1//===- ARMRegisterInfo.td - ARM Register defs --------------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11//  Declarations that describe the ARM register file
12//===----------------------------------------------------------------------===//
13
14// Registers are identified with 4-bit ID numbers.
15class ARMReg<bits<4> num, string n, list<Register> subregs = []> : Register<n> {
16  field bits<4> Num;
17  let Namespace = "ARM";
18  let SubRegs = subregs;
19}
20
21class ARMFReg<bits<6> num, string n> : Register<n> {
22  field bits<6> Num;
23  let Namespace = "ARM";
24}
25
26// Subregister indices.
27let Namespace = "ARM" in {
28// Note: Code depends on these having consecutive numbers.
29def ssub_0  : SubRegIndex;
30def ssub_1  : SubRegIndex;
31def ssub_2  : SubRegIndex; // In a Q reg.
32def ssub_3  : SubRegIndex;
33
34def dsub_0 : SubRegIndex;
35def dsub_1 : SubRegIndex;
36def dsub_2 : SubRegIndex;
37def dsub_3 : SubRegIndex;
38def dsub_4 : SubRegIndex;
39def dsub_5 : SubRegIndex;
40def dsub_6 : SubRegIndex;
41def dsub_7 : SubRegIndex;
42
43def qsub_0 : SubRegIndex;
44def qsub_1 : SubRegIndex;
45def qsub_2 : SubRegIndex;
46def qsub_3 : SubRegIndex;
47
48def qqsub_0 : SubRegIndex;
49def qqsub_1 : SubRegIndex;
50}
51
52// Integer registers
53def R0  : ARMReg< 0, "r0">,  DwarfRegNum<[0]>;
54def R1  : ARMReg< 1, "r1">,  DwarfRegNum<[1]>;
55def R2  : ARMReg< 2, "r2">,  DwarfRegNum<[2]>;
56def R3  : ARMReg< 3, "r3">,  DwarfRegNum<[3]>;
57def R4  : ARMReg< 4, "r4">,  DwarfRegNum<[4]>;
58def R5  : ARMReg< 5, "r5">,  DwarfRegNum<[5]>;
59def R6  : ARMReg< 6, "r6">,  DwarfRegNum<[6]>;
60def R7  : ARMReg< 7, "r7">,  DwarfRegNum<[7]>;
61// These require 32-bit instructions.
62let CostPerUse = 1 in {
63def R8  : ARMReg< 8, "r8">,  DwarfRegNum<[8]>;
64def R9  : ARMReg< 9, "r9">,  DwarfRegNum<[9]>;
65def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>;
66def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>;
67def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>;
68def SP  : ARMReg<13, "sp">,  DwarfRegNum<[13]>;
69def LR  : ARMReg<14, "lr">,  DwarfRegNum<[14]>;
70def PC  : ARMReg<15, "pc">,  DwarfRegNum<[15]>;
71}
72
73// Float registers
74def S0  : ARMFReg< 0, "s0">;  def S1  : ARMFReg< 1, "s1">;
75def S2  : ARMFReg< 2, "s2">;  def S3  : ARMFReg< 3, "s3">;
76def S4  : ARMFReg< 4, "s4">;  def S5  : ARMFReg< 5, "s5">;
77def S6  : ARMFReg< 6, "s6">;  def S7  : ARMFReg< 7, "s7">;
78def S8  : ARMFReg< 8, "s8">;  def S9  : ARMFReg< 9, "s9">;
79def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">;
80def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">;
81def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">;
82def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">;
83def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">;
84def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">;
85def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">;
86def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">;
87def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">;
88def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">;
89def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">;
90
91// Aliases of the F* registers used to hold 64-bit fp values (doubles)
92let SubRegIndices = [ssub_0, ssub_1] in {
93def D0  : ARMReg< 0,  "d0", [S0,   S1]>, DwarfRegNum<[256]>;
94def D1  : ARMReg< 1,  "d1", [S2,   S3]>, DwarfRegNum<[257]>;
95def D2  : ARMReg< 2,  "d2", [S4,   S5]>, DwarfRegNum<[258]>;
96def D3  : ARMReg< 3,  "d3", [S6,   S7]>, DwarfRegNum<[259]>;
97def D4  : ARMReg< 4,  "d4", [S8,   S9]>, DwarfRegNum<[260]>;
98def D5  : ARMReg< 5,  "d5", [S10, S11]>, DwarfRegNum<[261]>;
99def D6  : ARMReg< 6,  "d6", [S12, S13]>, DwarfRegNum<[262]>;
100def D7  : ARMReg< 7,  "d7", [S14, S15]>, DwarfRegNum<[263]>;
101def D8  : ARMReg< 8,  "d8", [S16, S17]>, DwarfRegNum<[264]>;
102def D9  : ARMReg< 9,  "d9", [S18, S19]>, DwarfRegNum<[265]>;
103def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>;
104def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>;
105def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>;
106def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>;
107def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>;
108def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>;
109}
110
111// VFP3 defines 16 additional double registers
112def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>;
113def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>;
114def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>;
115def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>;
116def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>;
117def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>;
118def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>;
119def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>;
120def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>;
121def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>;
122def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>;
123def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>;
124def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>;
125def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>;
126def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>;
127def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>;
128
129// Advanced SIMD (NEON) defines 16 quad-word aliases
130let SubRegIndices = [dsub_0, dsub_1],
131 CompositeIndices = [(ssub_2 dsub_1, ssub_0),
132                     (ssub_3 dsub_1, ssub_1)] in {
133def Q0  : ARMReg< 0,  "q0", [D0,   D1]>;
134def Q1  : ARMReg< 1,  "q1", [D2,   D3]>;
135def Q2  : ARMReg< 2,  "q2", [D4,   D5]>;
136def Q3  : ARMReg< 3,  "q3", [D6,   D7]>;
137def Q4  : ARMReg< 4,  "q4", [D8,   D9]>;
138def Q5  : ARMReg< 5,  "q5", [D10, D11]>;
139def Q6  : ARMReg< 6,  "q6", [D12, D13]>;
140def Q7  : ARMReg< 7,  "q7", [D14, D15]>;
141}
142let SubRegIndices = [dsub_0, dsub_1] in {
143def Q8  : ARMReg< 8,  "q8", [D16, D17]>;
144def Q9  : ARMReg< 9,  "q9", [D18, D19]>;
145def Q10 : ARMReg<10, "q10", [D20, D21]>;
146def Q11 : ARMReg<11, "q11", [D22, D23]>;
147def Q12 : ARMReg<12, "q12", [D24, D25]>;
148def Q13 : ARMReg<13, "q13", [D26, D27]>;
149def Q14 : ARMReg<14, "q14", [D28, D29]>;
150def Q15 : ARMReg<15, "q15", [D30, D31]>;
151}
152
153// Pseudo 256-bit registers to represent pairs of Q registers. These should
154// never be present in the emitted code.
155// These are used for NEON load / store instructions, e.g., vld4, vst3.
156// NOTE: It's possible to define more QQ registers since technically the
157// starting D register number doesn't have to be multiple of 4, e.g.,
158// D1, D2, D3, D4 would be a legal quad, but that would make the subregister
159// stuff very messy.
160let SubRegIndices = [qsub_0, qsub_1],
161 CompositeIndices = [(dsub_2 qsub_1, dsub_0), (dsub_3 qsub_1, dsub_1)] in {
162def QQ0 : ARMReg<0, "qq0", [Q0,  Q1]>;
163def QQ1 : ARMReg<1, "qq1", [Q2,  Q3]>;
164def QQ2 : ARMReg<2, "qq2", [Q4,  Q5]>;
165def QQ3 : ARMReg<3, "qq3", [Q6,  Q7]>;
166def QQ4 : ARMReg<4, "qq4", [Q8,  Q9]>;
167def QQ5 : ARMReg<5, "qq5", [Q10, Q11]>;
168def QQ6 : ARMReg<6, "qq6", [Q12, Q13]>;
169def QQ7 : ARMReg<7, "qq7", [Q14, Q15]>;
170}
171
172// Pseudo 512-bit registers to represent four consecutive Q registers.
173let SubRegIndices = [qqsub_0, qqsub_1],
174 CompositeIndices = [(qsub_2  qqsub_1, qsub_0), (qsub_3  qqsub_1, qsub_1),
175                     (dsub_4  qqsub_1, dsub_0), (dsub_5  qqsub_1, dsub_1),
176                     (dsub_6  qqsub_1, dsub_2), (dsub_7  qqsub_1, dsub_3)] in {
177def QQQQ0 : ARMReg<0, "qqqq0", [QQ0, QQ1]>;
178def QQQQ1 : ARMReg<1, "qqqq1", [QQ2, QQ3]>;
179def QQQQ2 : ARMReg<2, "qqqq2", [QQ4, QQ5]>;
180def QQQQ3 : ARMReg<3, "qqqq3", [QQ6, QQ7]>;
181}
182
183// Current Program Status Register.
184def CPSR    : ARMReg<0, "cpsr">;
185def APSR    : ARMReg<1, "apsr">;
186def SPSR    : ARMReg<2, "spsr">;
187def FPSCR   : ARMReg<3, "fpscr">;
188def ITSTATE : ARMReg<4, "itstate">;
189
190// Special Registers - only available in privileged mode.
191def FPSID   : ARMReg<0, "fpsid">;
192def FPEXC   : ARMReg<8, "fpexc">;
193
194// Register classes.
195//
196// pc  == Program Counter
197// lr  == Link Register
198// sp  == Stack Pointer
199// r12 == ip (scratch)
200// r7  == Frame Pointer (thumb-style backtraces)
201// r9  == May be reserved as Thread Register
202// r11 == Frame Pointer (arm-style backtraces)
203// r10 == Stack Limit
204//
205def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12),
206                                               SP, LR, PC)> {
207  // Allocate LR as the first CSR since it is always saved anyway.
208  // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't
209  // know how to spill them. If we make our prologue/epilogue code smarter at
210  // some point, we can go back to using the above allocation orders for the
211  // Thumb1 instructions that know how to use hi regs.
212  let AltOrders = [(add LR, GPR), (trunc GPR, 8)];
213  let AltOrderSelect = [{
214      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
215  }];
216}
217
218// GPRs without the PC.  Some ARM instructions do not allow the PC in
219// certain operand slots, particularly as the destination.  Primarily
220// useful for disassembly.
221def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> {
222  let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)];
223  let AltOrderSelect = [{
224      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
225  }];
226}
227
228// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the
229// implied SP argument list.
230// FIXME: It would be better to not use this at all and refactor the
231// instructions to not have SP an an explicit argument. That makes
232// frame index resolution a bit trickier, though.
233def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>;
234
235// restricted GPR register class. Many Thumb2 instructions allow the full
236// register range for operands, but have undefined behaviours when PC
237// or SP (R13 or R15) are used. The ARM ISA refers to these operands
238// via the BadReg() pseudo-code description.
239def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> {
240  let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)];
241  let AltOrderSelect = [{
242      return 1 + MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
243  }];
244}
245
246// Thumb registers are R0-R7 normally. Some instructions can still use
247// the general GPR register class above (MOV, e.g.)
248def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>;
249
250// The high registers in thumb mode, R8-R15.
251def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>;
252
253// For tail calls, we can't use callee-saved registers, as they are restored
254// to the saved value before the tail call, which would clobber a call address.
255// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of
256// this class and the preceding one(!)  This is what we want.
257def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R9, R12)> {
258  let AltOrders = [(and tcGPR, tGPR)];
259  let AltOrderSelect = [{
260      return MF.getTarget().getSubtarget<ARMSubtarget>().isThumb1Only();
261  }];
262}
263
264// Scalar single precision floating point register class..
265def SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)>;
266
267// Subset of SPR which can be used as a source of NEON scalars for 16-bit
268// operations
269def SPR_8 : RegisterClass<"ARM", [f32], 32, (trunc SPR, 16)>;
270
271// Scalar double precision floating point / generic 64-bit vector register
272// class.
273// ARM requires only word alignment for double. It's more performant if it
274// is double-word alignment though.
275def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
276                        (sequence "D%u", 0, 31)> {
277  // Allocate non-VFP2 registers D16-D31 first.
278  let AltOrders = [(rotl DPR, 16)];
279  let AltOrderSelect = [{ return 1; }];
280}
281
282// Subset of DPR that are accessible with VFP2 (and so that also have
283// 32-bit SPR subregs).
284def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
285                             (trunc DPR, 16)> {
286  let SubRegClasses = [(SPR ssub_0, ssub_1)];
287}
288
289// Subset of DPR which can be used as a source of NEON scalars for 16-bit
290// operations
291def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64,
292                          (trunc DPR, 8)> {
293  let SubRegClasses = [(SPR_8 ssub_0, ssub_1)];
294}
295
296// Generic 128-bit vector register class.
297def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128,
298                        (sequence "Q%u", 0, 15)> {
299  let SubRegClasses = [(DPR dsub_0, dsub_1)];
300  // Allocate non-VFP2 aliases Q8-Q15 first.
301  let AltOrders = [(rotl QPR, 8)];
302  let AltOrderSelect = [{ return 1; }];
303}
304
305// Subset of QPR that have 32-bit SPR subregs.
306def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
307                             128, (trunc QPR, 8)> {
308  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
309                       (DPR_VFP2 dsub_0, dsub_1)];
310}
311
312// Subset of QPR that have DPR_8 and SPR_8 subregs.
313def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
314                           128, (trunc QPR, 4)> {
315  let SubRegClasses = [(SPR_8 ssub_0, ssub_1, ssub_2, ssub_3),
316                       (DPR_8 dsub_0, dsub_1)];
317}
318
319// Pseudo 256-bit vector register class to model pairs of Q registers
320// (4 consecutive D registers).
321def QQPR : RegisterClass<"ARM", [v4i64], 256, (sequence "QQ%u", 0, 7)> {
322  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3),
323                       (QPR qsub_0, qsub_1)];
324  // Allocate non-VFP2 aliases first.
325  let AltOrders = [(rotl QQPR, 4)];
326  let AltOrderSelect = [{ return 1; }];
327}
328
329// Subset of QQPR that have 32-bit SPR subregs.
330def QQPR_VFP2 : RegisterClass<"ARM", [v4i64], 256, (trunc QQPR, 4)> {
331  let SubRegClasses = [(SPR      ssub_0, ssub_1, ssub_2, ssub_3),
332                       (DPR_VFP2 dsub_0, dsub_1, dsub_2, dsub_3),
333                       (QPR_VFP2 qsub_0, qsub_1)];
334
335}
336
337// Pseudo 512-bit vector register class to model 4 consecutive Q registers
338// (8 consecutive D registers).
339def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (sequence "QQQQ%u", 0, 3)> {
340  let SubRegClasses = [(DPR dsub_0, dsub_1, dsub_2, dsub_3,
341                            dsub_4, dsub_5, dsub_6, dsub_7),
342                       (QPR qsub_0, qsub_1, qsub_2, qsub_3)];
343  // Allocate non-VFP2 aliases first.
344  let AltOrders = [(rotl QQQQPR, 2)];
345  let AltOrderSelect = [{ return 1; }];
346}
347
348// Condition code registers.
349def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> {
350  let CopyCost = -1;  // Don't allow copying of status registers.
351  let isAllocatable = 0;
352}
353