1//===- MipsInstrFPU.td - Mips FPU Instruction Information --*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Mips FPU instruction set.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Floating Point Instructions
16// ------------------------
17// * 64bit fp:
18//    - 32 64-bit registers (default mode)
19//    - 16 even 32-bit registers (32-bit compatible mode) for
20//      single and double access.
21// * 32bit fp:
22//    - 16 even 32-bit registers - single and double (aliased)
23//    - 32 32-bit registers (within single-only mode)
24//===----------------------------------------------------------------------===//
25
26// Floating Point Compare and Branch
27def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
28                                            SDTCisVT<1, OtherVT>]>;
29def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
30                                         SDTCisVT<2, i32>]>;
31def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
32                                          SDTCisSameAs<1, 2>]>;
33def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
34                                                SDTCisVT<1, i32>,
35                                                SDTCisSameAs<1, 2>]>;
36def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
37                                                     SDTCisVT<1, f64>,
38                                                     SDTCisVT<2, i32>]>;
39
40def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
41def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
42def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
43def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
44                          [SDNPHasChain, SDNPOptInGlue]>;
45def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
46def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
47                                   SDT_MipsExtractElementF64>;
48
49// Operand for printing out a condition code.
50let PrintMethod = "printFCCOperand" in
51  def condcode : Operand<i32>;
52
53//===----------------------------------------------------------------------===//
54// Feature predicates.
55//===----------------------------------------------------------------------===//
56
57def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">;
58def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">;
59def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">;
60def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">;
61
62//===----------------------------------------------------------------------===//
63// Instruction Class Templates
64//
65// A set of multiclasses is used to address the register usage.
66//
67// S32 - single precision in 16 32bit even fp registers
68//       single precision in 32 32bit fp registers in SingleOnly mode
69// S64 - single precision in 32 64bit fp registers (In64BitMode)
70// D32 - double precision in 16 32bit even fp registers
71// D64 - double precision in 32 64bit fp registers (In64BitMode)
72//
73// Only S32 and D32 are supported right now.
74//===----------------------------------------------------------------------===//
75
76// FP load.
77class FPLoad<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
78             Operand MemOpnd>:
79  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
80      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (FOp addr:$addr))],
81      IILoad>;
82
83// FP store.
84class FPStore<bits<6> op, string opstr, PatFrag FOp, RegisterClass RC,
85              Operand MemOpnd>:
86  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
87      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
88      IIStore>;
89
90// Instructions that convert an FP value to 32-bit fixed point.
91multiclass FFR1_W_M<bits<6> funct, string opstr> {
92  def _S   : FFR1<funct, 16, opstr, "w.s", FGR32, FGR32>;
93  def _D32 : FFR1<funct, 17, opstr, "w.d", FGR32, AFGR64>,
94             Requires<[NotFP64bit]>;
95  def _D64 : FFR1<funct, 17, opstr, "w.d", FGR32, FGR64>,
96             Requires<[IsFP64bit]>;
97}
98
99// Instructions that convert an FP value to 64-bit fixed point.
100let Predicates = [IsFP64bit] in
101multiclass FFR1_L_M<bits<6> funct, string opstr> {
102  def _S   : FFR1<funct, 16, opstr, "l.s", FGR64, FGR32>;
103  def _D64 : FFR1<funct, 17, opstr, "l.d", FGR64, FGR64>;
104}
105
106// FP-to-FP conversion instructions.
107multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
108  def _S   : FFR1P<funct, 16, opstr, "s", FGR32, FGR32, OpNode>;
109  def _D32 : FFR1P<funct, 17, opstr, "d", AFGR64, AFGR64, OpNode>,
110             Requires<[NotFP64bit]>;
111  def _D64 : FFR1P<funct, 17, opstr, "d", FGR64, FGR64, OpNode>,
112             Requires<[IsFP64bit]>;
113}
114
115multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode, bit isComm = 0> {
116  let isCommutable = isComm in {
117  def _S   : FFR2P<funct, 16, opstr, "s", FGR32, OpNode>;
118  def _D32 : FFR2P<funct, 17, opstr, "d", AFGR64, OpNode>,
119             Requires<[NotFP64bit]>;
120  def _D64 : FFR2P<funct, 17, opstr, "d", FGR64, OpNode>,
121             Requires<[IsFP64bit]>;
122  }
123}
124
125//===----------------------------------------------------------------------===//
126// Floating Point Instructions
127//===----------------------------------------------------------------------===//
128defm ROUND_W : FFR1_W_M<0xc, "round">;
129defm ROUND_L : FFR1_L_M<0x8, "round">;
130defm TRUNC_W : FFR1_W_M<0xd, "trunc">;
131defm TRUNC_L : FFR1_L_M<0x9, "trunc">;
132defm CEIL_W  : FFR1_W_M<0xe, "ceil">;
133defm CEIL_L  : FFR1_L_M<0xa, "ceil">;
134defm FLOOR_W : FFR1_W_M<0xf, "floor">;
135defm FLOOR_L : FFR1_L_M<0xb, "floor">;
136defm CVT_W   : FFR1_W_M<0x24, "cvt">;
137defm CVT_L   : FFR1_L_M<0x25, "cvt">;
138
139def CVT_S_W : FFR1<0x20, 20, "cvt", "s.w", FGR32, FGR32>;
140
141let Predicates = [NotFP64bit] in {
142  def CVT_S_D32 : FFR1<0x20, 17, "cvt", "s.d", FGR32, AFGR64>;
143  def CVT_D32_W : FFR1<0x21, 20, "cvt", "d.w", AFGR64, FGR32>;
144  def CVT_D32_S : FFR1<0x21, 16, "cvt", "d.s", AFGR64, FGR32>;
145}
146
147let Predicates = [IsFP64bit] in {
148 def CVT_S_D64 : FFR1<0x20, 17, "cvt", "s.d", FGR32, FGR64>;
149 def CVT_S_L   : FFR1<0x20, 21, "cvt", "s.l", FGR32, FGR64>;
150 def CVT_D64_W : FFR1<0x21, 20, "cvt", "d.w", FGR64, FGR32>;
151 def CVT_D64_S : FFR1<0x21, 16, "cvt", "d.s", FGR64, FGR32>;
152 def CVT_D64_L : FFR1<0x21, 21, "cvt", "d.l", FGR64, FGR64>;
153}
154
155defm FABS    : FFR1P_M<0x5, "abs",  fabs>;
156defm FNEG    : FFR1P_M<0x7, "neg",  fneg>;
157defm FSQRT   : FFR1P_M<0x4, "sqrt", fsqrt>;
158
159// The odd-numbered registers are only referenced when doing loads,
160// stores, and moves between floating-point and integer registers.
161// When defining instructions, we reference all 32-bit registers,
162// regardless of register aliasing.
163
164class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
165             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
166  bits<5> rt;
167  let ft = rt;
168  let fd = 0;
169}
170
171/// Move Control Registers From/To CPU Registers
172def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
173                  "cfc1\t$rt, $fs", []>;
174
175def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
176                  "ctc1\t$rt, $fs", []>;
177
178def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
179                  "mfc1\t$rt, $fs",
180                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
181
182def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
183                  "mtc1\t$rt, $fs",
184                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
185
186def FMOV_S   : FFR1<0x6, 16, "mov", "s", FGR32, FGR32>;
187def FMOV_D32 : FFR1<0x6, 17, "mov", "d", AFGR64, AFGR64>,
188               Requires<[NotFP64bit]>;
189def FMOV_D64 : FFR1<0x6, 17, "mov", "d", FGR64, FGR64>,
190               Requires<[IsFP64bit]>;
191
192/// Floating Point Memory Instructions
193let Predicates = [IsN64] in {
194  def LWC1_P8   : FPLoad<0x31, "lwc1", load, FGR32, mem64>;
195  def SWC1_P8   : FPStore<0x39, "swc1", store, FGR32, mem64>;
196  def LDC164_P8 : FPLoad<0x35, "ldc1", load, FGR64, mem64>;
197  def SDC164_P8 : FPStore<0x3d, "sdc1", store, FGR64, mem64>;
198}
199
200let Predicates = [NotN64] in {
201  def LWC1   : FPLoad<0x31, "lwc1", load, FGR32, mem>;
202  def SWC1   : FPStore<0x39, "swc1", store, FGR32, mem>;
203  let Predicates = [HasMips64] in {
204    def LDC164 : FPLoad<0x35, "ldc1", load, FGR64, mem>;
205    def SDC164 : FPStore<0x3d, "sdc1", store, FGR64, mem>;
206  }
207  let Predicates = [NotMips64] in {
208    def LDC1   : FPLoad<0x35, "ldc1", load, AFGR64, mem>;
209    def SDC1   : FPStore<0x3d, "sdc1", store, AFGR64, mem>;
210  }
211}
212
213/// Floating-point Aritmetic
214defm FADD : FFR2P_M<0x00, "add", fadd, 1>;
215defm FDIV : FFR2P_M<0x03, "div", fdiv>;
216defm FMUL : FFR2P_M<0x02, "mul", fmul, 1>;
217defm FSUB : FFR2P_M<0x01, "sub", fsub>;
218
219//===----------------------------------------------------------------------===//
220// Floating Point Branch Codes
221//===----------------------------------------------------------------------===//
222// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
223// They must be kept in synch.
224def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
225def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;
226
227/// Floating Point Branch of False/True (Likely)
228let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
229  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
230      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
231        [(MipsFPBrcond op, bb:$dst)]> {
232  let Inst{20-18} = 0;
233  let Inst{17} = nd;
234  let Inst{16} = tf;
235}
236
237def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
238def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
239
240//===----------------------------------------------------------------------===//
241// Floating Point Flag Conditions
242//===----------------------------------------------------------------------===//
243// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
244// They must be kept in synch.
245def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
246def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
247def MIPS_FCOND_OEQ  : PatLeaf<(i32 2)>;
248def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
249def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
250def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
251def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
252def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
253def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
254def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
255def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
256def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
257def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
258def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
259def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
260def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;
261
262/// Floating Point Compare
263let Defs=[FCR31] in {
264  def FCMP_S32 : FCC<0x10, (outs), (ins FGR32:$fs, FGR32:$ft, condcode:$cc),
265                     "c.$cc.s\t$fs, $ft",
266                     [(MipsFPCmp FGR32:$fs, FGR32:$ft, imm:$cc)]>;
267
268  def FCMP_D32 : FCC<0x11, (outs), (ins AFGR64:$fs, AFGR64:$ft, condcode:$cc),
269                     "c.$cc.d\t$fs, $ft",
270                     [(MipsFPCmp AFGR64:$fs, AFGR64:$ft, imm:$cc)]>,
271                     Requires<[NotFP64bit]>;
272}
273
274
275// Conditional moves:
276// These instructions are expanded in
277// MipsISelLowering::EmitInstrWithCustomInserter if target does not have
278// conditional move instructions.
279// flag:int, data:float
280let usesCustomInserter = 1, Constraints = "$F = $dst" in
281class CondMovIntFP<RegisterClass RC, bits<5> fmt, bits<6> func,
282                   string instr_asm> :
283  FFR<0x11, func, fmt, (outs RC:$dst), (ins RC:$T, CPURegs:$cond, RC:$F),
284      !strconcat(instr_asm, "\t$dst, $T, $cond"), []>;
285
286def MOVZ_S : CondMovIntFP<FGR32, 16, 18, "movz.s">;
287def MOVN_S : CondMovIntFP<FGR32, 16, 19, "movn.s">;
288
289let Predicates = [NotFP64bit] in {
290  def MOVZ_D : CondMovIntFP<AFGR64, 17, 18, "movz.d">;
291  def MOVN_D : CondMovIntFP<AFGR64, 17, 19, "movn.d">;
292}
293
294defm : MovzPats<FGR32, MOVZ_S>;
295defm : MovnPats<FGR32, MOVN_S>;
296
297let Predicates = [NotFP64bit] in {
298  defm : MovzPats<AFGR64, MOVZ_D>;
299  defm : MovnPats<AFGR64, MOVN_D>;
300}
301
302let cc = 0, usesCustomInserter = 1, Uses = [FCR31],
303    Constraints = "$F = $dst" in {
304// flag:float, data:int
305class CondMovFPInt<SDNode cmov, bits<1> tf, string instr_asm> :
306  FCMOV<tf, (outs CPURegs:$dst), (ins CPURegs:$T, CPURegs:$F),
307        !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
308        [(set CPURegs:$dst, (cmov CPURegs:$T, CPURegs:$F))]>;
309
310// flag:float, data:float
311let cc = 0 in
312class CondMovFPFP<RegisterClass RC, SDNode cmov, bits<5> fmt, bits<1> tf,
313                  string instr_asm> :
314  FFCMOV<fmt, tf, (outs RC:$dst), (ins RC:$T, RC:$F),
315         !strconcat(instr_asm, "\t$dst, $T, $$fcc0"),
316         [(set RC:$dst, (cmov RC:$T, RC:$F))]>;
317}
318
319def MOVT : CondMovFPInt<MipsCMovFP_T, 1, "movt">;
320def MOVF : CondMovFPInt<MipsCMovFP_F, 0, "movf">;
321def MOVT_S : CondMovFPFP<FGR32, MipsCMovFP_T, 16, 1, "movt.s">;
322def MOVF_S : CondMovFPFP<FGR32, MipsCMovFP_F, 16, 0, "movf.s">;
323
324let Predicates = [NotFP64bit] in {
325  def MOVT_D : CondMovFPFP<AFGR64, MipsCMovFP_T, 17, 1, "movt.d">;
326  def MOVF_D : CondMovFPFP<AFGR64, MipsCMovFP_F, 17, 0, "movf.d">;
327}
328
329//===----------------------------------------------------------------------===//
330// Floating Point Pseudo-Instructions
331//===----------------------------------------------------------------------===//
332def MOVCCRToCCR : MipsPseudo<(outs CCR:$dst), (ins CCR:$src),
333                             "# MOVCCRToCCR", []>;
334
335// This pseudo instr gets expanded into 2 mtc1 instrs after register
336// allocation.
337def BuildPairF64 :
338  MipsPseudo<(outs AFGR64:$dst),
339             (ins CPURegs:$lo, CPURegs:$hi), "",
340             [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;
341
342// This pseudo instr gets expanded into 2 mfc1 instrs after register
343// allocation.
344// if n is 0, lower part of src is extracted.
345// if n is 1, higher part of src is extracted.
346def ExtractElementF64 :
347  MipsPseudo<(outs CPURegs:$dst),
348             (ins AFGR64:$src, i32imm:$n), "",
349             [(set CPURegs:$dst,
350               (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
351
352//===----------------------------------------------------------------------===//
353// Floating Point Patterns
354//===----------------------------------------------------------------------===//
355def fpimm0 : PatLeaf<(fpimm), [{
356  return N->isExactlyValue(+0.0);
357}]>;
358
359def fpimm0neg : PatLeaf<(fpimm), [{
360  return N->isExactlyValue(-0.0);
361}]>;
362
363def : Pat<(f32 fpimm0), (MTC1 ZERO)>;
364def : Pat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
365
366def : Pat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
367def : Pat<(f64 (sint_to_fp CPURegs:$src)), (CVT_D32_W (MTC1 CPURegs:$src))>;
368
369def : Pat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
370def : Pat<(i32 (fp_to_sint AFGR64:$src)), (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
371
372let Predicates = [NotFP64bit] in {
373  def : Pat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
374  def : Pat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
375}
376
377