1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMRegisterInfo.h"
20 #include "ARMTargetMachine.h"
21 #include "ARMSubtarget.h"
22 #include "ARMConstantPoolValue.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GetElementPtrTypeIterator.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
51 
52 static cl::opt<bool>
53 DisableARMFastISel("disable-arm-fast-isel",
54                     cl::desc("Turn off experimental ARM fast-isel support"),
55                     cl::init(false), cl::Hidden);
56 
57 extern cl::opt<bool> EnableARMLongCalls;
58 
59 namespace {
60 
61   // All possible address modes, plus some.
62   typedef struct Address {
63     enum {
64       RegBase,
65       FrameIndexBase
66     } BaseType;
67 
68     union {
69       unsigned Reg;
70       int FI;
71     } Base;
72 
73     int Offset;
74 
75     // Innocuous defaults for our address.
Address__anonfb417fbe0111::Address76     Address()
77      : BaseType(RegBase), Offset(0) {
78        Base.Reg = 0;
79      }
80   } Address;
81 
82 class ARMFastISel : public FastISel {
83 
84   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85   /// make the right decision when generating code for different targets.
86   const ARMSubtarget *Subtarget;
87   const TargetMachine &TM;
88   const TargetInstrInfo &TII;
89   const TargetLowering &TLI;
90   ARMFunctionInfo *AFI;
91 
92   // Convenience variables to avoid some queries.
93   bool isThumb;
94   LLVMContext *Context;
95 
96   public:
ARMFastISel(FunctionLoweringInfo & funcInfo)97     explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98     : FastISel(funcInfo),
99       TM(funcInfo.MF->getTarget()),
100       TII(*TM.getInstrInfo()),
101       TLI(*TM.getTargetLowering()) {
102       Subtarget = &TM.getSubtarget<ARMSubtarget>();
103       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104       isThumb = AFI->isThumbFunction();
105       Context = &funcInfo.Fn->getContext();
106     }
107 
108     // Code from FastISel.cpp.
109     virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                    const TargetRegisterClass *RC);
111     virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                     const TargetRegisterClass *RC,
113                                     unsigned Op0, bool Op0IsKill);
114     virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                      const TargetRegisterClass *RC,
116                                      unsigned Op0, bool Op0IsKill,
117                                      unsigned Op1, bool Op1IsKill);
118     virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                       const TargetRegisterClass *RC,
120                                       unsigned Op0, bool Op0IsKill,
121                                       unsigned Op1, bool Op1IsKill,
122                                       unsigned Op2, bool Op2IsKill);
123     virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                      const TargetRegisterClass *RC,
125                                      unsigned Op0, bool Op0IsKill,
126                                      uint64_t Imm);
127     virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                      const TargetRegisterClass *RC,
129                                      unsigned Op0, bool Op0IsKill,
130                                      const ConstantFP *FPImm);
131     virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                       const TargetRegisterClass *RC,
133                                       unsigned Op0, bool Op0IsKill,
134                                       unsigned Op1, bool Op1IsKill,
135                                       uint64_t Imm);
136     virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                     const TargetRegisterClass *RC,
138                                     uint64_t Imm);
139     virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                      const TargetRegisterClass *RC,
141                                      uint64_t Imm1, uint64_t Imm2);
142 
143     virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                 unsigned Op0, bool Op0IsKill,
145                                                 uint32_t Idx);
146 
147     // Backend specific FastISel code.
148     virtual bool TargetSelectInstruction(const Instruction *I);
149     virtual unsigned TargetMaterializeConstant(const Constant *C);
150     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151 
152   #include "ARMGenFastISel.inc"
153 
154     // Instruction selection routines.
155   private:
156     bool SelectLoad(const Instruction *I);
157     bool SelectStore(const Instruction *I);
158     bool SelectBranch(const Instruction *I);
159     bool SelectCmp(const Instruction *I);
160     bool SelectFPExt(const Instruction *I);
161     bool SelectFPTrunc(const Instruction *I);
162     bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163     bool SelectSIToFP(const Instruction *I);
164     bool SelectFPToSI(const Instruction *I);
165     bool SelectSDiv(const Instruction *I);
166     bool SelectSRem(const Instruction *I);
167     bool SelectCall(const Instruction *I);
168     bool SelectSelect(const Instruction *I);
169     bool SelectRet(const Instruction *I);
170     bool SelectIntCast(const Instruction *I);
171 
172     // Utility routines.
173   private:
174     bool isTypeLegal(Type *Ty, MVT &VT);
175     bool isLoadTypeLegal(Type *Ty, MVT &VT);
176     bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
177     bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
178     bool ARMComputeAddress(const Value *Obj, Address &Addr);
179     void ARMSimplifyAddress(Address &Addr, EVT VT);
180     unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
181     unsigned ARMMaterializeInt(const Constant *C, EVT VT);
182     unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
183     unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
184     unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
185     unsigned ARMSelectCallOp(const GlobalValue *GV);
186 
187     // Call handling routines.
188   private:
189     bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
190                         unsigned &ResultReg);
191     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
192     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
193                          SmallVectorImpl<unsigned> &ArgRegs,
194                          SmallVectorImpl<MVT> &ArgVTs,
195                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
196                          SmallVectorImpl<unsigned> &RegArgs,
197                          CallingConv::ID CC,
198                          unsigned &NumBytes);
199     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
200                     const Instruction *I, CallingConv::ID CC,
201                     unsigned &NumBytes);
202     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
203 
204     // OptionalDef handling routines.
205   private:
206     bool isARMNEONPred(const MachineInstr *MI);
207     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
208     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
209     void AddLoadStoreOperands(EVT VT, Address &Addr,
210                               const MachineInstrBuilder &MIB,
211                               unsigned Flags);
212 };
213 
214 } // end anonymous namespace
215 
216 #include "ARMGenCallingConv.inc"
217 
218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
219 // we don't care about implicit defs here, just places we'll need to add a
220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
222   const MCInstrDesc &MCID = MI->getDesc();
223   if (!MCID.hasOptionalDef())
224     return false;
225 
226   // Look to see if our OptionalDef is defining CPSR or CCR.
227   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228     const MachineOperand &MO = MI->getOperand(i);
229     if (!MO.isReg() || !MO.isDef()) continue;
230     if (MO.getReg() == ARM::CPSR)
231       *CPSR = true;
232   }
233   return true;
234 }
235 
isARMNEONPred(const MachineInstr * MI)236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237   const MCInstrDesc &MCID = MI->getDesc();
238 
239   // If we're a thumb2 or not NEON function we were handled via isPredicable.
240   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241        AFI->isThumb2Function())
242     return false;
243 
244   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
245     if (MCID.OpInfo[i].isPredicate())
246       return true;
247 
248   return false;
249 }
250 
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258   MachineInstr *MI = &*MIB;
259 
260   // Do we use a predicate? or...
261   // Are we NEON in ARM mode and have a predicate operand? If so, I know
262   // we're not predicable but add it anyways.
263   if (TII.isPredicable(MI) || isARMNEONPred(MI))
264     AddDefaultPred(MIB);
265 
266   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
267   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268   bool CPSR = false;
269   if (DefinesOptionalPredicate(MI, &CPSR)) {
270     if (CPSR)
271       AddDefaultT1CC(MIB);
272     else
273       AddDefaultCC(MIB);
274   }
275   return MIB;
276 }
277 
FastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
279                                     const TargetRegisterClass* RC) {
280   unsigned ResultReg = createResultReg(RC);
281   const MCInstrDesc &II = TII.get(MachineInstOpcode);
282 
283   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
284   return ResultReg;
285 }
286 
FastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
288                                      const TargetRegisterClass *RC,
289                                      unsigned Op0, bool Op0IsKill) {
290   unsigned ResultReg = createResultReg(RC);
291   const MCInstrDesc &II = TII.get(MachineInstOpcode);
292 
293   if (II.getNumDefs() >= 1)
294     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295                    .addReg(Op0, Op0IsKill * RegState::Kill));
296   else {
297     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
298                    .addReg(Op0, Op0IsKill * RegState::Kill));
299     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300                    TII.get(TargetOpcode::COPY), ResultReg)
301                    .addReg(II.ImplicitDefs[0]));
302   }
303   return ResultReg;
304 }
305 
FastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
307                                       const TargetRegisterClass *RC,
308                                       unsigned Op0, bool Op0IsKill,
309                                       unsigned Op1, bool Op1IsKill) {
310   unsigned ResultReg = createResultReg(RC);
311   const MCInstrDesc &II = TII.get(MachineInstOpcode);
312 
313   if (II.getNumDefs() >= 1)
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
315                    .addReg(Op0, Op0IsKill * RegState::Kill)
316                    .addReg(Op1, Op1IsKill * RegState::Kill));
317   else {
318     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
319                    .addReg(Op0, Op0IsKill * RegState::Kill)
320                    .addReg(Op1, Op1IsKill * RegState::Kill));
321     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
322                            TII.get(TargetOpcode::COPY), ResultReg)
323                    .addReg(II.ImplicitDefs[0]));
324   }
325   return ResultReg;
326 }
327 
FastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
329                                        const TargetRegisterClass *RC,
330                                        unsigned Op0, bool Op0IsKill,
331                                        unsigned Op1, bool Op1IsKill,
332                                        unsigned Op2, bool Op2IsKill) {
333   unsigned ResultReg = createResultReg(RC);
334   const MCInstrDesc &II = TII.get(MachineInstOpcode);
335 
336   if (II.getNumDefs() >= 1)
337     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
338                    .addReg(Op0, Op0IsKill * RegState::Kill)
339                    .addReg(Op1, Op1IsKill * RegState::Kill)
340                    .addReg(Op2, Op2IsKill * RegState::Kill));
341   else {
342     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
343                    .addReg(Op0, Op0IsKill * RegState::Kill)
344                    .addReg(Op1, Op1IsKill * RegState::Kill)
345                    .addReg(Op2, Op2IsKill * RegState::Kill));
346     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
347                            TII.get(TargetOpcode::COPY), ResultReg)
348                    .addReg(II.ImplicitDefs[0]));
349   }
350   return ResultReg;
351 }
352 
FastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
354                                       const TargetRegisterClass *RC,
355                                       unsigned Op0, bool Op0IsKill,
356                                       uint64_t Imm) {
357   unsigned ResultReg = createResultReg(RC);
358   const MCInstrDesc &II = TII.get(MachineInstOpcode);
359 
360   if (II.getNumDefs() >= 1)
361     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
362                    .addReg(Op0, Op0IsKill * RegState::Kill)
363                    .addImm(Imm));
364   else {
365     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
366                    .addReg(Op0, Op0IsKill * RegState::Kill)
367                    .addImm(Imm));
368     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369                            TII.get(TargetOpcode::COPY), ResultReg)
370                    .addReg(II.ImplicitDefs[0]));
371   }
372   return ResultReg;
373 }
374 
FastEmitInst_rf(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,const ConstantFP * FPImm)375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
376                                       const TargetRegisterClass *RC,
377                                       unsigned Op0, bool Op0IsKill,
378                                       const ConstantFP *FPImm) {
379   unsigned ResultReg = createResultReg(RC);
380   const MCInstrDesc &II = TII.get(MachineInstOpcode);
381 
382   if (II.getNumDefs() >= 1)
383     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
384                    .addReg(Op0, Op0IsKill * RegState::Kill)
385                    .addFPImm(FPImm));
386   else {
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
388                    .addReg(Op0, Op0IsKill * RegState::Kill)
389                    .addFPImm(FPImm));
390     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
391                            TII.get(TargetOpcode::COPY), ResultReg)
392                    .addReg(II.ImplicitDefs[0]));
393   }
394   return ResultReg;
395 }
396 
FastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
398                                        const TargetRegisterClass *RC,
399                                        unsigned Op0, bool Op0IsKill,
400                                        unsigned Op1, bool Op1IsKill,
401                                        uint64_t Imm) {
402   unsigned ResultReg = createResultReg(RC);
403   const MCInstrDesc &II = TII.get(MachineInstOpcode);
404 
405   if (II.getNumDefs() >= 1)
406     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
407                    .addReg(Op0, Op0IsKill * RegState::Kill)
408                    .addReg(Op1, Op1IsKill * RegState::Kill)
409                    .addImm(Imm));
410   else {
411     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
412                    .addReg(Op0, Op0IsKill * RegState::Kill)
413                    .addReg(Op1, Op1IsKill * RegState::Kill)
414                    .addImm(Imm));
415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
416                            TII.get(TargetOpcode::COPY), ResultReg)
417                    .addReg(II.ImplicitDefs[0]));
418   }
419   return ResultReg;
420 }
421 
FastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
423                                      const TargetRegisterClass *RC,
424                                      uint64_t Imm) {
425   unsigned ResultReg = createResultReg(RC);
426   const MCInstrDesc &II = TII.get(MachineInstOpcode);
427 
428   if (II.getNumDefs() >= 1)
429     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
430                    .addImm(Imm));
431   else {
432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
433                    .addImm(Imm));
434     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
435                            TII.get(TargetOpcode::COPY), ResultReg)
436                    .addReg(II.ImplicitDefs[0]));
437   }
438   return ResultReg;
439 }
440 
FastEmitInst_ii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm1,uint64_t Imm2)441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
442                                       const TargetRegisterClass *RC,
443                                       uint64_t Imm1, uint64_t Imm2) {
444   unsigned ResultReg = createResultReg(RC);
445   const MCInstrDesc &II = TII.get(MachineInstOpcode);
446 
447   if (II.getNumDefs() >= 1)
448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
449                     .addImm(Imm1).addImm(Imm2));
450   else {
451     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
452                     .addImm(Imm1).addImm(Imm2));
453     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
454                             TII.get(TargetOpcode::COPY),
455                             ResultReg)
456                     .addReg(II.ImplicitDefs[0]));
457   }
458   return ResultReg;
459 }
460 
FastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
462                                                  unsigned Op0, bool Op0IsKill,
463                                                  uint32_t Idx) {
464   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
465   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
466          "Cannot yet extract from physregs");
467   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
468                          DL, TII.get(TargetOpcode::COPY), ResultReg)
469                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
470   return ResultReg;
471 }
472 
473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
474 // checks from the various callers.
ARMMoveToFPReg(EVT VT,unsigned SrcReg)475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
476   if (VT == MVT::f64) return 0;
477 
478   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
479   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
480                           TII.get(ARM::VMOVRS), MoveReg)
481                   .addReg(SrcReg));
482   return MoveReg;
483 }
484 
ARMMoveToIntReg(EVT VT,unsigned SrcReg)485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
486   if (VT == MVT::i64) return 0;
487 
488   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
489   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490                           TII.get(ARM::VMOVSR), MoveReg)
491                   .addReg(SrcReg));
492   return MoveReg;
493 }
494 
495 // For double width floating point we need to materialize two constants
496 // (the high and the low) into integer registers then use a move to get
497 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,EVT VT)498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
499   const APFloat Val = CFP->getValueAPF();
500   bool is64bit = VT == MVT::f64;
501 
502   // This checks to see if we can use VFP3 instructions to materialize
503   // a constant, otherwise we have to go through the constant pool.
504   if (TLI.isFPImmLegal(Val, VT)) {
505     int Imm;
506     unsigned Opc;
507     if (is64bit) {
508       Imm = ARM_AM::getFP64Imm(Val);
509       Opc = ARM::FCONSTD;
510     } else {
511       Imm = ARM_AM::getFP32Imm(Val);
512       Opc = ARM::FCONSTS;
513     }
514     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
515     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
516                             DestReg)
517                     .addImm(Imm));
518     return DestReg;
519   }
520 
521   // Require VFP2 for loading fp constants.
522   if (!Subtarget->hasVFP2()) return false;
523 
524   // MachineConstantPool wants an explicit alignment.
525   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
526   if (Align == 0) {
527     // TODO: Figure out if this is correct.
528     Align = TD.getTypeAllocSize(CFP->getType());
529   }
530   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
531   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
532   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
533 
534   // The extra reg is for addrmode5.
535   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
536                           DestReg)
537                   .addConstantPoolIndex(Idx)
538                   .addReg(0));
539   return DestReg;
540 }
541 
ARMMaterializeInt(const Constant * C,EVT VT)542 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
543 
544   // For now 32-bit only.
545   if (VT != MVT::i32) return false;
546 
547   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
548 
549   // If we can do this in a single instruction without a constant pool entry
550   // do so now.
551   const ConstantInt *CI = cast<ConstantInt>(C);
552   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
553     unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
554     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
555                             TII.get(Opc), DestReg)
556                     .addImm(CI->getSExtValue()));
557     return DestReg;
558   }
559 
560   // MachineConstantPool wants an explicit alignment.
561   unsigned Align = TD.getPrefTypeAlignment(C->getType());
562   if (Align == 0) {
563     // TODO: Figure out if this is correct.
564     Align = TD.getTypeAllocSize(C->getType());
565   }
566   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
567 
568   if (isThumb)
569     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
570                             TII.get(ARM::t2LDRpci), DestReg)
571                     .addConstantPoolIndex(Idx));
572   else
573     // The extra immediate is for addrmode2.
574     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
575                             TII.get(ARM::LDRcp), DestReg)
576                     .addConstantPoolIndex(Idx)
577                     .addImm(0));
578 
579   return DestReg;
580 }
581 
ARMMaterializeGV(const GlobalValue * GV,EVT VT)582 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
583   // For now 32-bit only.
584   if (VT != MVT::i32) return 0;
585 
586   Reloc::Model RelocM = TM.getRelocationModel();
587 
588   // TODO: Need more magic for ARM PIC.
589   if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
590 
591   // MachineConstantPool wants an explicit alignment.
592   unsigned Align = TD.getPrefTypeAlignment(GV->getType());
593   if (Align == 0) {
594     // TODO: Figure out if this is correct.
595     Align = TD.getTypeAllocSize(GV->getType());
596   }
597 
598   // Grab index.
599   unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
600   unsigned Id = AFI->createPICLabelUId();
601   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
602                                                               ARMCP::CPValue,
603                                                               PCAdj);
604   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
605 
606   // Load value.
607   MachineInstrBuilder MIB;
608   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
609   if (isThumb) {
610     unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
611     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
612           .addConstantPoolIndex(Idx);
613     if (RelocM == Reloc::PIC_)
614       MIB.addImm(Id);
615   } else {
616     // The extra immediate is for addrmode2.
617     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
618                   DestReg)
619           .addConstantPoolIndex(Idx)
620           .addImm(0);
621   }
622   AddOptionalDefs(MIB);
623 
624   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
625     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
626     if (isThumb)
627       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
628                     TII.get(ARM::t2LDRi12), NewDestReg)
629             .addReg(DestReg)
630             .addImm(0);
631     else
632       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
633                     NewDestReg)
634             .addReg(DestReg)
635             .addImm(0);
636     DestReg = NewDestReg;
637     AddOptionalDefs(MIB);
638   }
639 
640   return DestReg;
641 }
642 
TargetMaterializeConstant(const Constant * C)643 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
644   EVT VT = TLI.getValueType(C->getType(), true);
645 
646   // Only handle simple types.
647   if (!VT.isSimple()) return 0;
648 
649   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
650     return ARMMaterializeFP(CFP, VT);
651   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
652     return ARMMaterializeGV(GV, VT);
653   else if (isa<ConstantInt>(C))
654     return ARMMaterializeInt(C, VT);
655 
656   return 0;
657 }
658 
TargetMaterializeAlloca(const AllocaInst * AI)659 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
660   // Don't handle dynamic allocas.
661   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
662 
663   MVT VT;
664   if (!isLoadTypeLegal(AI->getType(), VT)) return false;
665 
666   DenseMap<const AllocaInst*, int>::iterator SI =
667     FuncInfo.StaticAllocaMap.find(AI);
668 
669   // This will get lowered later into the correct offsets and registers
670   // via rewriteXFrameIndex.
671   if (SI != FuncInfo.StaticAllocaMap.end()) {
672     TargetRegisterClass* RC = TLI.getRegClassFor(VT);
673     unsigned ResultReg = createResultReg(RC);
674     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
675     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
676                             TII.get(Opc), ResultReg)
677                             .addFrameIndex(SI->second)
678                             .addImm(0));
679     return ResultReg;
680   }
681 
682   return 0;
683 }
684 
isTypeLegal(Type * Ty,MVT & VT)685 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
686   EVT evt = TLI.getValueType(Ty, true);
687 
688   // Only handle simple types.
689   if (evt == MVT::Other || !evt.isSimple()) return false;
690   VT = evt.getSimpleVT();
691 
692   // Handle all legal types, i.e. a register that will directly hold this
693   // value.
694   return TLI.isTypeLegal(VT);
695 }
696 
isLoadTypeLegal(Type * Ty,MVT & VT)697 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
698   if (isTypeLegal(Ty, VT)) return true;
699 
700   // If this is a type than can be sign or zero-extended to a basic operation
701   // go ahead and accept it now.
702   if (VT == MVT::i8 || VT == MVT::i16)
703     return true;
704 
705   return false;
706 }
707 
708 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)709 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
710   // Some boilerplate from the X86 FastISel.
711   const User *U = NULL;
712   unsigned Opcode = Instruction::UserOp1;
713   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
714     // Don't walk into other basic blocks unless the object is an alloca from
715     // another block, otherwise it may not have a virtual register assigned.
716     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
717         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
718       Opcode = I->getOpcode();
719       U = I;
720     }
721   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
722     Opcode = C->getOpcode();
723     U = C;
724   }
725 
726   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
727     if (Ty->getAddressSpace() > 255)
728       // Fast instruction selection doesn't support the special
729       // address spaces.
730       return false;
731 
732   switch (Opcode) {
733     default:
734     break;
735     case Instruction::BitCast: {
736       // Look through bitcasts.
737       return ARMComputeAddress(U->getOperand(0), Addr);
738     }
739     case Instruction::IntToPtr: {
740       // Look past no-op inttoptrs.
741       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
742         return ARMComputeAddress(U->getOperand(0), Addr);
743       break;
744     }
745     case Instruction::PtrToInt: {
746       // Look past no-op ptrtoints.
747       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
748         return ARMComputeAddress(U->getOperand(0), Addr);
749       break;
750     }
751     case Instruction::GetElementPtr: {
752       Address SavedAddr = Addr;
753       int TmpOffset = Addr.Offset;
754 
755       // Iterate through the GEP folding the constants into offsets where
756       // we can.
757       gep_type_iterator GTI = gep_type_begin(U);
758       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
759            i != e; ++i, ++GTI) {
760         const Value *Op = *i;
761         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
762           const StructLayout *SL = TD.getStructLayout(STy);
763           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
764           TmpOffset += SL->getElementOffset(Idx);
765         } else {
766           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
767           for (;;) {
768             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
769               // Constant-offset addressing.
770               TmpOffset += CI->getSExtValue() * S;
771               break;
772             }
773             if (isa<AddOperator>(Op) &&
774                 (!isa<Instruction>(Op) ||
775                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
776                  == FuncInfo.MBB) &&
777                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
778               // An add (in the same block) with a constant operand. Fold the
779               // constant.
780               ConstantInt *CI =
781               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
782               TmpOffset += CI->getSExtValue() * S;
783               // Iterate on the other operand.
784               Op = cast<AddOperator>(Op)->getOperand(0);
785               continue;
786             }
787             // Unsupported
788             goto unsupported_gep;
789           }
790         }
791       }
792 
793       // Try to grab the base operand now.
794       Addr.Offset = TmpOffset;
795       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
796 
797       // We failed, restore everything and try the other options.
798       Addr = SavedAddr;
799 
800       unsupported_gep:
801       break;
802     }
803     case Instruction::Alloca: {
804       const AllocaInst *AI = cast<AllocaInst>(Obj);
805       DenseMap<const AllocaInst*, int>::iterator SI =
806         FuncInfo.StaticAllocaMap.find(AI);
807       if (SI != FuncInfo.StaticAllocaMap.end()) {
808         Addr.BaseType = Address::FrameIndexBase;
809         Addr.Base.FI = SI->second;
810         return true;
811       }
812       break;
813     }
814   }
815 
816   // Materialize the global variable's address into a reg which can
817   // then be used later to load the variable.
818   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
819     unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
820     if (Tmp == 0) return false;
821 
822     Addr.Base.Reg = Tmp;
823     return true;
824   }
825 
826   // Try to get this in a register if nothing else has worked.
827   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
828   return Addr.Base.Reg != 0;
829 }
830 
ARMSimplifyAddress(Address & Addr,EVT VT)831 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
832 
833   assert(VT.isSimple() && "Non-simple types are invalid here!");
834 
835   bool needsLowering = false;
836   switch (VT.getSimpleVT().SimpleTy) {
837     default:
838       assert(false && "Unhandled load/store type!");
839     case MVT::i1:
840     case MVT::i8:
841     case MVT::i16:
842     case MVT::i32:
843       // Integer loads/stores handle 12-bit offsets.
844       needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
845       break;
846     case MVT::f32:
847     case MVT::f64:
848       // Floating point operands handle 8-bit offsets.
849       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
850       break;
851   }
852 
853   // If this is a stack pointer and the offset needs to be simplified then
854   // put the alloca address into a register, set the base type back to
855   // register and continue. This should almost never happen.
856   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
857     TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
858                               ARM::GPRRegisterClass;
859     unsigned ResultReg = createResultReg(RC);
860     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
861     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
862                             TII.get(Opc), ResultReg)
863                             .addFrameIndex(Addr.Base.FI)
864                             .addImm(0));
865     Addr.Base.Reg = ResultReg;
866     Addr.BaseType = Address::RegBase;
867   }
868 
869   // Since the offset is too large for the load/store instruction
870   // get the reg+offset into a register.
871   if (needsLowering) {
872     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
873                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
874     Addr.Offset = 0;
875   }
876 }
877 
AddLoadStoreOperands(EVT VT,Address & Addr,const MachineInstrBuilder & MIB,unsigned Flags)878 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
879                                        const MachineInstrBuilder &MIB,
880                                        unsigned Flags) {
881   // addrmode5 output depends on the selection dag addressing dividing the
882   // offset by 4 that it then later multiplies. Do this here as well.
883   if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
884       VT.getSimpleVT().SimpleTy == MVT::f64)
885     Addr.Offset /= 4;
886 
887   // Frame base works a bit differently. Handle it separately.
888   if (Addr.BaseType == Address::FrameIndexBase) {
889     int FI = Addr.Base.FI;
890     int Offset = Addr.Offset;
891     MachineMemOperand *MMO =
892           FuncInfo.MF->getMachineMemOperand(
893                                   MachinePointerInfo::getFixedStack(FI, Offset),
894                                   Flags,
895                                   MFI.getObjectSize(FI),
896                                   MFI.getObjectAlignment(FI));
897     // Now add the rest of the operands.
898     MIB.addFrameIndex(FI);
899 
900     // ARM halfword load/stores need an additional operand.
901     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
902 
903     MIB.addImm(Addr.Offset);
904     MIB.addMemOperand(MMO);
905   } else {
906     // Now add the rest of the operands.
907     MIB.addReg(Addr.Base.Reg);
908 
909     // ARM halfword load/stores need an additional operand.
910     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
911 
912     MIB.addImm(Addr.Offset);
913   }
914   AddOptionalDefs(MIB);
915 }
916 
ARMEmitLoad(EVT VT,unsigned & ResultReg,Address & Addr)917 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
918 
919   assert(VT.isSimple() && "Non-simple types are invalid here!");
920   unsigned Opc;
921   TargetRegisterClass *RC;
922   switch (VT.getSimpleVT().SimpleTy) {
923     // This is mostly going to be Neon/vector support.
924     default: return false;
925     case MVT::i16:
926       Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
927       RC = ARM::GPRRegisterClass;
928       break;
929     case MVT::i8:
930       Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
931       RC = ARM::GPRRegisterClass;
932       break;
933     case MVT::i32:
934       Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
935       RC = ARM::GPRRegisterClass;
936       break;
937     case MVT::f32:
938       Opc = ARM::VLDRS;
939       RC = TLI.getRegClassFor(VT);
940       break;
941     case MVT::f64:
942       Opc = ARM::VLDRD;
943       RC = TLI.getRegClassFor(VT);
944       break;
945   }
946   // Simplify this down to something we can handle.
947   ARMSimplifyAddress(Addr, VT);
948 
949   // Create the base instruction, then add the operands.
950   ResultReg = createResultReg(RC);
951   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
952                                     TII.get(Opc), ResultReg);
953   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
954   return true;
955 }
956 
SelectLoad(const Instruction * I)957 bool ARMFastISel::SelectLoad(const Instruction *I) {
958   // Atomic loads need special handling.
959   if (cast<LoadInst>(I)->isAtomic())
960     return false;
961 
962   // Verify we have a legal type before going any further.
963   MVT VT;
964   if (!isLoadTypeLegal(I->getType(), VT))
965     return false;
966 
967   // See if we can handle this address.
968   Address Addr;
969   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
970 
971   unsigned ResultReg;
972   if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
973   UpdateValueMap(I, ResultReg);
974   return true;
975 }
976 
ARMEmitStore(EVT VT,unsigned SrcReg,Address & Addr)977 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
978   unsigned StrOpc;
979   switch (VT.getSimpleVT().SimpleTy) {
980     // This is mostly going to be Neon/vector support.
981     default: return false;
982     case MVT::i1: {
983       unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
984                                                ARM::GPRRegisterClass);
985       unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
986       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
987                               TII.get(Opc), Res)
988                       .addReg(SrcReg).addImm(1));
989       SrcReg = Res;
990     } // Fallthrough here.
991     case MVT::i8:
992       StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
993       break;
994     case MVT::i16:
995       StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
996       break;
997     case MVT::i32:
998       StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
999       break;
1000     case MVT::f32:
1001       if (!Subtarget->hasVFP2()) return false;
1002       StrOpc = ARM::VSTRS;
1003       break;
1004     case MVT::f64:
1005       if (!Subtarget->hasVFP2()) return false;
1006       StrOpc = ARM::VSTRD;
1007       break;
1008   }
1009   // Simplify this down to something we can handle.
1010   ARMSimplifyAddress(Addr, VT);
1011 
1012   // Create the base instruction, then add the operands.
1013   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1014                                     TII.get(StrOpc))
1015                             .addReg(SrcReg, getKillRegState(true));
1016   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
1017   return true;
1018 }
1019 
SelectStore(const Instruction * I)1020 bool ARMFastISel::SelectStore(const Instruction *I) {
1021   Value *Op0 = I->getOperand(0);
1022   unsigned SrcReg = 0;
1023 
1024   // Atomic stores need special handling.
1025   if (cast<StoreInst>(I)->isAtomic())
1026     return false;
1027 
1028   // Verify we have a legal type before going any further.
1029   MVT VT;
1030   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1031     return false;
1032 
1033   // Get the value to be stored into a register.
1034   SrcReg = getRegForValue(Op0);
1035   if (SrcReg == 0) return false;
1036 
1037   // See if we can handle this address.
1038   Address Addr;
1039   if (!ARMComputeAddress(I->getOperand(1), Addr))
1040     return false;
1041 
1042   if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1043   return true;
1044 }
1045 
getComparePred(CmpInst::Predicate Pred)1046 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1047   switch (Pred) {
1048     // Needs two compares...
1049     case CmpInst::FCMP_ONE:
1050     case CmpInst::FCMP_UEQ:
1051     default:
1052       // AL is our "false" for now. The other two need more compares.
1053       return ARMCC::AL;
1054     case CmpInst::ICMP_EQ:
1055     case CmpInst::FCMP_OEQ:
1056       return ARMCC::EQ;
1057     case CmpInst::ICMP_SGT:
1058     case CmpInst::FCMP_OGT:
1059       return ARMCC::GT;
1060     case CmpInst::ICMP_SGE:
1061     case CmpInst::FCMP_OGE:
1062       return ARMCC::GE;
1063     case CmpInst::ICMP_UGT:
1064     case CmpInst::FCMP_UGT:
1065       return ARMCC::HI;
1066     case CmpInst::FCMP_OLT:
1067       return ARMCC::MI;
1068     case CmpInst::ICMP_ULE:
1069     case CmpInst::FCMP_OLE:
1070       return ARMCC::LS;
1071     case CmpInst::FCMP_ORD:
1072       return ARMCC::VC;
1073     case CmpInst::FCMP_UNO:
1074       return ARMCC::VS;
1075     case CmpInst::FCMP_UGE:
1076       return ARMCC::PL;
1077     case CmpInst::ICMP_SLT:
1078     case CmpInst::FCMP_ULT:
1079       return ARMCC::LT;
1080     case CmpInst::ICMP_SLE:
1081     case CmpInst::FCMP_ULE:
1082       return ARMCC::LE;
1083     case CmpInst::FCMP_UNE:
1084     case CmpInst::ICMP_NE:
1085       return ARMCC::NE;
1086     case CmpInst::ICMP_UGE:
1087       return ARMCC::HS;
1088     case CmpInst::ICMP_ULT:
1089       return ARMCC::LO;
1090   }
1091 }
1092 
SelectBranch(const Instruction * I)1093 bool ARMFastISel::SelectBranch(const Instruction *I) {
1094   const BranchInst *BI = cast<BranchInst>(I);
1095   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1096   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1097 
1098   // Simple branch support.
1099 
1100   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1101   // behavior.
1102   // TODO: Factor this out.
1103   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1104     MVT SourceVT;
1105     Type *Ty = CI->getOperand(0)->getType();
1106     if (CI->hasOneUse() && (CI->getParent() == I->getParent())
1107         && isTypeLegal(Ty, SourceVT)) {
1108       bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1109       if (isFloat && !Subtarget->hasVFP2())
1110         return false;
1111 
1112       unsigned CmpOpc;
1113       switch (SourceVT.SimpleTy) {
1114         default: return false;
1115         // TODO: Verify compares.
1116         case MVT::f32:
1117           CmpOpc = ARM::VCMPES;
1118           break;
1119         case MVT::f64:
1120           CmpOpc = ARM::VCMPED;
1121           break;
1122         case MVT::i32:
1123           CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1124           break;
1125       }
1126 
1127       // Get the compare predicate.
1128       // Try to take advantage of fallthrough opportunities.
1129       CmpInst::Predicate Predicate = CI->getPredicate();
1130       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1131         std::swap(TBB, FBB);
1132         Predicate = CmpInst::getInversePredicate(Predicate);
1133       }
1134 
1135       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1136 
1137       // We may not handle every CC for now.
1138       if (ARMPred == ARMCC::AL) return false;
1139 
1140       unsigned Arg1 = getRegForValue(CI->getOperand(0));
1141       if (Arg1 == 0) return false;
1142 
1143       unsigned Arg2 = getRegForValue(CI->getOperand(1));
1144       if (Arg2 == 0) return false;
1145 
1146       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1147                               TII.get(CmpOpc))
1148                       .addReg(Arg1).addReg(Arg2));
1149 
1150       // For floating point we need to move the result to a comparison register
1151       // that we can then use for branches.
1152       if (isFloat)
1153         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1154                                 TII.get(ARM::FMSTAT)));
1155 
1156       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1157       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1158       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1159       FastEmitBranch(FBB, DL);
1160       FuncInfo.MBB->addSuccessor(TBB);
1161       return true;
1162     }
1163   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1164     MVT SourceVT;
1165     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1166         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1167       unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1168       unsigned OpReg = getRegForValue(TI->getOperand(0));
1169       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1170                               TII.get(TstOpc))
1171                       .addReg(OpReg).addImm(1));
1172 
1173       unsigned CCMode = ARMCC::NE;
1174       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1175         std::swap(TBB, FBB);
1176         CCMode = ARMCC::EQ;
1177       }
1178 
1179       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1180       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1181       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1182 
1183       FastEmitBranch(FBB, DL);
1184       FuncInfo.MBB->addSuccessor(TBB);
1185       return true;
1186     }
1187   }
1188 
1189   unsigned CmpReg = getRegForValue(BI->getCondition());
1190   if (CmpReg == 0) return false;
1191 
1192   // We've been divorced from our compare!  Our block was split, and
1193   // now our compare lives in a predecessor block.  We musn't
1194   // re-compare here, as the children of the compare aren't guaranteed
1195   // live across the block boundary (we *could* check for this).
1196   // Regardless, the compare has been done in the predecessor block,
1197   // and it left a value for us in a virtual register.  Ergo, we test
1198   // the one-bit value left in the virtual register.
1199   unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1200   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1201                   .addReg(CmpReg).addImm(1));
1202 
1203   unsigned CCMode = ARMCC::NE;
1204   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1205     std::swap(TBB, FBB);
1206     CCMode = ARMCC::EQ;
1207   }
1208 
1209   unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1210   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1211                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1212   FastEmitBranch(FBB, DL);
1213   FuncInfo.MBB->addSuccessor(TBB);
1214   return true;
1215 }
1216 
SelectCmp(const Instruction * I)1217 bool ARMFastISel::SelectCmp(const Instruction *I) {
1218   const CmpInst *CI = cast<CmpInst>(I);
1219 
1220   MVT VT;
1221   Type *Ty = CI->getOperand(0)->getType();
1222   if (!isTypeLegal(Ty, VT))
1223     return false;
1224 
1225   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1226   if (isFloat && !Subtarget->hasVFP2())
1227     return false;
1228 
1229   unsigned CmpOpc;
1230   unsigned CondReg;
1231   switch (VT.SimpleTy) {
1232     default: return false;
1233     // TODO: Verify compares.
1234     case MVT::f32:
1235       CmpOpc = ARM::VCMPES;
1236       CondReg = ARM::FPSCR;
1237       break;
1238     case MVT::f64:
1239       CmpOpc = ARM::VCMPED;
1240       CondReg = ARM::FPSCR;
1241       break;
1242     case MVT::i32:
1243       CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1244       CondReg = ARM::CPSR;
1245       break;
1246   }
1247 
1248   // Get the compare predicate.
1249   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1250 
1251   // We may not handle every CC for now.
1252   if (ARMPred == ARMCC::AL) return false;
1253 
1254   unsigned Arg1 = getRegForValue(CI->getOperand(0));
1255   if (Arg1 == 0) return false;
1256 
1257   unsigned Arg2 = getRegForValue(CI->getOperand(1));
1258   if (Arg2 == 0) return false;
1259 
1260   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1261                   .addReg(Arg1).addReg(Arg2));
1262 
1263   // For floating point we need to move the result to a comparison register
1264   // that we can then use for branches.
1265   if (isFloat)
1266     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1267                             TII.get(ARM::FMSTAT)));
1268 
1269   // Now set a register based on the comparison. Explicitly set the predicates
1270   // here.
1271   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1272   TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1273                                     : ARM::GPRRegisterClass;
1274   unsigned DestReg = createResultReg(RC);
1275   Constant *Zero
1276     = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1277   unsigned ZeroReg = TargetMaterializeConstant(Zero);
1278   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1279           .addReg(ZeroReg).addImm(1)
1280           .addImm(ARMPred).addReg(CondReg);
1281 
1282   UpdateValueMap(I, DestReg);
1283   return true;
1284 }
1285 
SelectFPExt(const Instruction * I)1286 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1287   // Make sure we have VFP and that we're extending float to double.
1288   if (!Subtarget->hasVFP2()) return false;
1289 
1290   Value *V = I->getOperand(0);
1291   if (!I->getType()->isDoubleTy() ||
1292       !V->getType()->isFloatTy()) return false;
1293 
1294   unsigned Op = getRegForValue(V);
1295   if (Op == 0) return false;
1296 
1297   unsigned Result = createResultReg(ARM::DPRRegisterClass);
1298   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1299                           TII.get(ARM::VCVTDS), Result)
1300                   .addReg(Op));
1301   UpdateValueMap(I, Result);
1302   return true;
1303 }
1304 
SelectFPTrunc(const Instruction * I)1305 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1306   // Make sure we have VFP and that we're truncating double to float.
1307   if (!Subtarget->hasVFP2()) return false;
1308 
1309   Value *V = I->getOperand(0);
1310   if (!(I->getType()->isFloatTy() &&
1311         V->getType()->isDoubleTy())) return false;
1312 
1313   unsigned Op = getRegForValue(V);
1314   if (Op == 0) return false;
1315 
1316   unsigned Result = createResultReg(ARM::SPRRegisterClass);
1317   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1318                           TII.get(ARM::VCVTSD), Result)
1319                   .addReg(Op));
1320   UpdateValueMap(I, Result);
1321   return true;
1322 }
1323 
SelectSIToFP(const Instruction * I)1324 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1325   // Make sure we have VFP.
1326   if (!Subtarget->hasVFP2()) return false;
1327 
1328   MVT DstVT;
1329   Type *Ty = I->getType();
1330   if (!isTypeLegal(Ty, DstVT))
1331     return false;
1332 
1333   // FIXME: Handle sign-extension where necessary.
1334   if (!I->getOperand(0)->getType()->isIntegerTy(32))
1335     return false;
1336 
1337   unsigned Op = getRegForValue(I->getOperand(0));
1338   if (Op == 0) return false;
1339 
1340   // The conversion routine works on fp-reg to fp-reg and the operand above
1341   // was an integer, move it to the fp registers if possible.
1342   unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1343   if (FP == 0) return false;
1344 
1345   unsigned Opc;
1346   if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1347   else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1348   else return false;
1349 
1350   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1351   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1352                           ResultReg)
1353                   .addReg(FP));
1354   UpdateValueMap(I, ResultReg);
1355   return true;
1356 }
1357 
SelectFPToSI(const Instruction * I)1358 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1359   // Make sure we have VFP.
1360   if (!Subtarget->hasVFP2()) return false;
1361 
1362   MVT DstVT;
1363   Type *RetTy = I->getType();
1364   if (!isTypeLegal(RetTy, DstVT))
1365     return false;
1366 
1367   unsigned Op = getRegForValue(I->getOperand(0));
1368   if (Op == 0) return false;
1369 
1370   unsigned Opc;
1371   Type *OpTy = I->getOperand(0)->getType();
1372   if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1373   else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1374   else return false;
1375 
1376   // f64->s32 or f32->s32 both need an intermediate f32 reg.
1377   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1378   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1379                           ResultReg)
1380                   .addReg(Op));
1381 
1382   // This result needs to be in an integer register, but the conversion only
1383   // takes place in fp-regs.
1384   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1385   if (IntReg == 0) return false;
1386 
1387   UpdateValueMap(I, IntReg);
1388   return true;
1389 }
1390 
SelectSelect(const Instruction * I)1391 bool ARMFastISel::SelectSelect(const Instruction *I) {
1392   MVT VT;
1393   if (!isTypeLegal(I->getType(), VT))
1394     return false;
1395 
1396   // Things need to be register sized for register moves.
1397   if (VT != MVT::i32) return false;
1398   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1399 
1400   unsigned CondReg = getRegForValue(I->getOperand(0));
1401   if (CondReg == 0) return false;
1402   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1403   if (Op1Reg == 0) return false;
1404   unsigned Op2Reg = getRegForValue(I->getOperand(2));
1405   if (Op2Reg == 0) return false;
1406 
1407   unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1408   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1409                   .addReg(CondReg).addImm(1));
1410   unsigned ResultReg = createResultReg(RC);
1411   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1412   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1413     .addReg(Op1Reg).addReg(Op2Reg)
1414     .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1415   UpdateValueMap(I, ResultReg);
1416   return true;
1417 }
1418 
SelectSDiv(const Instruction * I)1419 bool ARMFastISel::SelectSDiv(const Instruction *I) {
1420   MVT VT;
1421   Type *Ty = I->getType();
1422   if (!isTypeLegal(Ty, VT))
1423     return false;
1424 
1425   // If we have integer div support we should have selected this automagically.
1426   // In case we have a real miss go ahead and return false and we'll pick
1427   // it up later.
1428   if (Subtarget->hasDivide()) return false;
1429 
1430   // Otherwise emit a libcall.
1431   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1432   if (VT == MVT::i8)
1433     LC = RTLIB::SDIV_I8;
1434   else if (VT == MVT::i16)
1435     LC = RTLIB::SDIV_I16;
1436   else if (VT == MVT::i32)
1437     LC = RTLIB::SDIV_I32;
1438   else if (VT == MVT::i64)
1439     LC = RTLIB::SDIV_I64;
1440   else if (VT == MVT::i128)
1441     LC = RTLIB::SDIV_I128;
1442   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1443 
1444   return ARMEmitLibcall(I, LC);
1445 }
1446 
SelectSRem(const Instruction * I)1447 bool ARMFastISel::SelectSRem(const Instruction *I) {
1448   MVT VT;
1449   Type *Ty = I->getType();
1450   if (!isTypeLegal(Ty, VT))
1451     return false;
1452 
1453   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1454   if (VT == MVT::i8)
1455     LC = RTLIB::SREM_I8;
1456   else if (VT == MVT::i16)
1457     LC = RTLIB::SREM_I16;
1458   else if (VT == MVT::i32)
1459     LC = RTLIB::SREM_I32;
1460   else if (VT == MVT::i64)
1461     LC = RTLIB::SREM_I64;
1462   else if (VT == MVT::i128)
1463     LC = RTLIB::SREM_I128;
1464   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1465 
1466   return ARMEmitLibcall(I, LC);
1467 }
1468 
SelectBinaryOp(const Instruction * I,unsigned ISDOpcode)1469 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1470   EVT VT  = TLI.getValueType(I->getType(), true);
1471 
1472   // We can get here in the case when we want to use NEON for our fp
1473   // operations, but can't figure out how to. Just use the vfp instructions
1474   // if we have them.
1475   // FIXME: It'd be nice to use NEON instructions.
1476   Type *Ty = I->getType();
1477   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1478   if (isFloat && !Subtarget->hasVFP2())
1479     return false;
1480 
1481   unsigned Op1 = getRegForValue(I->getOperand(0));
1482   if (Op1 == 0) return false;
1483 
1484   unsigned Op2 = getRegForValue(I->getOperand(1));
1485   if (Op2 == 0) return false;
1486 
1487   unsigned Opc;
1488   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1489   switch (ISDOpcode) {
1490     default: return false;
1491     case ISD::FADD:
1492       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1493       break;
1494     case ISD::FSUB:
1495       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1496       break;
1497     case ISD::FMUL:
1498       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1499       break;
1500   }
1501   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1502   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1503                           TII.get(Opc), ResultReg)
1504                   .addReg(Op1).addReg(Op2));
1505   UpdateValueMap(I, ResultReg);
1506   return true;
1507 }
1508 
1509 // Call Handling Code
1510 
FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)1511 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1512                                  EVT SrcVT, unsigned &ResultReg) {
1513   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1514                            Src, /*TODO: Kill=*/false);
1515 
1516   if (RR != 0) {
1517     ResultReg = RR;
1518     return true;
1519   } else
1520     return false;
1521 }
1522 
1523 // This is largely taken directly from CCAssignFnForNode - we don't support
1524 // varargs in FastISel so that part has been removed.
1525 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return)1526 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1527   switch (CC) {
1528   default:
1529     llvm_unreachable("Unsupported calling convention");
1530   case CallingConv::Fast:
1531     // Ignore fastcc. Silence compiler warnings.
1532     (void)RetFastCC_ARM_APCS;
1533     (void)FastCC_ARM_APCS;
1534     // Fallthrough
1535   case CallingConv::C:
1536     // Use target triple & subtarget features to do actual dispatch.
1537     if (Subtarget->isAAPCS_ABI()) {
1538       if (Subtarget->hasVFP2() &&
1539           FloatABIType == FloatABI::Hard)
1540         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1541       else
1542         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1543     } else
1544         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1545   case CallingConv::ARM_AAPCS_VFP:
1546     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1547   case CallingConv::ARM_AAPCS:
1548     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1549   case CallingConv::ARM_APCS:
1550     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1551   case CallingConv::GHC:
1552     if (Return)
1553       llvm_unreachable("Can't return in GHC call convention");
1554     else
1555       return CC_ARM_APCS_GHC;
1556   }
1557 }
1558 
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes)1559 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1560                                   SmallVectorImpl<unsigned> &ArgRegs,
1561                                   SmallVectorImpl<MVT> &ArgVTs,
1562                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1563                                   SmallVectorImpl<unsigned> &RegArgs,
1564                                   CallingConv::ID CC,
1565                                   unsigned &NumBytes) {
1566   SmallVector<CCValAssign, 16> ArgLocs;
1567   CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1568   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1569 
1570   // Get a count of how many bytes are to be pushed on the stack.
1571   NumBytes = CCInfo.getNextStackOffset();
1572 
1573   // Issue CALLSEQ_START
1574   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1575   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1576                           TII.get(AdjStackDown))
1577                   .addImm(NumBytes));
1578 
1579   // Process the args.
1580   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1581     CCValAssign &VA = ArgLocs[i];
1582     unsigned Arg = ArgRegs[VA.getValNo()];
1583     MVT ArgVT = ArgVTs[VA.getValNo()];
1584 
1585     // We don't handle NEON/vector parameters yet.
1586     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1587       return false;
1588 
1589     // Handle arg promotion, etc.
1590     switch (VA.getLocInfo()) {
1591       case CCValAssign::Full: break;
1592       case CCValAssign::SExt: {
1593         bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1594                                          Arg, ArgVT, Arg);
1595         assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1596         Emitted = true;
1597         ArgVT = VA.getLocVT();
1598         break;
1599       }
1600       case CCValAssign::ZExt: {
1601         bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1602                                          Arg, ArgVT, Arg);
1603         assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1604         Emitted = true;
1605         ArgVT = VA.getLocVT();
1606         break;
1607       }
1608       case CCValAssign::AExt: {
1609         bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1610                                          Arg, ArgVT, Arg);
1611         if (!Emitted)
1612           Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1613                                       Arg, ArgVT, Arg);
1614         if (!Emitted)
1615           Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1616                                       Arg, ArgVT, Arg);
1617 
1618         assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1619         ArgVT = VA.getLocVT();
1620         break;
1621       }
1622       case CCValAssign::BCvt: {
1623         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1624                                  /*TODO: Kill=*/false);
1625         assert(BC != 0 && "Failed to emit a bitcast!");
1626         Arg = BC;
1627         ArgVT = VA.getLocVT();
1628         break;
1629       }
1630       default: llvm_unreachable("Unknown arg promotion!");
1631     }
1632 
1633     // Now copy/store arg to correct locations.
1634     if (VA.isRegLoc() && !VA.needsCustom()) {
1635       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1636               VA.getLocReg())
1637       .addReg(Arg);
1638       RegArgs.push_back(VA.getLocReg());
1639     } else if (VA.needsCustom()) {
1640       // TODO: We need custom lowering for vector (v2f64) args.
1641       if (VA.getLocVT() != MVT::f64) return false;
1642 
1643       CCValAssign &NextVA = ArgLocs[++i];
1644 
1645       // TODO: Only handle register args for now.
1646       if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1647 
1648       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1649                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1650                       .addReg(NextVA.getLocReg(), RegState::Define)
1651                       .addReg(Arg));
1652       RegArgs.push_back(VA.getLocReg());
1653       RegArgs.push_back(NextVA.getLocReg());
1654     } else {
1655       assert(VA.isMemLoc());
1656       // Need to store on the stack.
1657       Address Addr;
1658       Addr.BaseType = Address::RegBase;
1659       Addr.Base.Reg = ARM::SP;
1660       Addr.Offset = VA.getLocMemOffset();
1661 
1662       if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1663     }
1664   }
1665   return true;
1666 }
1667 
FinishCall(MVT RetVT,SmallVectorImpl<unsigned> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes)1668 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1669                              const Instruction *I, CallingConv::ID CC,
1670                              unsigned &NumBytes) {
1671   // Issue CALLSEQ_END
1672   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1673   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1674                           TII.get(AdjStackUp))
1675                   .addImm(NumBytes).addImm(0));
1676 
1677   // Now the return value.
1678   if (RetVT != MVT::isVoid) {
1679     SmallVector<CCValAssign, 16> RVLocs;
1680     CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1681     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1682 
1683     // Copy all of the result registers out of their specified physreg.
1684     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1685       // For this move we copy into two registers and then move into the
1686       // double fp reg we want.
1687       EVT DestVT = RVLocs[0].getValVT();
1688       TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1689       unsigned ResultReg = createResultReg(DstRC);
1690       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1691                               TII.get(ARM::VMOVDRR), ResultReg)
1692                       .addReg(RVLocs[0].getLocReg())
1693                       .addReg(RVLocs[1].getLocReg()));
1694 
1695       UsedRegs.push_back(RVLocs[0].getLocReg());
1696       UsedRegs.push_back(RVLocs[1].getLocReg());
1697 
1698       // Finally update the result.
1699       UpdateValueMap(I, ResultReg);
1700     } else {
1701       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1702       EVT CopyVT = RVLocs[0].getValVT();
1703       TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1704 
1705       unsigned ResultReg = createResultReg(DstRC);
1706       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1707               ResultReg).addReg(RVLocs[0].getLocReg());
1708       UsedRegs.push_back(RVLocs[0].getLocReg());
1709 
1710       // Finally update the result.
1711       UpdateValueMap(I, ResultReg);
1712     }
1713   }
1714 
1715   return true;
1716 }
1717 
SelectRet(const Instruction * I)1718 bool ARMFastISel::SelectRet(const Instruction *I) {
1719   const ReturnInst *Ret = cast<ReturnInst>(I);
1720   const Function &F = *I->getParent()->getParent();
1721 
1722   if (!FuncInfo.CanLowerReturn)
1723     return false;
1724 
1725   if (F.isVarArg())
1726     return false;
1727 
1728   CallingConv::ID CC = F.getCallingConv();
1729   if (Ret->getNumOperands() > 0) {
1730     SmallVector<ISD::OutputArg, 4> Outs;
1731     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1732                   Outs, TLI);
1733 
1734     // Analyze operands of the call, assigning locations to each operand.
1735     SmallVector<CCValAssign, 16> ValLocs;
1736     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1737     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1738 
1739     const Value *RV = Ret->getOperand(0);
1740     unsigned Reg = getRegForValue(RV);
1741     if (Reg == 0)
1742       return false;
1743 
1744     // Only handle a single return value for now.
1745     if (ValLocs.size() != 1)
1746       return false;
1747 
1748     CCValAssign &VA = ValLocs[0];
1749 
1750     // Don't bother handling odd stuff for now.
1751     if (VA.getLocInfo() != CCValAssign::Full)
1752       return false;
1753     // Only handle register returns for now.
1754     if (!VA.isRegLoc())
1755       return false;
1756     // TODO: For now, don't try to handle cases where getLocInfo()
1757     // says Full but the types don't match.
1758     if (TLI.getValueType(RV->getType()) != VA.getValVT())
1759       return false;
1760 
1761     // Make the copy.
1762     unsigned SrcReg = Reg + VA.getValNo();
1763     unsigned DstReg = VA.getLocReg();
1764     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1765     // Avoid a cross-class copy. This is very unlikely.
1766     if (!SrcRC->contains(DstReg))
1767       return false;
1768     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1769             DstReg).addReg(SrcReg);
1770 
1771     // Mark the register as live out of the function.
1772     MRI.addLiveOut(VA.getLocReg());
1773   }
1774 
1775   unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1776   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1777                           TII.get(RetOpc)));
1778   return true;
1779 }
1780 
ARMSelectCallOp(const GlobalValue * GV)1781 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1782 
1783   // Darwin needs the r9 versions of the opcodes.
1784   bool isDarwin = Subtarget->isTargetDarwin();
1785   if (isThumb) {
1786     return isDarwin ? ARM::tBLr9 : ARM::tBL;
1787   } else  {
1788     return isDarwin ? ARM::BLr9 : ARM::BL;
1789   }
1790 }
1791 
1792 // A quick function that will emit a call for a named libcall in F with the
1793 // vector of passed arguments for the Instruction in I. We can assume that we
1794 // can emit a call for any libcall we can produce. This is an abridged version
1795 // of the full call infrastructure since we won't need to worry about things
1796 // like computed function pointers or strange arguments at call sites.
1797 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
1798 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)1799 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1800   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1801 
1802   // Handle *simple* calls for now.
1803   Type *RetTy = I->getType();
1804   MVT RetVT;
1805   if (RetTy->isVoidTy())
1806     RetVT = MVT::isVoid;
1807   else if (!isTypeLegal(RetTy, RetVT))
1808     return false;
1809 
1810   // TODO: For now if we have long calls specified we don't handle the call.
1811   if (EnableARMLongCalls) return false;
1812 
1813   // Set up the argument vectors.
1814   SmallVector<Value*, 8> Args;
1815   SmallVector<unsigned, 8> ArgRegs;
1816   SmallVector<MVT, 8> ArgVTs;
1817   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1818   Args.reserve(I->getNumOperands());
1819   ArgRegs.reserve(I->getNumOperands());
1820   ArgVTs.reserve(I->getNumOperands());
1821   ArgFlags.reserve(I->getNumOperands());
1822   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1823     Value *Op = I->getOperand(i);
1824     unsigned Arg = getRegForValue(Op);
1825     if (Arg == 0) return false;
1826 
1827     Type *ArgTy = Op->getType();
1828     MVT ArgVT;
1829     if (!isTypeLegal(ArgTy, ArgVT)) return false;
1830 
1831     ISD::ArgFlagsTy Flags;
1832     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1833     Flags.setOrigAlign(OriginalAlignment);
1834 
1835     Args.push_back(Op);
1836     ArgRegs.push_back(Arg);
1837     ArgVTs.push_back(ArgVT);
1838     ArgFlags.push_back(Flags);
1839   }
1840 
1841   // Handle the arguments now that we've gotten them.
1842   SmallVector<unsigned, 4> RegArgs;
1843   unsigned NumBytes;
1844   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1845     return false;
1846 
1847   // Issue the call, BLr9 for darwin, BL otherwise.
1848   // TODO: Turn this into the table of arm call ops.
1849   MachineInstrBuilder MIB;
1850   unsigned CallOpc = ARMSelectCallOp(NULL);
1851   if(isThumb)
1852     // Explicitly adding the predicate here.
1853     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1854                          TII.get(CallOpc)))
1855                          .addExternalSymbol(TLI.getLibcallName(Call));
1856   else
1857     // Explicitly adding the predicate here.
1858     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1859                          TII.get(CallOpc))
1860           .addExternalSymbol(TLI.getLibcallName(Call)));
1861 
1862   // Add implicit physical register uses to the call.
1863   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1864     MIB.addReg(RegArgs[i]);
1865 
1866   // Finish off the call including any return values.
1867   SmallVector<unsigned, 4> UsedRegs;
1868   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1869 
1870   // Set all unused physreg defs as dead.
1871   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1872 
1873   return true;
1874 }
1875 
SelectCall(const Instruction * I)1876 bool ARMFastISel::SelectCall(const Instruction *I) {
1877   const CallInst *CI = cast<CallInst>(I);
1878   const Value *Callee = CI->getCalledValue();
1879 
1880   // Can't handle inline asm or worry about intrinsics yet.
1881   if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1882 
1883   // Only handle global variable Callees.
1884   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1885   if (!GV)
1886     return false;
1887 
1888   // Check the calling convention.
1889   ImmutableCallSite CS(CI);
1890   CallingConv::ID CC = CS.getCallingConv();
1891 
1892   // TODO: Avoid some calling conventions?
1893 
1894   // Let SDISel handle vararg functions.
1895   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1896   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1897   if (FTy->isVarArg())
1898     return false;
1899 
1900   // Handle *simple* calls for now.
1901   Type *RetTy = I->getType();
1902   MVT RetVT;
1903   if (RetTy->isVoidTy())
1904     RetVT = MVT::isVoid;
1905   else if (!isTypeLegal(RetTy, RetVT))
1906     return false;
1907 
1908   // TODO: For now if we have long calls specified we don't handle the call.
1909   if (EnableARMLongCalls) return false;
1910 
1911   // Set up the argument vectors.
1912   SmallVector<Value*, 8> Args;
1913   SmallVector<unsigned, 8> ArgRegs;
1914   SmallVector<MVT, 8> ArgVTs;
1915   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1916   Args.reserve(CS.arg_size());
1917   ArgRegs.reserve(CS.arg_size());
1918   ArgVTs.reserve(CS.arg_size());
1919   ArgFlags.reserve(CS.arg_size());
1920   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1921        i != e; ++i) {
1922     unsigned Arg = getRegForValue(*i);
1923 
1924     if (Arg == 0)
1925       return false;
1926     ISD::ArgFlagsTy Flags;
1927     unsigned AttrInd = i - CS.arg_begin() + 1;
1928     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1929       Flags.setSExt();
1930     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1931       Flags.setZExt();
1932 
1933          // FIXME: Only handle *easy* calls for now.
1934     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1935         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1936         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1937         CS.paramHasAttr(AttrInd, Attribute::ByVal))
1938       return false;
1939 
1940     Type *ArgTy = (*i)->getType();
1941     MVT ArgVT;
1942     if (!isTypeLegal(ArgTy, ArgVT))
1943       return false;
1944     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1945     Flags.setOrigAlign(OriginalAlignment);
1946 
1947     Args.push_back(*i);
1948     ArgRegs.push_back(Arg);
1949     ArgVTs.push_back(ArgVT);
1950     ArgFlags.push_back(Flags);
1951   }
1952 
1953   // Handle the arguments now that we've gotten them.
1954   SmallVector<unsigned, 4> RegArgs;
1955   unsigned NumBytes;
1956   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1957     return false;
1958 
1959   // Issue the call, BLr9 for darwin, BL otherwise.
1960   // TODO: Turn this into the table of arm call ops.
1961   MachineInstrBuilder MIB;
1962   unsigned CallOpc = ARMSelectCallOp(GV);
1963   // Explicitly adding the predicate here.
1964   if(isThumb)
1965     // Explicitly adding the predicate here.
1966     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1967                          TII.get(CallOpc)))
1968           .addGlobalAddress(GV, 0, 0);
1969   else
1970     // Explicitly adding the predicate here.
1971     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1972                          TII.get(CallOpc))
1973           .addGlobalAddress(GV, 0, 0));
1974 
1975   // Add implicit physical register uses to the call.
1976   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1977     MIB.addReg(RegArgs[i]);
1978 
1979   // Finish off the call including any return values.
1980   SmallVector<unsigned, 4> UsedRegs;
1981   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1982 
1983   // Set all unused physreg defs as dead.
1984   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1985 
1986   return true;
1987 
1988 }
1989 
SelectIntCast(const Instruction * I)1990 bool ARMFastISel::SelectIntCast(const Instruction *I) {
1991   // On ARM, in general, integer casts don't involve legal types; this code
1992   // handles promotable integers.  The high bits for a type smaller than
1993   // the register size are assumed to be undefined.
1994   Type *DestTy = I->getType();
1995   Value *Op = I->getOperand(0);
1996   Type *SrcTy = Op->getType();
1997 
1998   EVT SrcVT, DestVT;
1999   SrcVT = TLI.getValueType(SrcTy, true);
2000   DestVT = TLI.getValueType(DestTy, true);
2001 
2002   if (isa<TruncInst>(I)) {
2003     if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2004       return false;
2005     if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2006       return false;
2007 
2008     unsigned SrcReg = getRegForValue(Op);
2009     if (!SrcReg) return false;
2010 
2011     // Because the high bits are undefined, a truncate doesn't generate
2012     // any code.
2013     UpdateValueMap(I, SrcReg);
2014     return true;
2015   }
2016   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2017     return false;
2018 
2019   unsigned Opc;
2020   bool isZext = isa<ZExtInst>(I);
2021   bool isBoolZext = false;
2022   if (!SrcVT.isSimple())
2023     return false;
2024   switch (SrcVT.getSimpleVT().SimpleTy) {
2025   default: return false;
2026   case MVT::i16:
2027     if (!Subtarget->hasV6Ops()) return false;
2028     if (isZext)
2029       Opc = isThumb ? ARM::t2UXTH : ARM::UXTH;
2030     else
2031       Opc = isThumb ? ARM::t2SXTH : ARM::SXTH;
2032     break;
2033   case MVT::i8:
2034     if (!Subtarget->hasV6Ops()) return false;
2035     if (isZext)
2036       Opc = isThumb ? ARM::t2UXTB : ARM::UXTB;
2037     else
2038       Opc = isThumb ? ARM::t2SXTB : ARM::SXTB;
2039     break;
2040   case MVT::i1:
2041     if (isZext) {
2042       Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2043       isBoolZext = true;
2044       break;
2045     }
2046     return false;
2047   }
2048 
2049   // FIXME: We could save an instruction in many cases by special-casing
2050   // load instructions.
2051   unsigned SrcReg = getRegForValue(Op);
2052   if (!SrcReg) return false;
2053 
2054   unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2055   MachineInstrBuilder MIB;
2056   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
2057         .addReg(SrcReg);
2058   if (isBoolZext)
2059     MIB.addImm(1);
2060   else
2061     MIB.addImm(0);
2062   AddOptionalDefs(MIB);
2063   UpdateValueMap(I, DestReg);
2064   return true;
2065 }
2066 
2067 // TODO: SoftFP support.
TargetSelectInstruction(const Instruction * I)2068 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2069 
2070   switch (I->getOpcode()) {
2071     case Instruction::Load:
2072       return SelectLoad(I);
2073     case Instruction::Store:
2074       return SelectStore(I);
2075     case Instruction::Br:
2076       return SelectBranch(I);
2077     case Instruction::ICmp:
2078     case Instruction::FCmp:
2079       return SelectCmp(I);
2080     case Instruction::FPExt:
2081       return SelectFPExt(I);
2082     case Instruction::FPTrunc:
2083       return SelectFPTrunc(I);
2084     case Instruction::SIToFP:
2085       return SelectSIToFP(I);
2086     case Instruction::FPToSI:
2087       return SelectFPToSI(I);
2088     case Instruction::FAdd:
2089       return SelectBinaryOp(I, ISD::FADD);
2090     case Instruction::FSub:
2091       return SelectBinaryOp(I, ISD::FSUB);
2092     case Instruction::FMul:
2093       return SelectBinaryOp(I, ISD::FMUL);
2094     case Instruction::SDiv:
2095       return SelectSDiv(I);
2096     case Instruction::SRem:
2097       return SelectSRem(I);
2098     case Instruction::Call:
2099       return SelectCall(I);
2100     case Instruction::Select:
2101       return SelectSelect(I);
2102     case Instruction::Ret:
2103       return SelectRet(I);
2104     case Instruction::Trunc:
2105     case Instruction::ZExt:
2106     case Instruction::SExt:
2107       return SelectIntCast(I);
2108     default: break;
2109   }
2110   return false;
2111 }
2112 
2113 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo)2114   llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2115     // Completely untested on non-darwin.
2116     const TargetMachine &TM = funcInfo.MF->getTarget();
2117 
2118     // Darwin and thumb1 only for now.
2119     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2120     if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2121         !DisableARMFastISel)
2122       return new ARMFastISel(funcInfo);
2123     return 0;
2124   }
2125 }
2126