1//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the X86-32 and X86-64
11// architectures.
12//
13//===----------------------------------------------------------------------===//
14
15/// CCIfSubtarget - Match if the current subtarget has a feature F.
16class CCIfSubtarget<string F, CCAction A>
17 : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
18
19//===----------------------------------------------------------------------===//
20// Return Value Calling Conventions
21//===----------------------------------------------------------------------===//
22
23// Return-value conventions common to all X86 CC's.
24def RetCC_X86Common : CallingConv<[
25  // Scalar values are returned in AX first, then DX.  For i8, the ABI
26  // requires the values to be in AL and AH, however this code uses AL and DL
27  // instead. This is because using AH for the second register conflicts with
28  // the way LLVM does multiple return values -- a return of {i16,i8} would end
29  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
30  // for functions that return two i8 values are currently expected to pack the
31  // values into an i16 (which uses AX, and thus AL:AH).
32  CCIfType<[i8] , CCAssignToReg<[AL, DL]>>,
33  CCIfType<[i16], CCAssignToReg<[AX, DX]>>,
34  CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
35  CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
36
37  // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
38  // can only be used by ABI non-compliant code. If the target doesn't have XMM
39  // registers, it won't have vector types.
40  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
41            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
42
43  // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
44  // can only be used by ABI non-compliant code. This vector type is only
45  // supported while using the AVX target feature.
46  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
47            CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
48
49  // MMX vector types are always returned in MM0. If the target doesn't have
50  // MM0, it doesn't support these vector types.
51  CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
52
53  // Long double types are always returned in ST0 (even with SSE).
54  CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
55]>;
56
57// X86-32 C return-value convention.
58def RetCC_X86_32_C : CallingConv<[
59  // The X86-32 calling convention returns FP values in ST0, unless marked
60  // with "inreg" (used here to distinguish one kind of reg from another,
61  // weirdly; this is really the sse-regparm calling convention) in which
62  // case they use XMM0, otherwise it is the same as the common X86 calling
63  // conv.
64  CCIfInReg<CCIfSubtarget<"hasXMMInt()",
65    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
66  CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
67  CCDelegateTo<RetCC_X86Common>
68]>;
69
70// X86-32 FastCC return-value convention.
71def RetCC_X86_32_Fast : CallingConv<[
72  // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
73  // SSE2.
74  // This can happen when a float, 2 x float, or 3 x float vector is split by
75  // target lowering, and is returned in 1-3 sse regs.
76  CCIfType<[f32], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
77  CCIfType<[f64], CCIfSubtarget<"hasXMMInt()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
78
79  // For integers, ECX can be used as an extra return register
80  CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
81  CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
82  CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
83
84  // Otherwise, it is the same as the common X86 calling convention.
85  CCDelegateTo<RetCC_X86Common>
86]>;
87
88// X86-64 C return-value convention.
89def RetCC_X86_64_C : CallingConv<[
90  // The X86-64 calling convention always returns FP values in XMM0.
91  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
92  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
93
94  // MMX vector types are always returned in XMM0.
95  CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
96  CCDelegateTo<RetCC_X86Common>
97]>;
98
99// X86-Win64 C return-value convention.
100def RetCC_X86_Win64_C : CallingConv<[
101  // The X86-Win64 calling convention always returns __m64 values in RAX.
102  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
103
104  // Otherwise, everything is the same as 'normal' X86-64 C CC.
105  CCDelegateTo<RetCC_X86_64_C>
106]>;
107
108
109// This is the root return-value convention for the X86-32 backend.
110def RetCC_X86_32 : CallingConv<[
111  // If FastCC, use RetCC_X86_32_Fast.
112  CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
113  // Otherwise, use RetCC_X86_32_C.
114  CCDelegateTo<RetCC_X86_32_C>
115]>;
116
117// This is the root return-value convention for the X86-64 backend.
118def RetCC_X86_64 : CallingConv<[
119  // Mingw64 and native Win64 use Win64 CC
120  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
121
122  // Otherwise, drop to normal X86-64 CC
123  CCDelegateTo<RetCC_X86_64_C>
124]>;
125
126// This is the return-value convention used for the entire X86 backend.
127def RetCC_X86 : CallingConv<[
128  CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
129  CCDelegateTo<RetCC_X86_32>
130]>;
131
132//===----------------------------------------------------------------------===//
133// X86-64 Argument Calling Conventions
134//===----------------------------------------------------------------------===//
135
136def CC_X86_64_C : CallingConv<[
137  // Handles byval parameters.
138  CCIfByVal<CCPassByVal<8, 8>>,
139
140  // Promote i8/i16 arguments to i32.
141  CCIfType<[i8, i16], CCPromoteToType<i32>>,
142
143  // The 'nest' parameter, if any, is passed in R10.
144  CCIfNest<CCAssignToReg<[R10]>>,
145
146  // The first 6 integer arguments are passed in integer registers.
147  CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
148  CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
149
150  // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
151  CCIfType<[x86mmx],
152            CCIfSubtarget<"isTargetDarwin()",
153            CCIfSubtarget<"hasXMMInt()",
154            CCPromoteToType<v2i64>>>>,
155
156  // The first 8 FP/Vector arguments are passed in XMM registers.
157  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
158            CCIfSubtarget<"hasXMM()",
159            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
160
161  // The first 8 256-bit vector arguments are passed in YMM registers.
162  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
163            CCIfSubtarget<"hasAVX()",
164            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7]>>>,
165
166  // Integer/FP values get stored in stack slots that are 8 bytes in size and
167  // 8-byte aligned if there are no more registers to hold them.
168  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
169
170  // Long doubles get stack slots whose size and alignment depends on the
171  // subtarget.
172  CCIfType<[f80], CCAssignToStack<0, 0>>,
173
174  // Vectors get 16-byte stack slots that are 16-byte aligned.
175  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
176
177  // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
178  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
179           CCAssignToStack<32, 32>>
180]>;
181
182// Calling convention used on Win64
183def CC_X86_Win64_C : CallingConv<[
184  // FIXME: Handle byval stuff.
185  // FIXME: Handle varargs.
186
187  // Promote i8/i16 arguments to i32.
188  CCIfType<[i8, i16], CCPromoteToType<i32>>,
189
190  // The 'nest' parameter, if any, is passed in R10.
191  CCIfNest<CCAssignToReg<[R10]>>,
192
193  // 128 bit vectors are passed by pointer
194  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
195
196  // The first 4 MMX vector arguments are passed in GPRs.
197  CCIfType<[x86mmx], CCBitConvertToType<i64>>,
198
199  // The first 4 integer arguments are passed in integer registers.
200  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
201                                          [XMM0, XMM1, XMM2, XMM3]>>,
202
203  // Do not pass the sret argument in RCX, the Win64 thiscall calling
204  // convention requires "this" to be passed in RCX.
205  CCIfCC<"CallingConv::X86_ThisCall",
206    CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
207                                                     [XMM1, XMM2, XMM3]>>>>,
208
209  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
210                                          [XMM0, XMM1, XMM2, XMM3]>>,
211
212  // The first 4 FP/Vector arguments are passed in XMM registers.
213  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
214           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
215                                   [RCX , RDX , R8  , R9  ]>>,
216
217  // Integer/FP values get stored in stack slots that are 8 bytes in size and
218  // 8-byte aligned if there are no more registers to hold them.
219  CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
220
221  // Long doubles get stack slots whose size and alignment depends on the
222  // subtarget.
223  CCIfType<[f80], CCAssignToStack<0, 0>>
224]>;
225
226def CC_X86_64_GHC : CallingConv<[
227  // Promote i8/i16/i32 arguments to i64.
228  CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
229
230  // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
231  CCIfType<[i64],
232            CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
233
234  // Pass in STG registers: F1, F2, F3, F4, D1, D2
235  CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
236            CCIfSubtarget<"hasXMM()",
237            CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
238]>;
239
240//===----------------------------------------------------------------------===//
241// X86 C Calling Convention
242//===----------------------------------------------------------------------===//
243
244/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
245/// values are spilled on the stack, and the first 4 vector values go in XMM
246/// regs.
247def CC_X86_32_Common : CallingConv<[
248  // Handles byval parameters.
249  CCIfByVal<CCPassByVal<4, 4>>,
250
251  // The first 3 float or double arguments, if marked 'inreg' and if the call
252  // is not a vararg call and if SSE2 is available, are passed in SSE registers.
253  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
254                CCIfSubtarget<"hasXMMInt()",
255                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
256
257  // The first 3 __m64 vector arguments are passed in mmx registers if the
258  // call is not a vararg call.
259  CCIfNotVarArg<CCIfType<[x86mmx],
260                CCAssignToReg<[MM0, MM1, MM2]>>>,
261
262  // Integer/Float values get stored in stack slots that are 4 bytes in
263  // size and 4-byte aligned.
264  CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
265
266  // Doubles get 8-byte slots that are 4-byte aligned.
267  CCIfType<[f64], CCAssignToStack<8, 4>>,
268
269  // Long doubles get slots whose size depends on the subtarget.
270  CCIfType<[f80], CCAssignToStack<0, 4>>,
271
272  // The first 4 SSE vector arguments are passed in XMM registers.
273  CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
274                CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
275
276  // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
277  CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
278                CCIfSubtarget<"hasAVX()",
279                CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
280
281  // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
282  CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
283
284  // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
285  CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
286           CCAssignToStack<32, 32>>,
287
288  // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
289  // passed in the parameter area.
290  CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
291
292def CC_X86_32_C : CallingConv<[
293  // Promote i8/i16 arguments to i32.
294  CCIfType<[i8, i16], CCPromoteToType<i32>>,
295
296  // The 'nest' parameter, if any, is passed in ECX.
297  CCIfNest<CCAssignToReg<[ECX]>>,
298
299  // The first 3 integer arguments, if marked 'inreg' and if the call is not
300  // a vararg call, are passed in integer registers.
301  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
302
303  // Otherwise, same as everything else.
304  CCDelegateTo<CC_X86_32_Common>
305]>;
306
307def CC_X86_32_FastCall : CallingConv<[
308  // Promote i8/i16 arguments to i32.
309  CCIfType<[i8, i16], CCPromoteToType<i32>>,
310
311  // The 'nest' parameter, if any, is passed in EAX.
312  CCIfNest<CCAssignToReg<[EAX]>>,
313
314  // The first 2 integer arguments are passed in ECX/EDX
315  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
316
317  // Otherwise, same as everything else.
318  CCDelegateTo<CC_X86_32_Common>
319]>;
320
321def CC_X86_32_ThisCall : CallingConv<[
322  // Promote i8/i16 arguments to i32.
323  CCIfType<[i8, i16], CCPromoteToType<i32>>,
324
325  // The 'nest' parameter, if any, is passed in EAX.
326  CCIfNest<CCAssignToReg<[EAX]>>,
327
328  // The first integer argument is passed in ECX
329  CCIfType<[i32], CCAssignToReg<[ECX]>>,
330
331  // Otherwise, same as everything else.
332  CCDelegateTo<CC_X86_32_Common>
333]>;
334
335def CC_X86_32_FastCC : CallingConv<[
336  // Handles byval parameters.  Note that we can't rely on the delegation
337  // to CC_X86_32_Common for this because that happens after code that
338  // puts arguments in registers.
339  CCIfByVal<CCPassByVal<4, 4>>,
340
341  // Promote i8/i16 arguments to i32.
342  CCIfType<[i8, i16], CCPromoteToType<i32>>,
343
344  // The 'nest' parameter, if any, is passed in EAX.
345  CCIfNest<CCAssignToReg<[EAX]>>,
346
347  // The first 2 integer arguments are passed in ECX/EDX
348  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
349
350  // The first 3 float or double arguments, if the call is not a vararg
351  // call and if SSE2 is available, are passed in SSE registers.
352  CCIfNotVarArg<CCIfType<[f32,f64],
353                CCIfSubtarget<"hasXMMInt()",
354                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
355
356  // Doubles get 8-byte slots that are 8-byte aligned.
357  CCIfType<[f64], CCAssignToStack<8, 8>>,
358
359  // Otherwise, same as everything else.
360  CCDelegateTo<CC_X86_32_Common>
361]>;
362
363def CC_X86_32_GHC : CallingConv<[
364  // Promote i8/i16 arguments to i32.
365  CCIfType<[i8, i16], CCPromoteToType<i32>>,
366
367  // Pass in STG registers: Base, Sp, Hp, R1
368  CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
369]>;
370
371//===----------------------------------------------------------------------===//
372// X86 Root Argument Calling Conventions
373//===----------------------------------------------------------------------===//
374
375// This is the root argument convention for the X86-32 backend.
376def CC_X86_32 : CallingConv<[
377  CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
378  CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
379  CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
380  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
381
382  // Otherwise, drop to normal X86-32 CC
383  CCDelegateTo<CC_X86_32_C>
384]>;
385
386// This is the root argument convention for the X86-64 backend.
387def CC_X86_64 : CallingConv<[
388  CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
389
390  // Mingw64 and native Win64 use Win64 CC
391  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
392
393  // Otherwise, drop to normal X86-64 CC
394  CCDelegateTo<CC_X86_64_C>
395]>;
396
397// This is the argument convention used for the entire X86 backend.
398def CC_X86 : CallingConv<[
399  CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
400  CCDelegateTo<CC_X86_32>
401]>;
402