1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions.  This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #define DEBUG_TYPE "x86-codegen"
27 #include "X86.h"
28 #include "X86InstrInfo.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include <algorithm>
47 using namespace llvm;
48 
49 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
50 STATISTIC(NumFP  , "Number of floating point instructions");
51 
52 namespace {
53   struct FPS : public MachineFunctionPass {
54     static char ID;
FPS__anon45616d2d0111::FPS55     FPS() : MachineFunctionPass(ID) {
56       initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
57       // This is really only to keep valgrind quiet.
58       // The logic in isLive() is too much for it.
59       memset(Stack, 0, sizeof(Stack));
60       memset(RegMap, 0, sizeof(RegMap));
61     }
62 
getAnalysisUsage__anon45616d2d0111::FPS63     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64       AU.setPreservesCFG();
65       AU.addRequired<EdgeBundles>();
66       AU.addPreservedID(MachineLoopInfoID);
67       AU.addPreservedID(MachineDominatorsID);
68       MachineFunctionPass::getAnalysisUsage(AU);
69     }
70 
71     virtual bool runOnMachineFunction(MachineFunction &MF);
72 
getPassName__anon45616d2d0111::FPS73     virtual const char *getPassName() const { return "X86 FP Stackifier"; }
74 
75   private:
76     const TargetInstrInfo *TII; // Machine instruction info.
77 
78     // Two CFG edges are related if they leave the same block, or enter the same
79     // block. The transitive closure of an edge under this relation is a
80     // LiveBundle. It represents a set of CFG edges where the live FP stack
81     // registers must be allocated identically in the x87 stack.
82     //
83     // A LiveBundle is usually all the edges leaving a block, or all the edges
84     // entering a block, but it can contain more edges if critical edges are
85     // present.
86     //
87     // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
88     // but the exact mapping of FP registers to stack slots is fixed later.
89     struct LiveBundle {
90       // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
91       unsigned Mask;
92 
93       // Number of pre-assigned live registers in FixStack. This is 0 when the
94       // stack order has not yet been fixed.
95       unsigned FixCount;
96 
97       // Assigned stack order for live-in registers.
98       // FixStack[i] == getStackEntry(i) for all i < FixCount.
99       unsigned char FixStack[8];
100 
LiveBundle__anon45616d2d0111::FPS::LiveBundle101       LiveBundle() : Mask(0), FixCount(0) {}
102 
103       // Have the live registers been assigned a stack order yet?
isFixed__anon45616d2d0111::FPS::LiveBundle104       bool isFixed() const { return !Mask || FixCount; }
105     };
106 
107     // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
108     // with no live FP registers.
109     SmallVector<LiveBundle, 8> LiveBundles;
110 
111     // The edge bundle analysis provides indices into the LiveBundles vector.
112     EdgeBundles *Bundles;
113 
114     // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anon45616d2d0111::FPS115     unsigned calcLiveInMask(MachineBasicBlock *MBB) {
116       unsigned Mask = 0;
117       for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
118            E = MBB->livein_end(); I != E; ++I) {
119         unsigned Reg = *I - X86::FP0;
120         if (Reg < 8)
121           Mask |= 1 << Reg;
122       }
123       return Mask;
124     }
125 
126     // Partition all the CFG edges into LiveBundles.
127     void bundleCFG(MachineFunction &MF);
128 
129     MachineBasicBlock *MBB;     // Current basic block
130 
131     // The hardware keeps track of how many FP registers are live, so we have
132     // to model that exactly. Usually, each live register corresponds to an
133     // FP<n> register, but when dealing with calls, returns, and inline
134     // assembly, it is sometimes neccesary to have live scratch registers.
135     unsigned Stack[8];          // FP<n> Registers in each stack slot...
136     unsigned StackTop;          // The current top of the FP stack.
137 
138     enum {
139       NumFPRegs = 16            // Including scratch pseudo-registers.
140     };
141 
142     // For each live FP<n> register, point to its Stack[] entry.
143     // The first entries correspond to FP0-FP6, the rest are scratch registers
144     // used when we need slightly different live registers than what the
145     // register allocator thinks.
146     unsigned RegMap[NumFPRegs];
147 
148     // Pending fixed registers - Inline assembly needs FP registers to appear
149     // in fixed stack slot positions. This is handled by copying FP registers
150     // to ST registers before the instruction, and copying back after the
151     // instruction.
152     //
153     // This is modeled with pending ST registers. NumPendingSTs is the number
154     // of ST registers (ST0-STn) we are tracking. PendingST[n] points to an FP
155     // register that holds the ST value. The ST registers are not moved into
156     // place until immediately before the instruction that needs them.
157     //
158     // It can happen that we need an ST register to be live when no FP register
159     // holds the value:
160     //
161     //   %ST0 = COPY %FP4<kill>
162     //
163     // When that happens, we allocate a scratch FP register to hold the ST
164     // value. That means every register in PendingST must be live.
165 
166     unsigned NumPendingSTs;
167     unsigned char PendingST[8];
168 
169     // Set up our stack model to match the incoming registers to MBB.
170     void setupBlockStack();
171 
172     // Shuffle live registers to match the expectations of successor blocks.
173     void finishBlockStack();
174 
dumpStack__anon45616d2d0111::FPS175     void dumpStack() const {
176       dbgs() << "Stack contents:";
177       for (unsigned i = 0; i != StackTop; ++i) {
178         dbgs() << " FP" << Stack[i];
179         assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
180       }
181       for (unsigned i = 0; i != NumPendingSTs; ++i)
182         dbgs() << ", ST" << i << " in FP" << unsigned(PendingST[i]);
183       dbgs() << "\n";
184     }
185 
186     /// getSlot - Return the stack slot number a particular register number is
187     /// in.
getSlot__anon45616d2d0111::FPS188     unsigned getSlot(unsigned RegNo) const {
189       assert(RegNo < NumFPRegs && "Regno out of range!");
190       return RegMap[RegNo];
191     }
192 
193     /// isLive - Is RegNo currently live in the stack?
isLive__anon45616d2d0111::FPS194     bool isLive(unsigned RegNo) const {
195       unsigned Slot = getSlot(RegNo);
196       return Slot < StackTop && Stack[Slot] == RegNo;
197     }
198 
199     /// getScratchReg - Return an FP register that is not currently in use.
getScratchReg__anon45616d2d0111::FPS200     unsigned getScratchReg() {
201       for (int i = NumFPRegs - 1; i >= 8; --i)
202         if (!isLive(i))
203           return i;
204       llvm_unreachable("Ran out of scratch FP registers");
205     }
206 
207     /// isScratchReg - Returns trus if RegNo is a scratch FP register.
isScratchReg__anon45616d2d0111::FPS208     bool isScratchReg(unsigned RegNo) {
209       return RegNo > 8 && RegNo < NumFPRegs;
210     }
211 
212     /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anon45616d2d0111::FPS213     unsigned getStackEntry(unsigned STi) const {
214       if (STi >= StackTop)
215         report_fatal_error("Access past stack top!");
216       return Stack[StackTop-1-STi];
217     }
218 
219     /// getSTReg - Return the X86::ST(i) register which contains the specified
220     /// FP<RegNo> register.
getSTReg__anon45616d2d0111::FPS221     unsigned getSTReg(unsigned RegNo) const {
222       return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
223     }
224 
225     // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anon45616d2d0111::FPS226     void pushReg(unsigned Reg) {
227       assert(Reg < NumFPRegs && "Register number out of range!");
228       if (StackTop >= 8)
229         report_fatal_error("Stack overflow!");
230       Stack[StackTop] = Reg;
231       RegMap[Reg] = StackTop++;
232     }
233 
isAtTop__anon45616d2d0111::FPS234     bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anon45616d2d0111::FPS235     void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
236       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
237       if (isAtTop(RegNo)) return;
238 
239       unsigned STReg = getSTReg(RegNo);
240       unsigned RegOnTop = getStackEntry(0);
241 
242       // Swap the slots the regs are in.
243       std::swap(RegMap[RegNo], RegMap[RegOnTop]);
244 
245       // Swap stack slot contents.
246       if (RegMap[RegOnTop] >= StackTop)
247         report_fatal_error("Access past stack top!");
248       std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
249 
250       // Emit an fxch to update the runtime processors version of the state.
251       BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
252       ++NumFXCH;
253     }
254 
duplicateToTop__anon45616d2d0111::FPS255     void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
256       DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
257       unsigned STReg = getSTReg(RegNo);
258       pushReg(AsReg);   // New register on top of stack
259 
260       BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
261     }
262 
263     /// duplicatePendingSTBeforeKill - The instruction at I is about to kill
264     /// RegNo. If any PendingST registers still need the RegNo value, duplicate
265     /// them to new scratch registers.
duplicatePendingSTBeforeKill__anon45616d2d0111::FPS266     void duplicatePendingSTBeforeKill(unsigned RegNo, MachineInstr *I) {
267       for (unsigned i = 0; i != NumPendingSTs; ++i) {
268         if (PendingST[i] != RegNo)
269           continue;
270         unsigned SR = getScratchReg();
271         DEBUG(dbgs() << "Duplicating pending ST" << i
272                      << " in FP" << RegNo << " to FP" << SR << '\n');
273         duplicateToTop(RegNo, SR, I);
274         PendingST[i] = SR;
275       }
276     }
277 
278     /// popStackAfter - Pop the current value off of the top of the FP stack
279     /// after the specified instruction.
280     void popStackAfter(MachineBasicBlock::iterator &I);
281 
282     /// freeStackSlotAfter - Free the specified register from the register
283     /// stack, so that it is no longer in a register.  If the register is
284     /// currently at the top of the stack, we just pop the current instruction,
285     /// otherwise we store the current top-of-stack into the specified slot,
286     /// then pop the top of stack.
287     void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
288 
289     /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
290     /// instruction.
291     MachineBasicBlock::iterator
292     freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
293 
294     /// Adjust the live registers to be the set in Mask.
295     void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
296 
297     /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
298     /// st(0), FP reg FixStack[1] is st(1) etc.
299     void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
300                          MachineBasicBlock::iterator I);
301 
302     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
303 
304     void handleZeroArgFP(MachineBasicBlock::iterator &I);
305     void handleOneArgFP(MachineBasicBlock::iterator &I);
306     void handleOneArgFPRW(MachineBasicBlock::iterator &I);
307     void handleTwoArgFP(MachineBasicBlock::iterator &I);
308     void handleCompareFP(MachineBasicBlock::iterator &I);
309     void handleCondMovFP(MachineBasicBlock::iterator &I);
310     void handleSpecialFP(MachineBasicBlock::iterator &I);
311 
312     // Check if a COPY instruction is using FP registers.
isFPCopy__anon45616d2d0111::FPS313     bool isFPCopy(MachineInstr *MI) {
314       unsigned DstReg = MI->getOperand(0).getReg();
315       unsigned SrcReg = MI->getOperand(1).getReg();
316 
317       return X86::RFP80RegClass.contains(DstReg) ||
318         X86::RFP80RegClass.contains(SrcReg);
319     }
320   };
321   char FPS::ID = 0;
322 }
323 
createX86FloatingPointStackifierPass()324 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
325 
326 /// getFPReg - Return the X86::FPx register number for the specified operand.
327 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)328 static unsigned getFPReg(const MachineOperand &MO) {
329   assert(MO.isReg() && "Expected an FP register!");
330   unsigned Reg = MO.getReg();
331   assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
332   return Reg - X86::FP0;
333 }
334 
335 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
336 /// register references into FP stack references.
337 ///
runOnMachineFunction(MachineFunction & MF)338 bool FPS::runOnMachineFunction(MachineFunction &MF) {
339   // We only need to run this pass if there are any FP registers used in this
340   // function.  If it is all integer, there is nothing for us to do!
341   bool FPIsUsed = false;
342 
343   assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
344   for (unsigned i = 0; i <= 6; ++i)
345     if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
346       FPIsUsed = true;
347       break;
348     }
349 
350   // Early exit.
351   if (!FPIsUsed) return false;
352 
353   Bundles = &getAnalysis<EdgeBundles>();
354   TII = MF.getTarget().getInstrInfo();
355 
356   // Prepare cross-MBB liveness.
357   bundleCFG(MF);
358 
359   StackTop = 0;
360 
361   // Process the function in depth first order so that we process at least one
362   // of the predecessors for every reachable block in the function.
363   SmallPtrSet<MachineBasicBlock*, 8> Processed;
364   MachineBasicBlock *Entry = MF.begin();
365 
366   bool Changed = false;
367   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
368          I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
369        I != E; ++I)
370     Changed |= processBasicBlock(MF, **I);
371 
372   // Process any unreachable blocks in arbitrary order now.
373   if (MF.size() != Processed.size())
374     for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
375       if (Processed.insert(BB))
376         Changed |= processBasicBlock(MF, *BB);
377 
378   LiveBundles.clear();
379 
380   return Changed;
381 }
382 
383 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
384 /// live-out sets for the FP registers. Consistent means that the set of
385 /// registers live-out from a block is identical to the live-in set of all
386 /// successors. This is not enforced by the normal live-in lists since
387 /// registers may be implicitly defined, or not used by all successors.
bundleCFG(MachineFunction & MF)388 void FPS::bundleCFG(MachineFunction &MF) {
389   assert(LiveBundles.empty() && "Stale data in LiveBundles");
390   LiveBundles.resize(Bundles->getNumBundles());
391 
392   // Gather the actual live-in masks for all MBBs.
393   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
394     MachineBasicBlock *MBB = I;
395     const unsigned Mask = calcLiveInMask(MBB);
396     if (!Mask)
397       continue;
398     // Update MBB ingoing bundle mask.
399     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)].Mask |= Mask;
400   }
401 }
402 
403 /// processBasicBlock - Loop over all of the instructions in the basic block,
404 /// transforming FP instructions into their stack form.
405 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)406 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
407   bool Changed = false;
408   MBB = &BB;
409   NumPendingSTs = 0;
410 
411   setupBlockStack();
412 
413   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
414     MachineInstr *MI = I;
415     uint64_t Flags = MI->getDesc().TSFlags;
416 
417     unsigned FPInstClass = Flags & X86II::FPTypeMask;
418     if (MI->isInlineAsm())
419       FPInstClass = X86II::SpecialFP;
420 
421     if (MI->isCopy() && isFPCopy(MI))
422       FPInstClass = X86II::SpecialFP;
423 
424     if (MI->isImplicitDef() &&
425         X86::RFP80RegClass.contains(MI->getOperand(0).getReg()))
426       FPInstClass = X86II::SpecialFP;
427 
428     if (FPInstClass == X86II::NotFP)
429       continue;  // Efficiently ignore non-fp insts!
430 
431     MachineInstr *PrevMI = 0;
432     if (I != BB.begin())
433       PrevMI = prior(I);
434 
435     ++NumFP;  // Keep track of # of pseudo instrs
436     DEBUG(dbgs() << "\nFPInst:\t" << *MI);
437 
438     // Get dead variables list now because the MI pointer may be deleted as part
439     // of processing!
440     SmallVector<unsigned, 8> DeadRegs;
441     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442       const MachineOperand &MO = MI->getOperand(i);
443       if (MO.isReg() && MO.isDead())
444         DeadRegs.push_back(MO.getReg());
445     }
446 
447     switch (FPInstClass) {
448     case X86II::ZeroArgFP:  handleZeroArgFP(I); break;
449     case X86II::OneArgFP:   handleOneArgFP(I);  break;  // fstp ST(0)
450     case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
451     case X86II::TwoArgFP:   handleTwoArgFP(I);  break;
452     case X86II::CompareFP:  handleCompareFP(I); break;
453     case X86II::CondMovFP:  handleCondMovFP(I); break;
454     case X86II::SpecialFP:  handleSpecialFP(I); break;
455     default: llvm_unreachable("Unknown FP Type!");
456     }
457 
458     // Check to see if any of the values defined by this instruction are dead
459     // after definition.  If so, pop them.
460     for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461       unsigned Reg = DeadRegs[i];
462       if (Reg >= X86::FP0 && Reg <= X86::FP6) {
463         DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
464         freeStackSlotAfter(I, Reg-X86::FP0);
465       }
466     }
467 
468     // Print out all of the instructions expanded to if -debug
469     DEBUG(
470       MachineBasicBlock::iterator PrevI(PrevMI);
471       if (I == PrevI) {
472         dbgs() << "Just deleted pseudo instruction\n";
473       } else {
474         MachineBasicBlock::iterator Start = I;
475         // Rewind to first instruction newly inserted.
476         while (Start != BB.begin() && prior(Start) != PrevI) --Start;
477         dbgs() << "Inserted instructions:\n\t";
478         Start->print(dbgs(), &MF.getTarget());
479         while (++Start != llvm::next(I)) {}
480       }
481       dumpStack();
482     );
483     (void)PrevMI;
484 
485     Changed = true;
486   }
487 
488   finishBlockStack();
489 
490   return Changed;
491 }
492 
493 /// setupBlockStack - Use the live bundles to set up our model of the stack
494 /// to match predecessors' live out stack.
setupBlockStack()495 void FPS::setupBlockStack() {
496   DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
497                << " derived from " << MBB->getName() << ".\n");
498   StackTop = 0;
499   // Get the live-in bundle for MBB.
500   const LiveBundle &Bundle =
501     LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
502 
503   if (!Bundle.Mask) {
504     DEBUG(dbgs() << "Block has no FP live-ins.\n");
505     return;
506   }
507 
508   // Depth-first iteration should ensure that we always have an assigned stack.
509   assert(Bundle.isFixed() && "Reached block before any predecessors");
510 
511   // Push the fixed live-in registers.
512   for (unsigned i = Bundle.FixCount; i > 0; --i) {
513     MBB->addLiveIn(X86::ST0+i-1);
514     DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
515                  << unsigned(Bundle.FixStack[i-1]) << '\n');
516     pushReg(Bundle.FixStack[i-1]);
517   }
518 
519   // Kill off unwanted live-ins. This can happen with a critical edge.
520   // FIXME: We could keep these live registers around as zombies. They may need
521   // to be revived at the end of a short block. It might save a few instrs.
522   adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
523   DEBUG(MBB->dump());
524 }
525 
526 /// finishBlockStack - Revive live-outs that are implicitly defined out of
527 /// MBB. Shuffle live registers to match the expected fixed stack of any
528 /// predecessors, and ensure that all predecessors are expecting the same
529 /// stack.
finishBlockStack()530 void FPS::finishBlockStack() {
531   // The RET handling below takes care of return blocks for us.
532   if (MBB->succ_empty())
533     return;
534 
535   DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
536                << " derived from " << MBB->getName() << ".\n");
537 
538   // Get MBB's live-out bundle.
539   unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
540   LiveBundle &Bundle = LiveBundles[BundleIdx];
541 
542   // We may need to kill and define some registers to match successors.
543   // FIXME: This can probably be combined with the shuffle below.
544   MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
545   adjustLiveRegs(Bundle.Mask, Term);
546 
547   if (!Bundle.Mask) {
548     DEBUG(dbgs() << "No live-outs.\n");
549     return;
550   }
551 
552   // Has the stack order been fixed yet?
553   DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
554   if (Bundle.isFixed()) {
555     DEBUG(dbgs() << "Shuffling stack to match.\n");
556     shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
557   } else {
558     // Not fixed yet, we get to choose.
559     DEBUG(dbgs() << "Fixing stack order now.\n");
560     Bundle.FixCount = StackTop;
561     for (unsigned i = 0; i < StackTop; ++i)
562       Bundle.FixStack[i] = getStackEntry(i);
563   }
564 }
565 
566 
567 //===----------------------------------------------------------------------===//
568 // Efficient Lookup Table Support
569 //===----------------------------------------------------------------------===//
570 
571 namespace {
572   struct TableEntry {
573     unsigned from;
574     unsigned to;
operator <__anon45616d2d0311::TableEntry575     bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)576     friend bool operator<(const TableEntry &TE, unsigned V) {
577       return TE.from < V;
578     }
operator <(unsigned V,const TableEntry & TE)579     friend bool LLVM_ATTRIBUTE_USED operator<(unsigned V,
580                                               const TableEntry &TE) {
581       return V < TE.from;
582     }
583   };
584 }
585 
586 #ifndef NDEBUG
TableIsSorted(const TableEntry * Table,unsigned NumEntries)587 static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
588   for (unsigned i = 0; i != NumEntries-1; ++i)
589     if (!(Table[i] < Table[i+1])) return false;
590   return true;
591 }
592 #endif
593 
Lookup(const TableEntry * Table,unsigned N,unsigned Opcode)594 static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
595   const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
596   if (I != Table+N && I->from == Opcode)
597     return I->to;
598   return -1;
599 }
600 
601 #ifdef NDEBUG
602 #define ASSERT_SORTED(TABLE)
603 #else
604 #define ASSERT_SORTED(TABLE)                                              \
605   { static bool TABLE##Checked = false;                                   \
606     if (!TABLE##Checked) {                                                \
607        assert(TableIsSorted(TABLE, array_lengthof(TABLE)) &&              \
608               "All lookup tables must be sorted for efficient access!");  \
609        TABLE##Checked = true;                                             \
610     }                                                                     \
611   }
612 #endif
613 
614 //===----------------------------------------------------------------------===//
615 // Register File -> Register Stack Mapping Methods
616 //===----------------------------------------------------------------------===//
617 
618 // OpcodeTable - Sorted map of register instructions to their stack version.
619 // The first element is an register file pseudo instruction, the second is the
620 // concrete X86 instruction which uses the register stack.
621 //
622 static const TableEntry OpcodeTable[] = {
623   { X86::ABS_Fp32     , X86::ABS_F     },
624   { X86::ABS_Fp64     , X86::ABS_F     },
625   { X86::ABS_Fp80     , X86::ABS_F     },
626   { X86::ADD_Fp32m    , X86::ADD_F32m  },
627   { X86::ADD_Fp64m    , X86::ADD_F64m  },
628   { X86::ADD_Fp64m32  , X86::ADD_F32m  },
629   { X86::ADD_Fp80m32  , X86::ADD_F32m  },
630   { X86::ADD_Fp80m64  , X86::ADD_F64m  },
631   { X86::ADD_FpI16m32 , X86::ADD_FI16m },
632   { X86::ADD_FpI16m64 , X86::ADD_FI16m },
633   { X86::ADD_FpI16m80 , X86::ADD_FI16m },
634   { X86::ADD_FpI32m32 , X86::ADD_FI32m },
635   { X86::ADD_FpI32m64 , X86::ADD_FI32m },
636   { X86::ADD_FpI32m80 , X86::ADD_FI32m },
637   { X86::CHS_Fp32     , X86::CHS_F     },
638   { X86::CHS_Fp64     , X86::CHS_F     },
639   { X86::CHS_Fp80     , X86::CHS_F     },
640   { X86::CMOVBE_Fp32  , X86::CMOVBE_F  },
641   { X86::CMOVBE_Fp64  , X86::CMOVBE_F  },
642   { X86::CMOVBE_Fp80  , X86::CMOVBE_F  },
643   { X86::CMOVB_Fp32   , X86::CMOVB_F   },
644   { X86::CMOVB_Fp64   , X86::CMOVB_F  },
645   { X86::CMOVB_Fp80   , X86::CMOVB_F  },
646   { X86::CMOVE_Fp32   , X86::CMOVE_F  },
647   { X86::CMOVE_Fp64   , X86::CMOVE_F   },
648   { X86::CMOVE_Fp80   , X86::CMOVE_F   },
649   { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
650   { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
651   { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
652   { X86::CMOVNB_Fp32  , X86::CMOVNB_F  },
653   { X86::CMOVNB_Fp64  , X86::CMOVNB_F  },
654   { X86::CMOVNB_Fp80  , X86::CMOVNB_F  },
655   { X86::CMOVNE_Fp32  , X86::CMOVNE_F  },
656   { X86::CMOVNE_Fp64  , X86::CMOVNE_F  },
657   { X86::CMOVNE_Fp80  , X86::CMOVNE_F  },
658   { X86::CMOVNP_Fp32  , X86::CMOVNP_F  },
659   { X86::CMOVNP_Fp64  , X86::CMOVNP_F  },
660   { X86::CMOVNP_Fp80  , X86::CMOVNP_F  },
661   { X86::CMOVP_Fp32   , X86::CMOVP_F   },
662   { X86::CMOVP_Fp64   , X86::CMOVP_F   },
663   { X86::CMOVP_Fp80   , X86::CMOVP_F   },
664   { X86::COS_Fp32     , X86::COS_F     },
665   { X86::COS_Fp64     , X86::COS_F     },
666   { X86::COS_Fp80     , X86::COS_F     },
667   { X86::DIVR_Fp32m   , X86::DIVR_F32m },
668   { X86::DIVR_Fp64m   , X86::DIVR_F64m },
669   { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
670   { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
671   { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
672   { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
673   { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
674   { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
675   { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
676   { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
677   { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
678   { X86::DIV_Fp32m    , X86::DIV_F32m  },
679   { X86::DIV_Fp64m    , X86::DIV_F64m  },
680   { X86::DIV_Fp64m32  , X86::DIV_F32m  },
681   { X86::DIV_Fp80m32  , X86::DIV_F32m  },
682   { X86::DIV_Fp80m64  , X86::DIV_F64m  },
683   { X86::DIV_FpI16m32 , X86::DIV_FI16m },
684   { X86::DIV_FpI16m64 , X86::DIV_FI16m },
685   { X86::DIV_FpI16m80 , X86::DIV_FI16m },
686   { X86::DIV_FpI32m32 , X86::DIV_FI32m },
687   { X86::DIV_FpI32m64 , X86::DIV_FI32m },
688   { X86::DIV_FpI32m80 , X86::DIV_FI32m },
689   { X86::ILD_Fp16m32  , X86::ILD_F16m  },
690   { X86::ILD_Fp16m64  , X86::ILD_F16m  },
691   { X86::ILD_Fp16m80  , X86::ILD_F16m  },
692   { X86::ILD_Fp32m32  , X86::ILD_F32m  },
693   { X86::ILD_Fp32m64  , X86::ILD_F32m  },
694   { X86::ILD_Fp32m80  , X86::ILD_F32m  },
695   { X86::ILD_Fp64m32  , X86::ILD_F64m  },
696   { X86::ILD_Fp64m64  , X86::ILD_F64m  },
697   { X86::ILD_Fp64m80  , X86::ILD_F64m  },
698   { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
699   { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
700   { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
701   { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
702   { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
703   { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
704   { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
705   { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
706   { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
707   { X86::IST_Fp16m32  , X86::IST_F16m  },
708   { X86::IST_Fp16m64  , X86::IST_F16m  },
709   { X86::IST_Fp16m80  , X86::IST_F16m  },
710   { X86::IST_Fp32m32  , X86::IST_F32m  },
711   { X86::IST_Fp32m64  , X86::IST_F32m  },
712   { X86::IST_Fp32m80  , X86::IST_F32m  },
713   { X86::IST_Fp64m32  , X86::IST_FP64m },
714   { X86::IST_Fp64m64  , X86::IST_FP64m },
715   { X86::IST_Fp64m80  , X86::IST_FP64m },
716   { X86::LD_Fp032     , X86::LD_F0     },
717   { X86::LD_Fp064     , X86::LD_F0     },
718   { X86::LD_Fp080     , X86::LD_F0     },
719   { X86::LD_Fp132     , X86::LD_F1     },
720   { X86::LD_Fp164     , X86::LD_F1     },
721   { X86::LD_Fp180     , X86::LD_F1     },
722   { X86::LD_Fp32m     , X86::LD_F32m   },
723   { X86::LD_Fp32m64   , X86::LD_F32m   },
724   { X86::LD_Fp32m80   , X86::LD_F32m   },
725   { X86::LD_Fp64m     , X86::LD_F64m   },
726   { X86::LD_Fp64m80   , X86::LD_F64m   },
727   { X86::LD_Fp80m     , X86::LD_F80m   },
728   { X86::MUL_Fp32m    , X86::MUL_F32m  },
729   { X86::MUL_Fp64m    , X86::MUL_F64m  },
730   { X86::MUL_Fp64m32  , X86::MUL_F32m  },
731   { X86::MUL_Fp80m32  , X86::MUL_F32m  },
732   { X86::MUL_Fp80m64  , X86::MUL_F64m  },
733   { X86::MUL_FpI16m32 , X86::MUL_FI16m },
734   { X86::MUL_FpI16m64 , X86::MUL_FI16m },
735   { X86::MUL_FpI16m80 , X86::MUL_FI16m },
736   { X86::MUL_FpI32m32 , X86::MUL_FI32m },
737   { X86::MUL_FpI32m64 , X86::MUL_FI32m },
738   { X86::MUL_FpI32m80 , X86::MUL_FI32m },
739   { X86::SIN_Fp32     , X86::SIN_F     },
740   { X86::SIN_Fp64     , X86::SIN_F     },
741   { X86::SIN_Fp80     , X86::SIN_F     },
742   { X86::SQRT_Fp32    , X86::SQRT_F    },
743   { X86::SQRT_Fp64    , X86::SQRT_F    },
744   { X86::SQRT_Fp80    , X86::SQRT_F    },
745   { X86::ST_Fp32m     , X86::ST_F32m   },
746   { X86::ST_Fp64m     , X86::ST_F64m   },
747   { X86::ST_Fp64m32   , X86::ST_F32m   },
748   { X86::ST_Fp80m32   , X86::ST_F32m   },
749   { X86::ST_Fp80m64   , X86::ST_F64m   },
750   { X86::ST_FpP80m    , X86::ST_FP80m  },
751   { X86::SUBR_Fp32m   , X86::SUBR_F32m },
752   { X86::SUBR_Fp64m   , X86::SUBR_F64m },
753   { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
754   { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
755   { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
756   { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
757   { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
758   { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
759   { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
760   { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
761   { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
762   { X86::SUB_Fp32m    , X86::SUB_F32m  },
763   { X86::SUB_Fp64m    , X86::SUB_F64m  },
764   { X86::SUB_Fp64m32  , X86::SUB_F32m  },
765   { X86::SUB_Fp80m32  , X86::SUB_F32m  },
766   { X86::SUB_Fp80m64  , X86::SUB_F64m  },
767   { X86::SUB_FpI16m32 , X86::SUB_FI16m },
768   { X86::SUB_FpI16m64 , X86::SUB_FI16m },
769   { X86::SUB_FpI16m80 , X86::SUB_FI16m },
770   { X86::SUB_FpI32m32 , X86::SUB_FI32m },
771   { X86::SUB_FpI32m64 , X86::SUB_FI32m },
772   { X86::SUB_FpI32m80 , X86::SUB_FI32m },
773   { X86::TST_Fp32     , X86::TST_F     },
774   { X86::TST_Fp64     , X86::TST_F     },
775   { X86::TST_Fp80     , X86::TST_F     },
776   { X86::UCOM_FpIr32  , X86::UCOM_FIr  },
777   { X86::UCOM_FpIr64  , X86::UCOM_FIr  },
778   { X86::UCOM_FpIr80  , X86::UCOM_FIr  },
779   { X86::UCOM_Fpr32   , X86::UCOM_Fr   },
780   { X86::UCOM_Fpr64   , X86::UCOM_Fr   },
781   { X86::UCOM_Fpr80   , X86::UCOM_Fr   },
782 };
783 
getConcreteOpcode(unsigned Opcode)784 static unsigned getConcreteOpcode(unsigned Opcode) {
785   ASSERT_SORTED(OpcodeTable);
786   int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
787   assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
788   return Opc;
789 }
790 
791 //===----------------------------------------------------------------------===//
792 // Helper Methods
793 //===----------------------------------------------------------------------===//
794 
795 // PopTable - Sorted map of instructions to their popping version.  The first
796 // element is an instruction, the second is the version which pops.
797 //
798 static const TableEntry PopTable[] = {
799   { X86::ADD_FrST0 , X86::ADD_FPrST0  },
800 
801   { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
802   { X86::DIV_FrST0 , X86::DIV_FPrST0  },
803 
804   { X86::IST_F16m  , X86::IST_FP16m   },
805   { X86::IST_F32m  , X86::IST_FP32m   },
806 
807   { X86::MUL_FrST0 , X86::MUL_FPrST0  },
808 
809   { X86::ST_F32m   , X86::ST_FP32m    },
810   { X86::ST_F64m   , X86::ST_FP64m    },
811   { X86::ST_Frr    , X86::ST_FPrr     },
812 
813   { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
814   { X86::SUB_FrST0 , X86::SUB_FPrST0  },
815 
816   { X86::UCOM_FIr  , X86::UCOM_FIPr   },
817 
818   { X86::UCOM_FPr  , X86::UCOM_FPPr   },
819   { X86::UCOM_Fr   , X86::UCOM_FPr    },
820 };
821 
822 /// popStackAfter - Pop the current value off of the top of the FP stack after
823 /// the specified instruction.  This attempts to be sneaky and combine the pop
824 /// into the instruction itself if possible.  The iterator is left pointing to
825 /// the last instruction, be it a new pop instruction inserted, or the old
826 /// instruction if it was modified in place.
827 ///
popStackAfter(MachineBasicBlock::iterator & I)828 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
829   MachineInstr* MI = I;
830   DebugLoc dl = MI->getDebugLoc();
831   ASSERT_SORTED(PopTable);
832   if (StackTop == 0)
833     report_fatal_error("Cannot pop empty stack!");
834   RegMap[Stack[--StackTop]] = ~0;     // Update state
835 
836   // Check to see if there is a popping version of this instruction...
837   int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
838   if (Opcode != -1) {
839     I->setDesc(TII->get(Opcode));
840     if (Opcode == X86::UCOM_FPPr)
841       I->RemoveOperand(0);
842   } else {    // Insert an explicit pop
843     I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
844   }
845 }
846 
847 /// freeStackSlotAfter - Free the specified register from the register stack, so
848 /// that it is no longer in a register.  If the register is currently at the top
849 /// of the stack, we just pop the current instruction, otherwise we store the
850 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)851 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
852   if (getStackEntry(0) == FPRegNo) {  // already at the top of stack? easy.
853     popStackAfter(I);
854     return;
855   }
856 
857   // Otherwise, store the top of stack into the dead slot, killing the operand
858   // without having to add in an explicit xchg then pop.
859   //
860   I = freeStackSlotBefore(++I, FPRegNo);
861 }
862 
863 /// freeStackSlotBefore - Free the specified register without trying any
864 /// folding.
865 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)866 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
867   unsigned STReg    = getSTReg(FPRegNo);
868   unsigned OldSlot  = getSlot(FPRegNo);
869   unsigned TopReg   = Stack[StackTop-1];
870   Stack[OldSlot]    = TopReg;
871   RegMap[TopReg]    = OldSlot;
872   RegMap[FPRegNo]   = ~0;
873   Stack[--StackTop] = ~0;
874   return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
875 }
876 
877 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
878 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)879 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
880   unsigned Defs = Mask;
881   unsigned Kills = 0;
882   for (unsigned i = 0; i < StackTop; ++i) {
883     unsigned RegNo = Stack[i];
884     if (!(Defs & (1 << RegNo)))
885       // This register is live, but we don't want it.
886       Kills |= (1 << RegNo);
887     else
888       // We don't need to imp-def this live register.
889       Defs &= ~(1 << RegNo);
890   }
891   assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
892 
893   // Produce implicit-defs for free by using killed registers.
894   while (Kills && Defs) {
895     unsigned KReg = CountTrailingZeros_32(Kills);
896     unsigned DReg = CountTrailingZeros_32(Defs);
897     DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
898     std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
899     std::swap(RegMap[KReg], RegMap[DReg]);
900     Kills &= ~(1 << KReg);
901     Defs &= ~(1 << DReg);
902   }
903 
904   // Kill registers by popping.
905   if (Kills && I != MBB->begin()) {
906     MachineBasicBlock::iterator I2 = llvm::prior(I);
907     while (StackTop) {
908       unsigned KReg = getStackEntry(0);
909       if (!(Kills & (1 << KReg)))
910         break;
911       DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
912       popStackAfter(I2);
913       Kills &= ~(1 << KReg);
914     }
915   }
916 
917   // Manually kill the rest.
918   while (Kills) {
919     unsigned KReg = CountTrailingZeros_32(Kills);
920     DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
921     freeStackSlotBefore(I, KReg);
922     Kills &= ~(1 << KReg);
923   }
924 
925   // Load zeros for all the imp-defs.
926   while(Defs) {
927     unsigned DReg = CountTrailingZeros_32(Defs);
928     DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
929     BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
930     pushReg(DReg);
931     Defs &= ~(1 << DReg);
932   }
933 
934   // Now we should have the correct registers live.
935   DEBUG(dumpStack());
936   assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
937 }
938 
939 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
940 /// FixCount entries into the order given by FixStack.
941 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)942 void FPS::shuffleStackTop(const unsigned char *FixStack,
943                           unsigned FixCount,
944                           MachineBasicBlock::iterator I) {
945   // Move items into place, starting from the desired stack bottom.
946   while (FixCount--) {
947     // Old register at position FixCount.
948     unsigned OldReg = getStackEntry(FixCount);
949     // Desired register at position FixCount.
950     unsigned Reg = FixStack[FixCount];
951     if (Reg == OldReg)
952       continue;
953     // (Reg st0) (OldReg st0) = (Reg OldReg st0)
954     moveToTop(Reg, I);
955     if (FixCount > 0)
956       moveToTop(OldReg, I);
957   }
958   DEBUG(dumpStack());
959 }
960 
961 
962 //===----------------------------------------------------------------------===//
963 // Instruction transformation implementation
964 //===----------------------------------------------------------------------===//
965 
966 /// handleZeroArgFP - ST(0) = fld0    ST(0) = flds <mem>
967 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)968 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
969   MachineInstr *MI = I;
970   unsigned DestReg = getFPReg(MI->getOperand(0));
971 
972   // Change from the pseudo instruction to the concrete instruction.
973   MI->RemoveOperand(0);   // Remove the explicit ST(0) operand
974   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
975 
976   // Result gets pushed on the stack.
977   pushReg(DestReg);
978 }
979 
980 /// handleOneArgFP - fst <mem>, ST(0)
981 ///
handleOneArgFP(MachineBasicBlock::iterator & I)982 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
983   MachineInstr *MI = I;
984   unsigned NumOps = MI->getDesc().getNumOperands();
985   assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
986          "Can only handle fst* & ftst instructions!");
987 
988   // Is this the last use of the source register?
989   unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
990   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
991 
992   if (KillsSrc)
993     duplicatePendingSTBeforeKill(Reg, I);
994 
995   // FISTP64m is strange because there isn't a non-popping versions.
996   // If we have one _and_ we don't want to pop the operand, duplicate the value
997   // on the stack instead of moving it.  This ensure that popping the value is
998   // always ok.
999   // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1000   //
1001   if (!KillsSrc &&
1002       (MI->getOpcode() == X86::IST_Fp64m32 ||
1003        MI->getOpcode() == X86::ISTT_Fp16m32 ||
1004        MI->getOpcode() == X86::ISTT_Fp32m32 ||
1005        MI->getOpcode() == X86::ISTT_Fp64m32 ||
1006        MI->getOpcode() == X86::IST_Fp64m64 ||
1007        MI->getOpcode() == X86::ISTT_Fp16m64 ||
1008        MI->getOpcode() == X86::ISTT_Fp32m64 ||
1009        MI->getOpcode() == X86::ISTT_Fp64m64 ||
1010        MI->getOpcode() == X86::IST_Fp64m80 ||
1011        MI->getOpcode() == X86::ISTT_Fp16m80 ||
1012        MI->getOpcode() == X86::ISTT_Fp32m80 ||
1013        MI->getOpcode() == X86::ISTT_Fp64m80 ||
1014        MI->getOpcode() == X86::ST_FpP80m)) {
1015     duplicateToTop(Reg, getScratchReg(), I);
1016   } else {
1017     moveToTop(Reg, I);            // Move to the top of the stack...
1018   }
1019 
1020   // Convert from the pseudo instruction to the concrete instruction.
1021   MI->RemoveOperand(NumOps-1);    // Remove explicit ST(0) operand
1022   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1023 
1024   if (MI->getOpcode() == X86::IST_FP64m ||
1025       MI->getOpcode() == X86::ISTT_FP16m ||
1026       MI->getOpcode() == X86::ISTT_FP32m ||
1027       MI->getOpcode() == X86::ISTT_FP64m ||
1028       MI->getOpcode() == X86::ST_FP80m) {
1029     if (StackTop == 0)
1030       report_fatal_error("Stack empty??");
1031     --StackTop;
1032   } else if (KillsSrc) { // Last use of operand?
1033     popStackAfter(I);
1034   }
1035 }
1036 
1037 
1038 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1039 /// replace the value with a newly computed value.  These instructions may have
1040 /// non-fp operands after their FP operands.
1041 ///
1042 ///  Examples:
1043 ///     R1 = fchs R2
1044 ///     R1 = fadd R2, [mem]
1045 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1046 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1047   MachineInstr *MI = I;
1048 #ifndef NDEBUG
1049   unsigned NumOps = MI->getDesc().getNumOperands();
1050   assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1051 #endif
1052 
1053   // Is this the last use of the source register?
1054   unsigned Reg = getFPReg(MI->getOperand(1));
1055   bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
1056 
1057   if (KillsSrc) {
1058     duplicatePendingSTBeforeKill(Reg, I);
1059     // If this is the last use of the source register, just make sure it's on
1060     // the top of the stack.
1061     moveToTop(Reg, I);
1062     if (StackTop == 0)
1063       report_fatal_error("Stack cannot be empty!");
1064     --StackTop;
1065     pushReg(getFPReg(MI->getOperand(0)));
1066   } else {
1067     // If this is not the last use of the source register, _copy_ it to the top
1068     // of the stack.
1069     duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1070   }
1071 
1072   // Change from the pseudo instruction to the concrete instruction.
1073   MI->RemoveOperand(1);   // Drop the source operand.
1074   MI->RemoveOperand(0);   // Drop the destination operand.
1075   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1076 }
1077 
1078 
1079 //===----------------------------------------------------------------------===//
1080 // Define tables of various ways to map pseudo instructions
1081 //
1082 
1083 // ForwardST0Table - Map: A = B op C  into: ST(0) = ST(0) op ST(i)
1084 static const TableEntry ForwardST0Table[] = {
1085   { X86::ADD_Fp32  , X86::ADD_FST0r },
1086   { X86::ADD_Fp64  , X86::ADD_FST0r },
1087   { X86::ADD_Fp80  , X86::ADD_FST0r },
1088   { X86::DIV_Fp32  , X86::DIV_FST0r },
1089   { X86::DIV_Fp64  , X86::DIV_FST0r },
1090   { X86::DIV_Fp80  , X86::DIV_FST0r },
1091   { X86::MUL_Fp32  , X86::MUL_FST0r },
1092   { X86::MUL_Fp64  , X86::MUL_FST0r },
1093   { X86::MUL_Fp80  , X86::MUL_FST0r },
1094   { X86::SUB_Fp32  , X86::SUB_FST0r },
1095   { X86::SUB_Fp64  , X86::SUB_FST0r },
1096   { X86::SUB_Fp80  , X86::SUB_FST0r },
1097 };
1098 
1099 // ReverseST0Table - Map: A = B op C  into: ST(0) = ST(i) op ST(0)
1100 static const TableEntry ReverseST0Table[] = {
1101   { X86::ADD_Fp32  , X86::ADD_FST0r  },   // commutative
1102   { X86::ADD_Fp64  , X86::ADD_FST0r  },   // commutative
1103   { X86::ADD_Fp80  , X86::ADD_FST0r  },   // commutative
1104   { X86::DIV_Fp32  , X86::DIVR_FST0r },
1105   { X86::DIV_Fp64  , X86::DIVR_FST0r },
1106   { X86::DIV_Fp80  , X86::DIVR_FST0r },
1107   { X86::MUL_Fp32  , X86::MUL_FST0r  },   // commutative
1108   { X86::MUL_Fp64  , X86::MUL_FST0r  },   // commutative
1109   { X86::MUL_Fp80  , X86::MUL_FST0r  },   // commutative
1110   { X86::SUB_Fp32  , X86::SUBR_FST0r },
1111   { X86::SUB_Fp64  , X86::SUBR_FST0r },
1112   { X86::SUB_Fp80  , X86::SUBR_FST0r },
1113 };
1114 
1115 // ForwardSTiTable - Map: A = B op C  into: ST(i) = ST(0) op ST(i)
1116 static const TableEntry ForwardSTiTable[] = {
1117   { X86::ADD_Fp32  , X86::ADD_FrST0  },   // commutative
1118   { X86::ADD_Fp64  , X86::ADD_FrST0  },   // commutative
1119   { X86::ADD_Fp80  , X86::ADD_FrST0  },   // commutative
1120   { X86::DIV_Fp32  , X86::DIVR_FrST0 },
1121   { X86::DIV_Fp64  , X86::DIVR_FrST0 },
1122   { X86::DIV_Fp80  , X86::DIVR_FrST0 },
1123   { X86::MUL_Fp32  , X86::MUL_FrST0  },   // commutative
1124   { X86::MUL_Fp64  , X86::MUL_FrST0  },   // commutative
1125   { X86::MUL_Fp80  , X86::MUL_FrST0  },   // commutative
1126   { X86::SUB_Fp32  , X86::SUBR_FrST0 },
1127   { X86::SUB_Fp64  , X86::SUBR_FrST0 },
1128   { X86::SUB_Fp80  , X86::SUBR_FrST0 },
1129 };
1130 
1131 // ReverseSTiTable - Map: A = B op C  into: ST(i) = ST(i) op ST(0)
1132 static const TableEntry ReverseSTiTable[] = {
1133   { X86::ADD_Fp32  , X86::ADD_FrST0 },
1134   { X86::ADD_Fp64  , X86::ADD_FrST0 },
1135   { X86::ADD_Fp80  , X86::ADD_FrST0 },
1136   { X86::DIV_Fp32  , X86::DIV_FrST0 },
1137   { X86::DIV_Fp64  , X86::DIV_FrST0 },
1138   { X86::DIV_Fp80  , X86::DIV_FrST0 },
1139   { X86::MUL_Fp32  , X86::MUL_FrST0 },
1140   { X86::MUL_Fp64  , X86::MUL_FrST0 },
1141   { X86::MUL_Fp80  , X86::MUL_FrST0 },
1142   { X86::SUB_Fp32  , X86::SUB_FrST0 },
1143   { X86::SUB_Fp64  , X86::SUB_FrST0 },
1144   { X86::SUB_Fp80  , X86::SUB_FrST0 },
1145 };
1146 
1147 
1148 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1149 /// instructions which need to be simplified and possibly transformed.
1150 ///
1151 /// Result: ST(0) = fsub  ST(0), ST(i)
1152 ///         ST(i) = fsub  ST(0), ST(i)
1153 ///         ST(0) = fsubr ST(0), ST(i)
1154 ///         ST(i) = fsubr ST(0), ST(i)
1155 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1156 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1157   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1158   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1159   MachineInstr *MI = I;
1160 
1161   unsigned NumOperands = MI->getDesc().getNumOperands();
1162   assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1163   unsigned Dest = getFPReg(MI->getOperand(0));
1164   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1165   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1166   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1167   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1168   DebugLoc dl = MI->getDebugLoc();
1169 
1170   unsigned TOS = getStackEntry(0);
1171 
1172   // One of our operands must be on the top of the stack.  If neither is yet, we
1173   // need to move one.
1174   if (Op0 != TOS && Op1 != TOS) {   // No operand at TOS?
1175     // We can choose to move either operand to the top of the stack.  If one of
1176     // the operands is killed by this instruction, we want that one so that we
1177     // can update right on top of the old version.
1178     if (KillsOp0) {
1179       moveToTop(Op0, I);         // Move dead operand to TOS.
1180       TOS = Op0;
1181     } else if (KillsOp1) {
1182       moveToTop(Op1, I);
1183       TOS = Op1;
1184     } else {
1185       // All of the operands are live after this instruction executes, so we
1186       // cannot update on top of any operand.  Because of this, we must
1187       // duplicate one of the stack elements to the top.  It doesn't matter
1188       // which one we pick.
1189       //
1190       duplicateToTop(Op0, Dest, I);
1191       Op0 = TOS = Dest;
1192       KillsOp0 = true;
1193     }
1194   } else if (!KillsOp0 && !KillsOp1) {
1195     // If we DO have one of our operands at the top of the stack, but we don't
1196     // have a dead operand, we must duplicate one of the operands to a new slot
1197     // on the stack.
1198     duplicateToTop(Op0, Dest, I);
1199     Op0 = TOS = Dest;
1200     KillsOp0 = true;
1201   }
1202 
1203   // Now we know that one of our operands is on the top of the stack, and at
1204   // least one of our operands is killed by this instruction.
1205   assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1206          "Stack conditions not set up right!");
1207 
1208   // We decide which form to use based on what is on the top of the stack, and
1209   // which operand is killed by this instruction.
1210   const TableEntry *InstTable;
1211   bool isForward = TOS == Op0;
1212   bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1213   if (updateST0) {
1214     if (isForward)
1215       InstTable = ForwardST0Table;
1216     else
1217       InstTable = ReverseST0Table;
1218   } else {
1219     if (isForward)
1220       InstTable = ForwardSTiTable;
1221     else
1222       InstTable = ReverseSTiTable;
1223   }
1224 
1225   int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1226                       MI->getOpcode());
1227   assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1228 
1229   // NotTOS - The register which is not on the top of stack...
1230   unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1231 
1232   // Replace the old instruction with a new instruction
1233   MBB->remove(I++);
1234   I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1235 
1236   // If both operands are killed, pop one off of the stack in addition to
1237   // overwriting the other one.
1238   if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1239     assert(!updateST0 && "Should have updated other operand!");
1240     popStackAfter(I);   // Pop the top of stack
1241   }
1242 
1243   // Update stack information so that we know the destination register is now on
1244   // the stack.
1245   unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1246   assert(UpdatedSlot < StackTop && Dest < 7);
1247   Stack[UpdatedSlot]   = Dest;
1248   RegMap[Dest]         = UpdatedSlot;
1249   MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
1250 }
1251 
1252 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1253 /// register arguments and no explicit destinations.
1254 ///
handleCompareFP(MachineBasicBlock::iterator & I)1255 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1256   ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1257   ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1258   MachineInstr *MI = I;
1259 
1260   unsigned NumOperands = MI->getDesc().getNumOperands();
1261   assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1262   unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1263   unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
1264   bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1265   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1266 
1267   // Make sure the first operand is on the top of stack, the other one can be
1268   // anywhere.
1269   moveToTop(Op0, I);
1270 
1271   // Change from the pseudo instruction to the concrete instruction.
1272   MI->getOperand(0).setReg(getSTReg(Op1));
1273   MI->RemoveOperand(1);
1274   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1275 
1276   // If any of the operands are killed by this instruction, free them.
1277   if (KillsOp0) freeStackSlotAfter(I, Op0);
1278   if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1279 }
1280 
1281 /// handleCondMovFP - Handle two address conditional move instructions.  These
1282 /// instructions move a st(i) register to st(0) iff a condition is true.  These
1283 /// instructions require that the first operand is at the top of the stack, but
1284 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1285 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1286   MachineInstr *MI = I;
1287 
1288   unsigned Op0 = getFPReg(MI->getOperand(0));
1289   unsigned Op1 = getFPReg(MI->getOperand(2));
1290   bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
1291 
1292   // The first operand *must* be on the top of the stack.
1293   moveToTop(Op0, I);
1294 
1295   // Change the second operand to the stack register that the operand is in.
1296   // Change from the pseudo instruction to the concrete instruction.
1297   MI->RemoveOperand(0);
1298   MI->RemoveOperand(1);
1299   MI->getOperand(0).setReg(getSTReg(Op1));
1300   MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
1301 
1302   // If we kill the second operand, make sure to pop it from the stack.
1303   if (Op0 != Op1 && KillsOp1) {
1304     // Get this value off of the register stack.
1305     freeStackSlotAfter(I, Op1);
1306   }
1307 }
1308 
1309 
1310 /// handleSpecialFP - Handle special instructions which behave unlike other
1311 /// floating point instructions.  This is primarily intended for use by pseudo
1312 /// instructions.
1313 ///
handleSpecialFP(MachineBasicBlock::iterator & I)1314 void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
1315   MachineInstr *MI = I;
1316   switch (MI->getOpcode()) {
1317   default: llvm_unreachable("Unknown SpecialFP instruction!");
1318   case TargetOpcode::COPY: {
1319     // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1320     const MachineOperand &MO1 = MI->getOperand(1);
1321     const MachineOperand &MO0 = MI->getOperand(0);
1322     unsigned DstST = MO0.getReg() - X86::ST0;
1323     unsigned SrcST = MO1.getReg() - X86::ST0;
1324     bool KillsSrc = MI->killsRegister(MO1.getReg());
1325 
1326     // ST = COPY FP. Set up a pending ST register.
1327     if (DstST < 8) {
1328       unsigned SrcFP = getFPReg(MO1);
1329       assert(isLive(SrcFP) && "Cannot copy dead register");
1330       assert(!MO0.isDead() && "Cannot copy to dead ST register");
1331 
1332       // Unallocated STs are marked as the nonexistent FP255.
1333       while (NumPendingSTs <= DstST)
1334         PendingST[NumPendingSTs++] = NumFPRegs;
1335 
1336       // STi could still be live from a previous inline asm.
1337       if (isScratchReg(PendingST[DstST])) {
1338         DEBUG(dbgs() << "Clobbering old ST in FP" << unsigned(PendingST[DstST])
1339                      << '\n');
1340         freeStackSlotBefore(MI, PendingST[DstST]);
1341       }
1342 
1343       // When the source is killed, allocate a scratch FP register.
1344       if (KillsSrc) {
1345         duplicatePendingSTBeforeKill(SrcFP, I);
1346         unsigned Slot = getSlot(SrcFP);
1347         unsigned SR = getScratchReg();
1348         PendingST[DstST] = SR;
1349         Stack[Slot] = SR;
1350         RegMap[SR] = Slot;
1351       } else
1352         PendingST[DstST] = SrcFP;
1353       break;
1354     }
1355 
1356     // FP = COPY ST. Extract fixed stack value.
1357     // Any instruction defining ST registers must have assigned them to a
1358     // scratch register.
1359     if (SrcST < 8) {
1360       unsigned DstFP = getFPReg(MO0);
1361       assert(!isLive(DstFP) && "Cannot copy ST to live FP register");
1362       assert(NumPendingSTs > SrcST && "Cannot copy from dead ST register");
1363       unsigned SrcFP = PendingST[SrcST];
1364       assert(isScratchReg(SrcFP) && "Expected ST in a scratch register");
1365       assert(isLive(SrcFP) && "Scratch holding ST is dead");
1366 
1367       // DstFP steals the stack slot from SrcFP.
1368       unsigned Slot = getSlot(SrcFP);
1369       Stack[Slot] = DstFP;
1370       RegMap[DstFP] = Slot;
1371 
1372       // Always treat the ST as killed.
1373       PendingST[SrcST] = NumFPRegs;
1374       while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1375         --NumPendingSTs;
1376       break;
1377     }
1378 
1379     // FP <- FP copy.
1380     unsigned DstFP = getFPReg(MO0);
1381     unsigned SrcFP = getFPReg(MO1);
1382     assert(isLive(SrcFP) && "Cannot copy dead register");
1383     if (KillsSrc) {
1384       // If the input operand is killed, we can just change the owner of the
1385       // incoming stack slot into the result.
1386       unsigned Slot = getSlot(SrcFP);
1387       Stack[Slot] = DstFP;
1388       RegMap[DstFP] = Slot;
1389     } else {
1390       // For COPY we just duplicate the specified value to a new stack slot.
1391       // This could be made better, but would require substantial changes.
1392       duplicateToTop(SrcFP, DstFP, I);
1393     }
1394     break;
1395   }
1396 
1397   case TargetOpcode::IMPLICIT_DEF: {
1398     // All FP registers must be explicitly defined, so load a 0 instead.
1399     unsigned Reg = MI->getOperand(0).getReg() - X86::FP0;
1400     DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1401     BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1402     pushReg(Reg);
1403     break;
1404   }
1405 
1406   case X86::FpPOP_RETVAL: {
1407     // The FpPOP_RETVAL instruction is used after calls that return a value on
1408     // the floating point stack. We cannot model this with ST defs since CALL
1409     // instructions have fixed clobber lists. This instruction is interpreted
1410     // to mean that there is one more live register on the stack than we
1411     // thought.
1412     //
1413     // This means that StackTop does not match the hardware stack between a
1414     // call and the FpPOP_RETVAL instructions.  We do tolerate FP instructions
1415     // between CALL and FpPOP_RETVAL as long as they don't overflow the
1416     // hardware stack.
1417     unsigned DstFP = getFPReg(MI->getOperand(0));
1418 
1419     // Move existing stack elements up to reflect reality.
1420     assert(StackTop < 8 && "Stack overflowed before FpPOP_RETVAL");
1421     if (StackTop) {
1422       std::copy_backward(Stack, Stack + StackTop, Stack + StackTop + 1);
1423       for (unsigned i = 0; i != NumFPRegs; ++i)
1424         ++RegMap[i];
1425     }
1426     ++StackTop;
1427 
1428     // DstFP is the new bottom of the stack.
1429     Stack[0] = DstFP;
1430     RegMap[DstFP] = 0;
1431 
1432     // DstFP will be killed by processBasicBlock if this was a dead def.
1433     break;
1434   }
1435 
1436   case TargetOpcode::INLINEASM: {
1437     // The inline asm MachineInstr currently only *uses* FP registers for the
1438     // 'f' constraint.  These should be turned into the current ST(x) register
1439     // in the machine instr.
1440     //
1441     // There are special rules for x87 inline assembly. The compiler must know
1442     // exactly how many registers are popped and pushed implicitly by the asm.
1443     // Otherwise it is not possible to restore the stack state after the inline
1444     // asm.
1445     //
1446     // There are 3 kinds of input operands:
1447     //
1448     // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1449     //    popped input operand must be in a fixed stack slot, and it is either
1450     //    tied to an output operand, or in the clobber list. The MI has ST use
1451     //    and def operands for these inputs.
1452     //
1453     // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1454     //    preserved by the inline asm. The fixed stack slots must be STn-STm
1455     //    following the popped inputs. A fixed input operand cannot be tied to
1456     //    an output or appear in the clobber list. The MI has ST use operands
1457     //    and no defs for these inputs.
1458     //
1459     // 3. Preserved inputs. These inputs use the "f" constraint which is
1460     //    represented as an FP register. The inline asm won't change these
1461     //    stack slots.
1462     //
1463     // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1464     // registers do not count as output operands. The inline asm changes the
1465     // stack as if it popped all the popped inputs and then pushed all the
1466     // output operands.
1467 
1468     // Scan the assembly for ST registers used, defined and clobbered. We can
1469     // only tell clobbers from defs by looking at the asm descriptor.
1470     unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1471     unsigned NumOps = 0;
1472     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
1473          i != e && MI->getOperand(i).isImm(); i += 1 + NumOps) {
1474       unsigned Flags = MI->getOperand(i).getImm();
1475       NumOps = InlineAsm::getNumOperandRegisters(Flags);
1476       if (NumOps != 1)
1477         continue;
1478       const MachineOperand &MO = MI->getOperand(i + 1);
1479       if (!MO.isReg())
1480         continue;
1481       unsigned STReg = MO.getReg() - X86::ST0;
1482       if (STReg >= 8)
1483         continue;
1484 
1485       switch (InlineAsm::getKind(Flags)) {
1486       case InlineAsm::Kind_RegUse:
1487         STUses |= (1u << STReg);
1488         break;
1489       case InlineAsm::Kind_RegDef:
1490       case InlineAsm::Kind_RegDefEarlyClobber:
1491         STDefs |= (1u << STReg);
1492         if (MO.isDead())
1493           STDeadDefs |= (1u << STReg);
1494         break;
1495       case InlineAsm::Kind_Clobber:
1496         STClobbers |= (1u << STReg);
1497         break;
1498       default:
1499         break;
1500       }
1501     }
1502 
1503     if (STUses && !isMask_32(STUses))
1504       MI->emitError("fixed input regs must be last on the x87 stack");
1505     unsigned NumSTUses = CountTrailingOnes_32(STUses);
1506 
1507     // Defs must be contiguous from the stack top. ST0-STn.
1508     if (STDefs && !isMask_32(STDefs)) {
1509       MI->emitError("output regs must be last on the x87 stack");
1510       STDefs = NextPowerOf2(STDefs) - 1;
1511     }
1512     unsigned NumSTDefs = CountTrailingOnes_32(STDefs);
1513 
1514     // So must the clobbered stack slots. ST0-STm, m >= n.
1515     if (STClobbers && !isMask_32(STDefs | STClobbers))
1516       MI->emitError("clobbers must be last on the x87 stack");
1517 
1518     // Popped inputs are the ones that are also clobbered or defined.
1519     unsigned STPopped = STUses & (STDefs | STClobbers);
1520     if (STPopped && !isMask_32(STPopped))
1521       MI->emitError("implicitly popped regs must be last on the x87 stack");
1522     unsigned NumSTPopped = CountTrailingOnes_32(STPopped);
1523 
1524     DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1525                  << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1526 
1527     // Scan the instruction for FP uses corresponding to "f" constraints.
1528     // Collect FP registers to kill afer the instruction.
1529     // Always kill all the scratch regs.
1530     unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1531     unsigned FPUsed = 0;
1532     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1533       MachineOperand &Op = MI->getOperand(i);
1534       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1535         continue;
1536       if (!Op.isUse())
1537         MI->emitError("illegal \"f\" output constraint");
1538       unsigned FPReg = getFPReg(Op);
1539       FPUsed |= 1U << FPReg;
1540 
1541       // If we kill this operand, make sure to pop it from the stack after the
1542       // asm.  We just remember it for now, and pop them all off at the end in
1543       // a batch.
1544       if (Op.isKill())
1545         FPKills |= 1U << FPReg;
1546     }
1547 
1548     // The popped inputs will be killed by the instruction, so duplicate them
1549     // if the FP register needs to be live after the instruction, or if it is
1550     // used in the instruction itself. We effectively treat the popped inputs
1551     // as early clobbers.
1552     for (unsigned i = 0; i < NumSTPopped; ++i) {
1553       if ((FPKills & ~FPUsed) & (1u << PendingST[i]))
1554         continue;
1555       unsigned SR = getScratchReg();
1556       duplicateToTop(PendingST[i], SR, I);
1557       DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1558                    << unsigned(PendingST[i]) << " to avoid clobbering it.\n");
1559       PendingST[i] = SR;
1560     }
1561 
1562     // Make sure we have a unique live register for every fixed use. Some of
1563     // them could be undef uses, and we need to emit LD_F0 instructions.
1564     for (unsigned i = 0; i < NumSTUses; ++i) {
1565       if (i < NumPendingSTs && PendingST[i] < NumFPRegs) {
1566         // Check for shared assignments.
1567         for (unsigned j = 0; j < i; ++j) {
1568           if (PendingST[j] != PendingST[i])
1569             continue;
1570           // STi and STj are inn the same register, create a copy.
1571           unsigned SR = getScratchReg();
1572           duplicateToTop(PendingST[i], SR, I);
1573           DEBUG(dbgs() << "Duplicating ST" << i << " in FP"
1574                        << unsigned(PendingST[i])
1575                        << " to avoid collision with ST" << j << '\n');
1576           PendingST[i] = SR;
1577         }
1578         continue;
1579       }
1580       unsigned SR = getScratchReg();
1581       DEBUG(dbgs() << "Emitting LD_F0 for ST" << i << " in FP" << SR << '\n');
1582       BuildMI(*MBB, I, MI->getDebugLoc(), TII->get(X86::LD_F0));
1583       pushReg(SR);
1584       PendingST[i] = SR;
1585       if (NumPendingSTs == i)
1586         ++NumPendingSTs;
1587     }
1588     assert(NumPendingSTs >= NumSTUses && "Fixed registers should be assigned");
1589 
1590     // Now we can rearrange the live registers to match what was requested.
1591     shuffleStackTop(PendingST, NumPendingSTs, I);
1592     DEBUG({dbgs() << "Before asm: "; dumpStack();});
1593 
1594     // With the stack layout fixed, rewrite the FP registers.
1595     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1596       MachineOperand &Op = MI->getOperand(i);
1597       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1598         continue;
1599       unsigned FPReg = getFPReg(Op);
1600       Op.setReg(getSTReg(FPReg));
1601     }
1602 
1603     // Simulate the inline asm popping its inputs and pushing its outputs.
1604     StackTop -= NumSTPopped;
1605 
1606     // Hold the fixed output registers in scratch FP registers. They will be
1607     // transferred to real FP registers by copies.
1608     NumPendingSTs = 0;
1609     for (unsigned i = 0; i < NumSTDefs; ++i) {
1610       unsigned SR = getScratchReg();
1611       pushReg(SR);
1612       FPKills &= ~(1u << SR);
1613     }
1614     for (unsigned i = 0; i < NumSTDefs; ++i)
1615       PendingST[NumPendingSTs++] = getStackEntry(i);
1616     DEBUG({dbgs() << "After asm: "; dumpStack();});
1617 
1618     // If any of the ST defs were dead, pop them immediately. Our caller only
1619     // handles dead FP defs.
1620     MachineBasicBlock::iterator InsertPt = MI;
1621     for (unsigned i = 0; STDefs & (1u << i); ++i) {
1622       if (!(STDeadDefs & (1u << i)))
1623         continue;
1624       freeStackSlotAfter(InsertPt, PendingST[i]);
1625       PendingST[i] = NumFPRegs;
1626     }
1627     while (NumPendingSTs && PendingST[NumPendingSTs - 1] == NumFPRegs)
1628       --NumPendingSTs;
1629 
1630     // If this asm kills any FP registers (is the last use of them) we must
1631     // explicitly emit pop instructions for them.  Do this now after the asm has
1632     // executed so that the ST(x) numbers are not off (which would happen if we
1633     // did this inline with operand rewriting).
1634     //
1635     // Note: this might be a non-optimal pop sequence.  We might be able to do
1636     // better by trying to pop in stack order or something.
1637     while (FPKills) {
1638       unsigned FPReg = CountTrailingZeros_32(FPKills);
1639       if (isLive(FPReg))
1640         freeStackSlotAfter(InsertPt, FPReg);
1641       FPKills &= ~(1U << FPReg);
1642     }
1643     // Don't delete the inline asm!
1644     return;
1645   }
1646 
1647   case X86::RET:
1648   case X86::RETI:
1649     // If RET has an FP register use operand, pass the first one in ST(0) and
1650     // the second one in ST(1).
1651 
1652     // Find the register operands.
1653     unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1654     unsigned LiveMask = 0;
1655 
1656     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1657       MachineOperand &Op = MI->getOperand(i);
1658       if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1659         continue;
1660       // FP Register uses must be kills unless there are two uses of the same
1661       // register, in which case only one will be a kill.
1662       assert(Op.isUse() &&
1663              (Op.isKill() ||                        // Marked kill.
1664               getFPReg(Op) == FirstFPRegOp ||       // Second instance.
1665               MI->killsRegister(Op.getReg())) &&    // Later use is marked kill.
1666              "Ret only defs operands, and values aren't live beyond it");
1667 
1668       if (FirstFPRegOp == ~0U)
1669         FirstFPRegOp = getFPReg(Op);
1670       else {
1671         assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1672         SecondFPRegOp = getFPReg(Op);
1673       }
1674       LiveMask |= (1 << getFPReg(Op));
1675 
1676       // Remove the operand so that later passes don't see it.
1677       MI->RemoveOperand(i);
1678       --i, --e;
1679     }
1680 
1681     // We may have been carrying spurious live-ins, so make sure only the returned
1682     // registers are left live.
1683     adjustLiveRegs(LiveMask, MI);
1684     if (!LiveMask) return;  // Quick check to see if any are possible.
1685 
1686     // There are only four possibilities here:
1687     // 1) we are returning a single FP value.  In this case, it has to be in
1688     //    ST(0) already, so just declare success by removing the value from the
1689     //    FP Stack.
1690     if (SecondFPRegOp == ~0U) {
1691       // Assert that the top of stack contains the right FP register.
1692       assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1693              "Top of stack not the right register for RET!");
1694 
1695       // Ok, everything is good, mark the value as not being on the stack
1696       // anymore so that our assertion about the stack being empty at end of
1697       // block doesn't fire.
1698       StackTop = 0;
1699       return;
1700     }
1701 
1702     // Otherwise, we are returning two values:
1703     // 2) If returning the same value for both, we only have one thing in the FP
1704     //    stack.  Consider:  RET FP1, FP1
1705     if (StackTop == 1) {
1706       assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1707              "Stack misconfiguration for RET!");
1708 
1709       // Duplicate the TOS so that we return it twice.  Just pick some other FPx
1710       // register to hold it.
1711       unsigned NewReg = getScratchReg();
1712       duplicateToTop(FirstFPRegOp, NewReg, MI);
1713       FirstFPRegOp = NewReg;
1714     }
1715 
1716     /// Okay we know we have two different FPx operands now:
1717     assert(StackTop == 2 && "Must have two values live!");
1718 
1719     /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1720     ///    in ST(1).  In this case, emit an fxch.
1721     if (getStackEntry(0) == SecondFPRegOp) {
1722       assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1723       moveToTop(FirstFPRegOp, MI);
1724     }
1725 
1726     /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1727     /// ST(1).  Just remove both from our understanding of the stack and return.
1728     assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1729     assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1730     StackTop = 0;
1731     return;
1732   }
1733 
1734   I = MBB->erase(I);  // Remove the pseudo instruction
1735 
1736   // We want to leave I pointing to the previous instruction, but what if we
1737   // just erased the first instruction?
1738   if (I == MBB->begin()) {
1739     DEBUG(dbgs() << "Inserting dummy KILL\n");
1740     I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1741   } else
1742     --I;
1743 }
1744