the operands.
907 MIB.addReg(Addr.Base.Reg);
908
909 // ARM halfword load/stores need an additional operand.
910 if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
911
912 MIB.addImm(Addr.Offset);
913 }
914 AddOptionalDefs(MIB);
915 }
916
ARMEmitLoad(EVT VT,unsigned & ResultReg,Address & Addr)917 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
918
919 assert(VT.isSimple() && "Non-simple types are invalid here!");
920 unsigned Opc;
921 TargetRegisterClass *RC;
922 switch (VT.getSimpleVT().SimpleTy) {
923 // This is mostly going to be Neon/vector support.
924 default: return false;
925 case MVT::i16:
926 Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
927 RC = ARM::GPRRegisterClass;
928 break;
929 case MVT::i8:
930 Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
931 RC = ARM::GPRRegisterClass;
932 break;
933 case MVT::i32:
934 Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
935 RC = ARM::GPRRegisterClass;
936 break;
937 case MVT::f32:
938 Opc = ARM::VLDRS;
939 RC = TLI.getRegClassFor(VT);
940 break;
941 case MVT::f64:
942 Opc = ARM::VLDRD;
943 RC = TLI.getRegClassFor(VT);
944 break;
945 }
946 // Simplify this down to something we can handle.
947 ARMSimplifyAddress(Addr, VT);
948
949 // Create the base instruction, then add the operands.
950 ResultReg = createResultReg(RC);
951 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
952 TII.get(Opc), ResultReg);
953 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
954 return true;
955 }
956
SelectLoad(const Instruction * I)957 bool ARMFastISel::SelectLoad(const Instruction *I) {
958 // Atomic loads need special handling.
959 if (cast<LoadInst>(I)->isAtomic())
960 return false;
961
962 // Verify we have a legal type before going any further.
963 MVT VT;
964 if (!isLoadTypeLegal(I->getType(), VT))
965 return false;
966
967 // See if we can handle this address.
968 Address Addr;
969 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
970
971 unsigned ResultReg;
972 if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
973 UpdateValueMap(I, ResultReg);
974 return true;
975 }
976
ARMEmitStore(EVT VT,unsigned SrcReg,Address & Addr)977 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
978 unsigned StrOpc;
979 switch (VT.getSimpleVT().SimpleTy) {
980 // This is mostly going to be Neon/vector support.
981 default: return false;
982 case MVT::i1: {
983 unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
984 ARM::GPRRegisterClass);
985 unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
986 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
987 TII.get(Opc), Res)
988 .addReg(SrcReg).addImm(1));
989 SrcReg = Res;
990 } // Fallthrough here.
991 case MVT::i8:
992 StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
993 break;
994 case MVT::i16:
995 StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
996 break;
997 case MVT::i32:
998 StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
999 break;
1000 case MVT::f32:
1001 if (!Subtarget->hasVFP2()) return false;
1002 StrOpc = ARM::VSTRS;
1003 break;
1004 case MVT::f64:
1005 if (!Subtarget->hasVFP2()) return false;
1006 StrOpc = ARM::VSTRD;
1007 break;
1008 }
1009 // Simplify this down to something we can handle.
1010 ARMSimplifyAddress(Addr, VT);
1011
1012 // Create the base instruction, then add the operands.
1013 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1014 TII.get(StrOpc))
1015 .addReg(SrcReg, getKillRegState(true));
1016 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1017 return true;
1018 }
1019
SelectStore(const Instruction * I)1020 bool ARMFastISel::SelectStore(const Instruction *I) {
1021 Value *Op0 = I->getOperand(0);
1022 unsigned SrcReg = 0;
1023
1024 // Atomic stores need special handling.
1025 if (cast<StoreInst>(I)->isAtomic())
1026 return false;
1027
1028 // Verify we have a legal type before going any further.
1029 MVT VT;
1030 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1031 return false;
1032
1033 // Get the value to be stored into a register.
1034 SrcReg = getRegForValue(Op0);
1035 if (SrcReg == 0) return false;
1036
1037 // See if we can handle this address.
1038 Address Addr;
1039 if (!ARMComputeAddress(I->getOperand(1), Addr))
1040 return false;
1041
1042 if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1043 return true;
1044 }
1045
getComparePred(CmpInst::Predicate Pred)1046 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1047 switch (Pred) {
1048 // Needs two compares...
1049 case CmpInst::FCMP_ONE:
1050 case CmpInst::FCMP_UEQ:
1051 default:
1052 // AL is our "false" for now. The other two need more compares.
1053 return ARMCC::AL;
1054 case CmpInst::ICMP_EQ:
1055 case CmpInst::FCMP_OEQ:
1056 return ARMCC::EQ;
1057 case CmpInst::ICMP_SGT:
1058 case CmpInst::FCMP_OGT:
1059 return ARMCC::GT;
1060 case CmpInst::ICMP_SGE:
1061 case CmpInst::FCMP_OGE:
1062 return ARMCC::GE;
1063 case CmpInst::ICMP_UGT:
1064 case CmpInst::FCMP_UGT:
1065 return ARMCC::HI;
1066 case CmpInst::FCMP_OLT:
1067 return ARMCC::MI;
1068 case CmpInst::ICMP_ULE:
1069 case CmpInst::FCMP_OLE:
1070 return ARMCC::LS;
1071 case CmpInst::FCMP_ORD:
1072 return ARMCC::VC;
1073 case CmpInst::FCMP_UNO:
1074 return ARMCC::VS;
1075 case CmpInst::FCMP_UGE:
1076 return ARMCC::PL;
1077 case CmpInst::ICMP_SLT:
1078 case CmpInst::FCMP_ULT:
1079 return ARMCC::LT;
1080 case CmpInst::ICMP_SLE:
1081 case CmpInst::FCMP_ULE:
1082 return ARMCC::LE;
1083 case CmpInst::FCMP_UNE:
1084 case CmpInst::ICMP_NE:
1085 return ARMCC::NE;
1086 case CmpInst::ICMP_UGE:
1087 return ARMCC::HS;
1088 case CmpInst::ICMP_ULT:
1089 return ARMCC::LO;
1090 }
1091 }
1092
SelectBranch(const Instruction * I)1093 bool ARMFastISel::SelectBranch(const Instruction *I) {
1094 const BranchInst *BI = cast<BranchInst>(I);
1095 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1096 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1097
1098 // Simple branch support.
1099
1100 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1101 // behavior.
1102 // TODO: Factor this out.
1103 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1104 MVT SourceVT;
1105 Type *Ty = CI->getOperand(0)->getType();
1106 if (CI->hasOneUse() && (CI->getParent() == I->getParent())
1107 && isTypeLegal(Ty, SourceVT)) {
1108 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1109 if (isFloat && !Subtarget->hasVFP2())
1110 return false;
1111
1112 unsigned CmpOpc;
1113 switch (SourceVT.SimpleTy) {
1114 default: return false;
1115 // TODO: Verify compares.
1116 case MVT::f32:
1117 CmpOpc = ARM::VCMPES;
1118 break;
1119 case MVT::f64:
1120 CmpOpc = ARM::VCMPED;
1121 break;
1122 case MVT::i32:
1123 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1124 break;
1125 }
1126
1127 // Get the compare predicate.
1128 // Try to take advantage of fallthrough opportunities.
1129 CmpInst::Predicate Predicate = CI->getPredicate();
1130 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1131 std::swap(TBB, FBB);
1132 Predicate = CmpInst::getInversePredicate(Predicate);
1133 }
1134
1135 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1136
1137 // We may not handle every CC for now.
1138 if (ARMPred == ARMCC::AL) return false;
1139
1140 unsigned Arg1 = getRegForValue(CI->getOperand(0));
1141 if (Arg1 == 0) return false;
1142
1143 unsigned Arg2 = getRegForValue(CI->getOperand(1));
1144 if (Arg2 == 0) return false;
1145
1146 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1147 TII.get(CmpOpc))
1148 .addReg(Arg1).addReg(Arg2));
1149
1150 // For floating point we need to move the result to a comparison register
1151 // that we can then use for branches.
1152 if (isFloat)
1153 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1154 TII.get(ARM::FMSTAT)));
1155
1156 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1158 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1159 FastEmitBranch(FBB, DL);
1160 FuncInfo.MBB->addSuccessor(TBB);
1161 return true;
1162 }
1163 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1164 MVT SourceVT;
1165 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1166 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1167 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1168 unsigned OpReg = getRegForValue(TI->getOperand(0));
1169 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1170 TII.get(TstOpc))
1171 .addReg(OpReg).addImm(1));
1172
1173 unsigned CCMode = ARMCC::NE;
1174 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1175 std::swap(TBB, FBB);
1176 CCMode = ARMCC::EQ;
1177 }
1178
1179 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1181 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1182
1183 FastEmitBranch(FBB, DL);
1184 FuncInfo.MBB->addSuccessor(TBB);
1185 return true;
1186 }
1187 }
1188
1189 unsigned CmpReg = getRegForValue(BI->getCondition());
1190 if (CmpReg == 0) return false;
1191
1192 // We've been divorced from our compare! Our block was split, and
1193 // now our compare lives in a predecessor block. We musn't
1194 // re-compare here, as the children of the compare aren't guaranteed
1195 // live across the block boundary (we *could* check for this).
1196 // Regardless, the compare has been done in the predecessor block,
1197 // and it left a value for us in a virtual register. Ergo, we test
1198 // the one-bit value left in the virtual register.
1199 unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1200 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1201 .addReg(CmpReg).addImm(1));
1202
1203 unsigned CCMode = ARMCC::NE;
1204 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1205 std::swap(TBB, FBB);
1206 CCMode = ARMCC::EQ;
1207 }
1208
1209 unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1211 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1212 FastEmitBranch(FBB, DL);
1213 FuncInfo.MBB->addSuccessor(TBB);
1214 return true;
1215 }
1216
SelectCmp(const Instruction * I)1217 bool ARMFastISel::SelectCmp(const Instruction *I) {
1218 const CmpInst *CI = cast<CmpInst>(I);
1219
1220 MVT VT;
1221 Type *Ty = CI->getOperand(0)->getType();
1222 if (!isTypeLegal(Ty, VT))
1223 return false;
1224
1225 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1226 if (isFloat && !Subtarget->hasVFP2())
1227 return false;
1228
1229 unsigned CmpOpc;
1230 unsigned CondReg;
1231 switch (VT.SimpleTy) {
1232 default: return false;
1233 // TODO: Verify compares.
1234 case MVT::f32:
1235 CmpOpc = ARM::VCMPES;
1236 CondReg = ARM::FPSCR;
1237 break;
1238 case MVT::f64:
1239 CmpOpc = ARM::VCMPED;
1240 CondReg = ARM::FPSCR;
1241 break;
1242 case MVT::i32:
1243 CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1244 CondReg = ARM::CPSR;
1245 break;
1246 }
1247
1248 // Get the compare predicate.
1249 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1250
1251 // We may not handle every CC for now.
1252 if (ARMPred == ARMCC::AL) return false;
1253
1254 unsigned Arg1 = getRegForValue(CI->getOperand(0));
1255 if (Arg1 == 0) return false;
1256
1257 unsigned Arg2 = getRegForValue(CI->getOperand(1));
1258 if (Arg2 == 0) return false;
1259
1260 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1261 .addReg(Arg1).addReg(Arg2));
1262
1263 // For floating point we need to move the result to a comparison register
1264 // that we can then use for branches.
1265 if (isFloat)
1266 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1267 TII.get(ARM::FMSTAT)));
1268
1269 // Now set a register based on the comparison. Explicitly set the predicates
1270 // here.
1271 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1272 TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1273 : ARM::GPRRegisterClass;
1274 unsigned DestReg = createResultReg(RC);
1275 Constant *Zero
1276 = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1277 unsigned ZeroReg = TargetMaterializeConstant(Zero);
1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1279 .addReg(ZeroReg).addImm(1)
1280 .addImm(ARMPred).addReg(CondReg);
1281
1282 UpdateValueMap(I, DestReg);
1283 return true;
1284 }
1285
SelectFPExt(const Instruction * I)1286 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1287 // Make sure we have VFP and that we're extending float to double.
1288 if (!Subtarget->hasVFP2()) return false;
1289
1290 Value *V = I->getOperand(0);
1291 if (!I->getType()->isDoubleTy() ||
1292 !V->getType()->isFloatTy()) return false;
1293
1294 unsigned Op = getRegForValue(V);
1295 if (Op == 0) return false;
1296
1297 unsigned Result = createResultReg(ARM::DPRRegisterClass);
1298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1299 TII.get(ARM::VCVTDS), Result)
1300 .addReg(Op));
1301 UpdateValueMap(I, Result);
1302 return true;
1303 }
1304
SelectFPTrunc(const Instruction * I)1305 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1306 // Make sure we have VFP and that we're truncating double to float.
1307 if (!Subtarget->hasVFP2()) return false;
1308
1309 Value *V = I->getOperand(0);
1310 if (!(I->getType()->isFloatTy() &&
1311 V->getType()->isDoubleTy())) return false;
1312
1313 unsigned Op = getRegForValue(V);
1314 if (Op == 0) return false;
1315
1316 unsigned Result = createResultReg(ARM::SPRRegisterClass);
1317 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1318 TII.get(ARM::VCVTSD), Result)
1319 .addReg(Op));
1320 UpdateValueMap(I, Result);
1321 return true;
1322 }
1323
SelectSIToFP(const Instruction * I)1324 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1325 // Make sure we have VFP.
1326 if (!Subtarget->hasVFP2()) return false;
1327
1328 MVT DstVT;
1329 Type *Ty = I->getType();
1330 if (!isTypeLegal(Ty, DstVT))
1331 return false;
1332
1333 // FIXME: Handle sign-extension where necessary.
1334 if (!I->getOperand(0)->getType()->isIntegerTy(32))
1335 return false;
1336
1337 unsigned Op = getRegForValue(I->getOperand(0));
1338 if (Op == 0) return false;
1339
1340 // The conversion routine works on fp-reg to fp-reg and the operand above
1341 // was an integer, move it to the fp registers if possible.
1342 unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1343 if (FP == 0) return false;
1344
1345 unsigned Opc;
1346 if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1347 else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1348 else return false;
1349
1350 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1351 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1352 ResultReg)
1353 .addReg(FP));
1354 UpdateValueMap(I, ResultReg);
1355 return true;
1356 }
1357
SelectFPToSI(const Instruction * I)1358 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1359 // Make sure we have VFP.
1360 if (!Subtarget->hasVFP2()) return false;
1361
1362 MVT DstVT;
1363 Type *RetTy = I->getType();
1364 if (!isTypeLegal(RetTy, DstVT))
1365 return false;
1366
1367 unsigned Op = getRegForValue(I->getOperand(0));
1368 if (Op == 0) return false;
1369
1370 unsigned Opc;
1371 Type *OpTy = I->getOperand(0)->getType();
1372 if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1373 else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1374 else return false;
1375
1376 // f64->s32 or f32->s32 both need an intermediate f32 reg.
1377 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1379 ResultReg)
1380 .addReg(Op));
1381
1382 // This result needs to be in an integer register, but the conversion only
1383 // takes place in fp-regs.
1384 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1385 if (IntReg == 0) return false;
1386
1387 UpdateValueMap(I, IntReg);
1388 return true;
1389 }
1390
SelectSelect(const Instruction * I)1391 bool ARMFastISel::SelectSelect(const Instruction *I) {
1392 MVT VT;
1393 if (!isTypeLegal(I->getType(), VT))
1394 return false;
1395
1396 // Things need to be register sized for register moves.
1397 if (VT != MVT::i32) return false;
1398 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1399
1400 unsigned CondReg = getRegForValue(I->getOperand(0));
1401 if (CondReg == 0) return false;
1402 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1403 if (Op1Reg == 0) return false;
1404 unsigned Op2Reg = getRegForValue(I->getOperand(2));
1405 if (Op2Reg == 0) return false;
1406
1407 unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1408 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1409 .addReg(CondReg).addImm(1));
1410 unsigned ResultReg = createResultReg(RC);
1411 unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1413 .addReg(Op1Reg).addReg(Op2Reg)
1414 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1415 UpdateValueMap(I, ResultReg);
1416 return true;
1417 }
1418
SelectSDiv(const Instruction * I)1419 bool ARMFastISel::SelectSDiv(const Instruction *I) {
1420 MVT VT;
1421 Type *Ty = I->getType();
1422 if (!isTypeLegal(Ty, VT))
1423 return false;
1424
1425 // If we have integer div support we should have selected this automagically.
1426 // In case we have a real miss go ahead and return false and we'll pick
1427 // it up later.
1428 if (Subtarget->hasDivide()) return false;
1429
1430 // Otherwise emit a libcall.
1431 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1432 if (VT == MVT::i8)
1433 LC = RTLIB::SDIV_I8;
1434 else if (VT == MVT::i16)
1435 LC = RTLIB::SDIV_I16;
1436 else if (VT == MVT::i32)
1437 LC = RTLIB::SDIV_I32;
1438 else if (VT == MVT::i64)
1439 LC = RTLIB::SDIV_I64;
1440 else if (VT == MVT::i128)
1441 LC = RTLIB::SDIV_I128;
1442 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1443
1444 return ARMEmitLibcall(I, LC);
1445 }
1446
SelectSRem(const Instruction * I)1447 bool ARMFastISel::SelectSRem(const Instruction *I) {
1448 MVT VT;
1449 Type *Ty = I->getType();
1450 if (!isTypeLegal(Ty, VT))
1451 return false;
1452
1453 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1454 if (VT == MVT::i8)
1455 LC = RTLIB::SREM_I8;
1456 else if (VT == MVT::i16)
1457 LC = RTLIB::SREM_I16;
1458 else if (VT == MVT::i32)
1459 LC = RTLIB::SREM_I32;
1460 else if (VT == MVT::i64)
1461 LC = RTLIB::SREM_I64;
1462 else if (VT == MVT::i128)
1463 LC = RTLIB::SREM_I128;
1464 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1465
1466 return ARMEmitLibcall(I, LC);
1467 }
1468
SelectBinaryOp(const Instruction * I,unsigned ISDOpcode)1469 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1470 EVT VT = TLI.getValueType(I->getType(), true);
1471
1472 // We can get here in the case when we want to use NEON for our fp
1473 // operations, but can't figure out how to. Just use the vfp instructions
1474 // if we have them.
1475 // FIXME: It'd be nice to use NEON instructions.
1476 Type *Ty = I->getType();
1477 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1478 if (isFloat && !Subtarget->hasVFP2())
1479 return false;
1480
1481 unsigned Op1 = getRegForValue(I->getOperand(0));
1482 if (Op1 == 0) return false;
1483
1484 unsigned Op2 = getRegForValue(I->getOperand(1));
1485 if (Op2 == 0) return false;
1486
1487 unsigned Opc;
1488 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1489 switch (ISDOpcode) {
1490 default: return false;
1491 case ISD::FADD:
1492 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1493 break;
1494 case ISD::FSUB:
1495 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1496 break;
1497 case ISD::FMUL:
1498 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1499 break;
1500 }
1501 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1502 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1503 TII.get(Opc), ResultReg)
1504 .addReg(Op1).addReg(Op2));
1505 UpdateValueMap(I, ResultReg);
1506 return true;
1507 }
1508
1509 // Call Handling Code
1510
FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)1511 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1512 EVT SrcVT, unsigned &ResultReg) {
1513 unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1514 Src, /*TODO: Kill=*/false);
1515
1516 if (RR != 0) {
1517 ResultReg = RR;
1518 return true;
1519 } else
1520 return false;
1521 }
1522
1523 // This is largely taken directly from CCAssignFnForNode - we don't support
1524 // varargs in FastISel so that part has been removed.
1525 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return)1526 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1527 switch (CC) {
1528 default:
1529 llvm_unreachable("Unsupported calling convention");
1530 case CallingConv::Fast:
1531 // Ignore fastcc. Silence compiler warnings.
1532 (void)RetFastCC_ARM_APCS;
1533 (void)FastCC_ARM_APCS;
1534 // Fallthrough
1535 case CallingConv::C:
1536 // Use target triple & subtarget features to do actual dispatch.
1537 if (Subtarget->isAAPCS_ABI()) {
1538 if (Subtarget->hasVFP2() &&
1539 FloatABIType == FloatABI::Hard)
1540 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1541 else
1542 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1543 } else
1544 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1545 case CallingConv::ARM_AAPCS_VFP:
1546 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1547 case CallingConv::ARM_AAPCS:
1548 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1549 case CallingConv::ARM_APCS:
1550 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1551 case CallingConv::GHC:
1552 if (Return)
1553 llvm_unreachable("Can't return in GHC call convention");
1554 else
1555 return CC_ARM_APCS_GHC;
1556 }
1557 }
1558
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes)1559 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1560 SmallVectorImpl<unsigned> &ArgRegs,
1561 SmallVectorImpl<MVT> &ArgVTs,
1562 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1563 SmallVectorImpl<unsigned> &RegArgs,
1564 CallingConv::ID CC,
1565 unsigned &NumBytes) {
1566 SmallVector<CCValAssign, 16> ArgLocs;
1567 CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1568 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1569
1570 // Get a count of how many bytes are to be pushed on the stack.
1571 NumBytes = CCInfo.getNextStackOffset();
1572
1573 // Issue CALLSEQ_START
1574 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1576 TII.get(AdjStackDown))
1577 .addImm(NumBytes));
1578
1579 // Process the args.
1580 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1581 CCValAssign &VA = ArgLocs[i];
1582 unsigned Arg = ArgRegs[VA.getValNo()];
1583 MVT ArgVT = ArgVTs[VA.getValNo()];
1584
1585 // We don't handle NEON/vector parameters yet.
1586 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1587 return false;
1588
1589 // Handle arg promotion, etc.
1590 switch (VA.getLocInfo()) {
1591 case CCValAssign::Full: break;
1592 case CCValAssign::SExt: {
1593 bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1594 Arg, ArgVT, Arg);
1595 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1596 Emitted = true;
1597 ArgVT = VA.getLocVT();
1598 break;
1599 }
1600 case CCValAssign::ZExt: {
1601 bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1602 Arg, ArgVT, Arg);
1603 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1604 Emitted = true;
1605 ArgVT = VA.getLocVT();
1606 break;
1607 }
1608 case CCValAssign::AExt: {
1609 bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1610 Arg, ArgVT, Arg);
1611 if (!Emitted)
1612 Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1613 Arg, ArgVT, Arg);
1614 if (!Emitted)
1615 Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1616 Arg, ArgVT, Arg);
1617
1618 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1619 ArgVT = VA.getLocVT();
1620 break;
1621 }
1622 case CCValAssign::BCvt: {
1623 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1624 /*TODO: Kill=*/false);
1625 assert(BC != 0 && "Failed to emit a bitcast!");
1626 Arg = BC;
1627 ArgVT = VA.getLocVT();
1628 break;
1629 }
1630 default: llvm_unreachable("Unknown arg promotion!");
1631 }
1632
1633 // Now copy/store arg to correct locations.
1634 if (VA.isRegLoc() && !VA.needsCustom()) {
1635 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1636 VA.getLocReg())
1637 .addReg(Arg);
1638 RegArgs.push_back(VA.getLocReg());
1639 } else if (VA.needsCustom()) {
1640 // TODO: We need custom lowering for vector (v2f64) args.
1641 if (VA.getLocVT() != MVT::f64) return false;
1642
1643 CCValAssign &NextVA = ArgLocs[++i];
1644
1645 // TODO: Only handle register args for now.
1646 if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1647
1648 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1649 TII.get(ARM::VMOVRRD), VA.getLocReg())
1650 .addReg(NextVA.getLocReg(), RegState::Define)
1651 .addReg(Arg));
1652 RegArgs.push_back(VA.getLocReg());
1653 RegArgs.push_back(NextVA.getLocReg());
1654 } else {
1655 assert(VA.isMemLoc());
1656 // Need to store on the stack.
1657 Address Addr;
1658 Addr.BaseType = Address::RegBase;
1659 Addr.Base.Reg = ARM::SP;
1660 Addr.Offset = VA.getLocMemOffset();
1661
1662 if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1663 }
1664 }
1665 return true;
1666 }
1667
FinishCall(MVT RetVT,SmallVectorImpl<unsigned> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes)1668 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1669 const Instruction *I, CallingConv::ID CC,
1670 unsigned &NumBytes) {
1671 // Issue CALLSEQ_END
1672 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1673 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1674 TII.get(AdjStackUp))
1675 .addImm(NumBytes).addImm(0));
1676
1677 // Now the return value.
1678 if (RetVT != MVT::isVoid) {
1679 SmallVector<CCValAssign, 16> RVLocs;
1680 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1681 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1682
1683 // Copy all of the result registers out of their specified physreg.
1684 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1685 // For this move we copy into two registers and then move into the
1686 // double fp reg we want.
1687 EVT DestVT = RVLocs[0].getValVT();
1688 TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1689 unsigned ResultReg = createResultReg(DstRC);
1690 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1691 TII.get(ARM::VMOVDRR), ResultReg)
1692 .addReg(RVLocs[0].getLocReg())
1693 .addReg(RVLocs[1].getLocReg()));
1694
1695 UsedRegs.push_back(RVLocs[0].getLocReg());
1696 UsedRegs.push_back(RVLocs[1].getLocReg());
1697
1698 // Finally update the result.
1699 UpdateValueMap(I, ResultReg);
1700 } else {
1701 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1702 EVT CopyVT = RVLocs[0].getValVT();
1703 TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1704
1705 unsigned ResultReg = createResultReg(DstRC);
1706 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1707 ResultReg).addReg(RVLocs[0].getLocReg());
1708 UsedRegs.push_back(RVLocs[0].getLocReg());
1709
1710 // Finally update the result.
1711 UpdateValueMap(I, ResultReg);
1712 }
1713 }
1714
1715 return true;
1716 }
1717
SelectRet(const Instruction * I)1718 bool ARMFastISel::SelectRet(const Instruction *I) {
1719 const ReturnInst *Ret = cast<ReturnInst>(I);
1720 const Function &F = *I->getParent()->getParent();
1721
1722 if (!FuncInfo.CanLowerReturn)
1723 return false;
1724
1725 if (F.isVarArg())
1726 return false;
1727
1728 CallingConv::ID CC = F.getCallingConv();
1729 if (Ret->getNumOperands() > 0) {
1730 SmallVector<ISD::OutputArg, 4> Outs;
1731 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1732 Outs, TLI);
1733
1734 // Analyze operands of the call, assigning locations to each operand.
1735 SmallVector<CCValAssign, 16> ValLocs;
1736 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1737 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1738
1739 const Value *RV = Ret->getOperand(0);
1740 unsigned Reg = getRegForValue(RV);
1741 if (Reg == 0)
1742 return false;
1743
1744 // Only handle a single return value for now.
1745 if (ValLocs.size() != 1)
1746 return false;
1747
1748 CCValAssign &VA = ValLocs[0];
1749
1750 // Don't bother handling odd stuff for now.
1751 if (VA.getLocInfo() != CCValAssign::Full)
1752 return false;
1753 // Only handle register returns for now.
1754 if (!VA.isRegLoc())
1755 return false;
1756 // TODO: For now, don't try to handle cases where getLocInfo()
1757 // says Full but the types don't match.
1758 if (TLI.getValueType(RV->getType()) != VA.getValVT())
1759 return false;
1760
1761 // Make the copy.
1762 unsigned SrcReg = Reg + VA.getValNo();
1763 unsigned DstReg = VA.getLocReg();
1764 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1765 // Avoid a cross-class copy. This is very unlikely.
1766 if (!SrcRC->contains(DstReg))
1767 return false;
1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1769 DstReg).addReg(SrcReg);
1770
1771 // Mark the register as live out of the function.
1772 MRI.addLiveOut(VA.getLocReg());
1773 }
1774
1775 unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1776 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1777 TII.get(RetOpc)));
1778 return true;
1779 }
1780
ARMSelectCallOp(const GlobalValue * GV)1781 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1782
1783 // Darwin needs the r9 versions of the opcodes.
1784 bool isDarwin = Subtarget->isTargetDarwin();
1785 if (isThumb) {
1786 return isDarwin ? ARM::tBLr9 : ARM::tBL;
1787 } else {
1788 return isDarwin ? ARM::BLr9 : ARM::BL;
1789 }
1790 }
1791
1792 // A quick function that will emit a call for a named libcall in F with the
1793 // vector of passed arguments for the Instruction in I. We can assume that we
1794 // can emit a call for any libcall we can produce. This is an abridged version
1795 // of the full call infrastructure since we won't need to worry about things
1796 // like computed function pointers or strange arguments at call sites.
1797 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
1798 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)1799 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1800 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1801
1802 // Handle *simple* calls for now.
1803 Type *RetTy = I->getType();
1804 MVT RetVT;
1805 if (RetTy->isVoidTy())
1806 RetVT = MVT::isVoid;
1807 else if (!isTypeLegal(RetTy, RetVT))
1808 return false;
1809
1810 // TODO: For now if we have long calls specified we don't handle the call.
1811 if (EnableARMLongCalls) return false;
1812
1813 // Set up the argument vectors.
1814 SmallVector<Value*, 8> Args;
1815 SmallVector<unsigned, 8> ArgRegs;
1816 SmallVector<MVT, 8> ArgVTs;
1817 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1818 Args.reserve(I->getNumOperands());
1819 ArgRegs.reserve(I->getNumOperands());
1820 ArgVTs.reserve(I->getNumOperands());
1821 ArgFlags.reserve(I->getNumOperands());
1822 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1823 Value *Op = I->getOperand(i);
1824 unsigned Arg = getRegForValue(Op);
1825 if (Arg == 0) return false;
1826
1827 Type *ArgTy = Op->getType();
1828 MVT ArgVT;
1829 if (!isTypeLegal(ArgTy, ArgVT)) return false;
1830
1831 ISD::ArgFlagsTy Flags;
1832 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1833 Flags.setOrigAlign(OriginalAlignment);
1834
1835 Args.push_back(Op);
1836 ArgRegs.push_back(Arg);
1837 ArgVTs.push_back(ArgVT);
1838 ArgFlags.push_back(Flags);
1839 }
1840
1841 // Handle the arguments now that we've gotten them.
1842 SmallVector<unsigned, 4> RegArgs;
1843 unsigned NumBytes;
1844 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1845 return false;
1846
1847 // Issue the call, BLr9 for darwin, BL otherwise.
1848 // TODO: Turn this into the table of arm call ops.
1849 MachineInstrBuilder MIB;
1850 unsigned CallOpc = ARMSelectCallOp(NULL);
1851 if(isThumb)
1852 // Explicitly adding the predicate here.
1853 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1854 TII.get(CallOpc)))
1855 .addExternalSymbol(TLI.getLibcallName(Call));
1856 else
1857 // Explicitly adding the predicate here.
1858 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1859 TII.get(CallOpc))
1860 .addExternalSymbol(TLI.getLibcallName(Call)));
1861
1862 // Add implicit physical register uses to the call.
1863 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1864 MIB.addReg(RegArgs[i]);
1865
1866 // Finish off the call including any return values.
1867 SmallVector<unsigned, 4> UsedRegs;
1868 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1869
1870 // Set all unused physreg defs as dead.
1871 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1872
1873 return true;
1874 }
1875
SelectCall(const Instruction * I)1876 bool ARMFastISel::SelectCall(const Instruction *I) {
1877 const CallInst *CI = cast<CallInst>(I);
1878 const Value *Callee = CI->getCalledValue();
1879
1880 // Can't handle inline asm or worry about intrinsics yet.
1881 if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1882
1883 // Only handle global variable Callees.
1884 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1885 if (!GV)
1886 return false;
1887
1888 // Check the calling convention.
1889 ImmutableCallSite CS(CI);
1890 CallingConv::ID CC = CS.getCallingConv();
1891
1892 // TODO: Avoid some calling conventions?
1893
1894 // Let SDISel handle vararg functions.
1895 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1896 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1897 if (FTy->isVarArg())
1898 return false;
1899
1900 // Handle *simple* calls for now.
1901 Type *RetTy = I->getType();
1902 MVT RetVT;
1903 if (RetTy->isVoidTy())
1904 RetVT = MVT::isVoid;
1905 else if (!isTypeLegal(RetTy, RetVT))
1906 return false;
1907
1908 // TODO: For now if we have long calls specified we don't handle the call.
1909 if (EnableARMLongCalls) return false;
1910
1911 // Set up the argument vectors.
1912 SmallVector<Value*, 8> Args;
1913 SmallVector<unsigned, 8> ArgRegs;
1914 SmallVector<MVT, 8> ArgVTs;
1915 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1916 Args.reserve(CS.arg_size());
1917 ArgRegs.reserve(CS.arg_size());
1918 ArgVTs.reserve(CS.arg_size());
1919 ArgFlags.reserve(CS.arg_size());
1920 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1921 i != e; ++i) {
1922 unsigned Arg = getRegForValue(*i);
1923
1924 if (Arg == 0)
1925 return false;
1926 ISD::ArgFlagsTy Flags;
1927 unsigned AttrInd = i - CS.arg_begin() + 1;
1928 if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1929 Flags.setSExt();
1930 if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1931 Flags.setZExt();
1932
1933 // FIXME: Only handle *easy* calls for now.
1934 if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1935 CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1936 CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1937 CS.paramHasAttr(AttrInd, Attribute::ByVal))
1938 return false;
1939
1940 Type *ArgTy = (*i)->getType();
1941 MVT ArgVT;
1942 if (!isTypeLegal(ArgTy, ArgVT))
1943 return false;
1944 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1945 Flags.setOrigAlign(OriginalAlignment);
1946
1947 Args.push_back(*i);
1948 ArgRegs.push_back(Arg);
1949 ArgVTs.push_back(ArgVT);
1950 ArgFlags.push_back(Flags);
1951 }
1952
1953 // Handle the arguments now that we've gotten them.
1954 SmallVector<unsigned, 4> RegArgs;
1955 unsigned NumBytes;
1956 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1957 return false;
1958
1959 // Issue the call, BLr9 for darwin, BL otherwise.
1960 // TODO: Turn this into the table of arm call ops.
1961 MachineInstrBuilder MIB;
1962 unsigned CallOpc = ARMSelectCallOp(GV);
1963 // Explicitly adding the predicate here.
1964 if(isThumb)
1965 // Explicitly adding the predicate here.
1966 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1967 TII.get(CallOpc)))
1968 .addGlobalAddress(GV, 0, 0);
1969 else
1970 // Explicitly adding the predicate here.
1971 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1972 TII.get(CallOpc))
1973 .addGlobalAddress(GV, 0, 0));
1974
1975 // Add implicit physical register uses to the call.
1976 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1977 MIB.addReg(RegArgs[i]);
1978
1979 // Finish off the call including any return values.
1980 SmallVector<unsigned, 4> UsedRegs;
1981 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1982
1983 // Set all unused physreg defs as dead.
1984 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1985
1986 return true;
1987
1988 }
1989
SelectIntCast(const Instruction * I)1990 bool ARMFastISel::SelectIntCast(const Instruction *I) {
1991 // On ARM, in general, integer casts don't involve legal types; this code
1992 // handles promotable integers. The high bits for a type smaller than
1993 // the register size are assumed to be undefined.
1994 Type *DestTy = I->getType();
1995 Value *Op = I->getOperand(0);
1996 Type *SrcTy = Op->getType();
1997
1998 EVT SrcVT, DestVT;
1999 SrcVT = TLI.getValueType(SrcTy, true);
2000 DestVT = TLI.getValueType(DestTy, true);
2001
2002 if (isa<TruncInst>(I)) {
2003 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2004 return false;
2005 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2006 return false;
2007
2008 unsigned SrcReg = getRegForValue(Op);
2009 if (!SrcReg) return false;
2010
2011 // Because the high bits are undefined, a truncate doesn't generate
2012 // any code.
2013 UpdateValueMap(I, SrcReg);
2014 return true;
2015 }
2016 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2017 return false;
2018
2019 unsigned Opc;
2020 bool isZext = isa<ZExtInst>(I);
2021 bool isBoolZext = false;
2022 if (!SrcVT.isSimple())
2023 return false;
2024 switch (SrcVT.getSimpleVT().SimpleTy) {
2025 default: return false;
2026 case MVT::i16:
2027 if (!Subtarget->hasV6Ops()) return false;
2028 if (isZext)
2029 Opc = isThumb ? ARM::t2UXTH : ARM::UXTH;
2030 else
2031 Opc = isThumb ? ARM::t2SXTH : ARM::SXTH;
2032 break;
2033 case MVT::i8:
2034 if (!Subtarget->hasV6Ops()) return false;
2035 if (isZext)
2036 Opc = isThumb ? ARM::t2UXTB : ARM::UXTB;
2037 else
2038 Opc = isThumb ? ARM::t2SXTB : ARM::SXTB;
2039 break;
2040 case MVT::i1:
2041 if (isZext) {
2042 Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2043 isBoolZext = true;
2044 break;
2045 }
2046 return false;
2047 }
2048
2049 // FIXME: We could save an instruction in many cases by special-casing
2050 // load instructions.
2051 unsigned SrcReg = getRegForValue(Op);
2052 if (!SrcReg) return false;
2053
2054 unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2055 MachineInstrBuilder MIB;
2056 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
2057 .addReg(SrcReg);
2058 if (isBoolZext)
2059 MIB.addImm(1);
2060 else
2061 MIB.addImm(0);
2062 AddOptionalDefs(MIB);
2063 UpdateValueMap(I, DestReg);
2064 return true;
2065 }
2066
2067 // TODO: SoftFP support.
TargetSelectInstruction(const Instruction * I)2068 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2069
2070 switch (I->getOpcode()) {
2071 case Instruction::Load:
2072 return SelectLoad(I);
2073 case Instruction::Store:
2074 return SelectStore(I);
2075 case Instruction::Br:
2076 return SelectBranch(I);
2077 case Instruction::ICmp:
2078 case Instruction::FCmp:
2079 return SelectCmp(I);
2080 case Instruction::FPExt:
2081 return SelectFPExt(I);
2082 case Instruction::FPTrunc:
2083 return SelectFPTrunc(I);
2084 case Instruction::SIToFP:
2085 return SelectSIToFP(I);
2086 case Instruction::FPToSI:
2087 return SelectFPToSI(I);
2088 case Instruction::FAdd:
2089 return SelectBinaryOp(I, ISD::FADD);
2090 case Instruction::FSub:
2091 return SelectBinaryOp(I, ISD::FSUB);
2092 case Instruction::FMul:
2093 return SelectBinaryOp(I, ISD::FMUL);
2094 case Instruction::SDiv:
2095 return SelectSDiv(I);
2096 case Instruction::SRem:
2097 return SelectSRem(I);
2098 case Instruction::Call:
2099 return SelectCall(I);
2100 case Instruction::Select:
2101 return SelectSelect(I);
2102 case Instruction::Ret:
2103 return SelectRet(I);
2104 case Instruction::Trunc:
2105 case Instruction::ZExt:
2106 case Instruction::SExt:
2107 return SelectIntCast(I);
2108 default: break;
2109 }
2110 return false;
2111 }
2112
2113 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo)2114 llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2115 // Completely untested on non-darwin.
2116 const TargetMachine &TM = funcInfo.MF->getTarget();
2117
2118 // Darwin and thumb1 only for now.
2119 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2120 if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2121 !DisableARMFastISel)
2122 return new ARMFastISel(funcInfo);
2123 return 0;
2124 }
2125 }
2126