1//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the Mips FPU instruction set. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// Floating Point Instructions 16// ------------------------ 17// * 64bit fp: 18// - 32 64-bit registers (default mode) 19// - 16 even 32-bit registers (32-bit compatible mode) for 20// single and double access. 21// * 32bit fp: 22// - 16 even 32-bit registers - single and double (aliased) 23// - 32 32-bit registers (within single-only mode) 24//===----------------------------------------------------------------------===// 25 26// Floating Point Compare and Branch 27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>, 28 SDTCisVT<1, OtherVT>]>; 29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>, 30 SDTCisVT<2, i32>]>; 31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, 32 SDTCisSameAs<1, 2>]>; 33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, 34 SDTCisVT<1, i32>, 35 SDTCisSameAs<1, 2>]>; 36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, 37 SDTCisVT<1, f64>, 38 SDTCisVT<2, i32>]>; 39 40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>; 41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>; 42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>; 43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond, 44 [SDNPHasChain, SDNPOptInGlue]>; 45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>; 46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64", 47 SDT_MipsExtractElementF64>; 48 49// Operand for printing out a condition code. 50let PrintMethod = "printFCCOperand" in 51 def condcode : Operand<i32>; 52 53//===----------------------------------------------------------------------===// 54// Feature predicates. 55//===----------------------------------------------------------------------===// 56 57def IsFP64bit : Predicate<"Subtarget.isFP64bit()">; 58def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">; 59def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">; 60def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">; 61 62//===----------------------------------------------------------------------===// 63// Instruction Class Templates 64// 65// A set of multiclasses is used to address the register usage. 66// 67// S32 - single precision in 16 32bit even fp registers 68// single precision in 32 32bit fp registers in SingleOnly mode 69// S64 - single precision in 32 64bit fp registers (In64BitMode) 70// D32 - double precision in 16 32bit even fp registers 71// D64 - double precision in 32 64bit fp registers (In64BitMode) 72// 73// Only S32 and D32 are supported right now. 74//===----------------------------------------------------------------------===// 75 76// FP load. 77class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC, 78 Operand MemOpnd>: 79 FMem<op, (outs RC:$ft), (ins MemOpnd:$addr), 80 !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))], 81 IILoad>; 82 83// FP store. 84class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC, 85 Operand MemOpnd>: 86 FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr), 87 !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)], 88 IIStore>; 89 90// Instructions that convert an FP value to 32-bit fixed point. 91multiclass FFR1_W_M<bits<6> funct, string opstr> { 92 def _S : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>; 93 def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>, 94 Requires<[NotFP64bit]>; 95 def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>, 96 Requires<[IsFP64bit]>; 97} 98 99// Instructions that convert an FP value to 64-bit fixed point. 100let Predicates = [IsFP64bit] in 101multiclass FFR1_L_M<bits<6> funct, string opstr> { 102 def _S : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>; 103 def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>; 104} 105 106// FP-to-FP conversion instructions. 107multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> { 108 def _S : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>; 109 def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>, 110 Requires<[NotFP64bit]>; 111 def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>, 112 Requires<[IsFP64bit]>; 113} 114 115multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> { 116 let isCommutable = isComm in { 117 def _S : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>; 118 def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>, 119 Requires<[NotFP64bit]>; 120 def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>, 121 Requires<[IsFP64bit]>; 122 } 123} 124 125//===----------------------------------------------------------------------===// 126// Floating Point Instructions 127//===----------------------------------------------------------------------===// 128defm ROUND_W : FFR1_W_M<0xc, "round">; 129defm ROUND_L : FFR1_L_M<0x8, "round">; 130defm TRUNC_W : FFR1_W_M<0xd, "trunc">; 131defm TRUNC_L : FFR1_L_M<0x9, "trunc">; 132defm CEIL_W : FFR1_W_M<0xe, "ceil">; 133defm CEIL_L : FFR1_L_M<0xa, "ceil">; 134defm FLOOR_W : FFR1_W_M<0xf, "floor">; 135defm FLOOR_L : FFR1_L_M<0xb, "floor">; 136defm CVT_W : FFR1_W_M<0x24, "cvt">; 137defm CVT_L : FFR1_L_M<0x25, "cvt">; 138 139def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>; 140 141let Predicates = [NotFP64bit] in { 142 def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>; 143 def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>; 144 def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>; 145} 146 147let Predicates = [IsFP64bit] in { 148 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>; 149 def CVT_S_L : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>; 150 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>; 151 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>; 152 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>; 153} 154 155defm FABS : FFR1P_M<0x5, "abs", fabs>; 156defm FNEG : FFR1P_M<0x7, "neg", fneg>; 157defm FSQRT : FFR1P_M<0x4, "sqrt", fsqrt>; 158 159// The odd-numbered registers are only referenced when doing loads, 160// stores, and moves between floating-point and integer registers. 161// When defining instructions, we reference all 32-bit registers, 162// regardless of register aliasing. 163 164class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>: 165 FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> { 166 bits<5> rt; 167 let ft = rt; 168 let fd = 0; 169} 170 171/// Move Control Registers From/To CPU Registers 172def CFC1 : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs), 173 "cfc1\t$rt, $fs", []>; 174 175def CTC1 : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt), 176 "ctc1\t$rt, $fs", []>; 177 178def MFC1 : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs), 179 "mfc1\t$rt, $fs", 180 [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>; 181 182def MTC1 : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt), 183 "mtc1\t$rt, $fs", 184 [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>; 185 186def FMOV_S : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>; 187def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>, 188 Requires<[NotFP64bit]>; 189def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>, 190 Requires<[IsFP64bit]>; 191 192/// Floating Point Memory Instructions 193let Predicates = [IsN64] in { 194 def LWC1_P8 : FPLoad<0x31, "lwc1", load, FGR32, mem64>; 195 def SWC1_P8 : FPStore<0x39, "swc1", store, FGR32, mem64>; 196 def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>; 197 def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>; 198} 199 200let Predicates = [NotN64] in { 201 def LWC1 : FPLoad<0x31, "lwc1", load, FGR32, mem>; 202 def SWC1 : FPStore<0x39, "swc1", store, FGR32, mem>; 203 let Predicates = [HasMips64] in { 204 def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>; 205 def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>; 206 } 207 let Predicates = [NotMips64] in { 208 def LDC1 : FPLoad<0x35, "ldc1", load, AFGR64, mem>; 209 def SDC1 : FPStore<0x3d, "sdc1", store, AFGR64, mem>; 210 } 211} 212 213/// Floating-point Aritmetic 214defm FADD : FFR2P_M<0x00, "add", fadd, 1>; 215defm FDIV : FFR2P_M<0x03, "div", fdiv>; 216defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>; 217defm FSUB : FFR2P_M<0x01, "sub", fsub>; 218 219//===----------------------------------------------------------------------===// 220// Floating Point Branch Codes 221//===----------------------------------------------------------------------===// 222// Mips branch codes. These correspond to condcode in MipsInstrInfo.h. 223// They must be kept in synch. 224def MIPS_BRANCH_F : PatLeaf<(i32 0)>; 225def MIPS_BRANCH_T : PatLeaf<(i32 1)>; 226 227/// Floating Point Branch of False/True (Likely) 228let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in 229 class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> : 230 FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"), 231 [(MipsFPBrcond op, bb:$dst)]> { 232 let Inst{20-18} = 0; 233 let Inst{17} = nd; 234 let Inst{16} = tf; 235} 236 237def BC1F : FBRANCH<0, 0, MIPS_BRANCH_F, "bc1f">; 238def BC1T : FBRANCH<0, 1, MIPS_BRANCH_T, "bc1t">; 239 240//===----------------------------------------------------------------------===// 241// Floating Point Flag Conditions 242//===----------------------------------------------------------------------===// 243// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h. 244// They must be kept in synch. 245def MIPS_FCOND_F : PatLeaf<(i32 0)>; 246def MIPS_FCOND_UN : PatLeaf<(i32 1)>; 247def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>; 248def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>; 249def MIPS_FCOND_OLT : PatLeaf<(i32 4)>; 250def MIPS_FCOND_ULT : PatLeaf<(i32 5)>; 251def MIPS_FCOND_OLE : PatLeaf<(i32 6)>; 252def MIPS_FCOND_ULE : PatLeaf<(i32 7)>; 253def MIPS_FCOND_SF : PatLeaf<(i32 8)>; 254def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>; 255def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>; 256def MIPS_FCOND_NGL : PatLeaf<(i32 11)>; 257def MIPS_FCOND_LT : PatLeaf<(i32 12)>; 258def MIPS_FCOND_NGE : PatLeaf<(i32 13)>; 259def MIPS_FCOND_LE : PatLeaf<(i32 14)>; 260def MIPS_FCOND_NGT : PatLeaf<(i32 15)>; 261 262/// Floating Point Compare 263let Defs=[FCR31] in { 264 def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc), 265 "c.$cc.s\t$fs, $ft", 266 [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>; 267 268 def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc), 269 "c.$cc.d\t$fs, $ft", 270 [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>, 271 Requires<[NotFP64bit]>; 272} 273 274 275// Conditional moves: 276// These instructions are expanded in 277// MipsISelLowering::EmitInstrWithCustomInserter if target does not have 278// conditional move instructions. 279// flag:int, data:float 280let usesCustomInserter = 1, Constraints = "$F = $dst" in 281class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func, 282 string instr_asm> : 283 FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F), 284 !strconcat(instr_asm, "\t$dst, $T, $cond"), []>; 285 286def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">; 287def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">; 288 289let Predicates = [NotFP64bit] in { 290 def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">; 291 def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">; 292} 293 294defm : MovzPats<FGR32, MOVZ_S>; 295defm : MovnPats<FGR32, MOVN_S>; 296 297let Predicates = [NotFP64bit] in { 298 defm : MovzPats<AFGR64, MOVZ_D>; 299 defm : MovnPats<AFGR64, MOVN_D>; 300} 301 302let cc = 0, usesCustomInserter = 1, Uses = [FCR31], 303 Constraints = "$F = $dst" in { 304// flag:float, data:int 305class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> : 306 FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F), 307 !strconcat(instr_asm, "\t$dst, $T, $$fcc0"), 308 [(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>; 309 310// flag:float, data:float 311let cc = 0 in 312class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf, 313 string instr_asm> : 314 FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F), 315 !strconcat(instr_asm, "\t$dst, $T, $$fcc0"), 316 [(set RC:$dst, (cmov RC:$T, RC:$F))]>; 317} 318 319def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">; 320def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">; 321def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">; 322def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">; 323 324let Predicates = [NotFP64bit] in { 325 def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">; 326 def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">; 327} 328 329//===----------------------------------------------------------------------===// 330// Floating Point Pseudo-Instructions 331//===----------------------------------------------------------------------===// 332def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src), 333 "# MOVCCRToCCR", []>; 334 335// This pseudo instr gets expanded into 2 mtc1 instrs after register 336// allocation. 337def BuildPairF64 : 338 MipsPseudo<(outs AFGR64:$dst), 339 (ins CPURegs:$lo, CPURegs:$hi), "", 340 [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>; 341 342// This pseudo instr gets expanded into 2 mfc1 instrs after register 343// allocation. 344// if n is 0, lower part of src is extracted. 345// if n is 1, higher part of src is extracted. 346def ExtractElementF64 : 347 MipsPseudo<(outs CPURegs:$dst), 348 (ins AFGR64:$src, i32imm:$n), "", 349 [(set CPURegs:$dst, 350 (MipsExtractElementF64 AFGR64:$src, imm:$n))]>; 351 352//===----------------------------------------------------------------------===// 353// Floating Point Patterns 354//===----------------------------------------------------------------------===// 355def fpimm0 : PatLeaf<(fpimm), [{ 356 return N->isExactlyValue(+0.0); 357}]>; 358 359def fpimm0neg : PatLeaf<(fpimm), [{ 360 return N->isExactlyValue(-0.0); 361}]>; 362 363def : Pat<(f32 fpimm0), (MTC1 ZERO)>; 364def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>; 365 366def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>; 367def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>; 368 369def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>; 370def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>; 371 372let Predicates = [NotFP64bit] in { 373 def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>; 374 def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>; 375} 376 377