1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Support/GetElementPtrTypeIterator.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 /// AddOne - Add one to a ConstantInt.
AddOne(Constant * C)23 static Constant *AddOne(Constant *C) {
24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25 }
26 /// SubOne - Subtract one from a ConstantInt.
SubOne(ConstantInt * C)27 static Constant *SubOne(ConstantInt *C) {
28   return ConstantInt::get(C->getContext(), C->getValue()-1);
29 }
30 
31 
32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
33 // other computations (because it has a constant operand), return the
34 // non-constant operand of the multiply, and set CST to point to the multiplier.
35 // Otherwise, return null.
36 //
dyn_castFoldableMul(Value * V,ConstantInt * & CST)37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
39     return 0;
40 
41   Instruction *I = dyn_cast<Instruction>(V);
42   if (I == 0) return 0;
43 
44   if (I->getOpcode() == Instruction::Mul)
45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
46       return I->getOperand(0);
47   if (I->getOpcode() == Instruction::Shl)
48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
49       // The multiplier is really 1 << CST.
50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
52       CST = ConstantInt::get(V->getType()->getContext(),
53                              APInt(BitWidth, 1).shl(CSTVal));
54       return I->getOperand(0);
55     }
56   return 0;
57 }
58 
59 
60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
62 /// This basically requires proving that the add in the original type would not
63 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS)64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
65   // There are different heuristics we can use for this.  Here are some simple
66   // ones.
67 
68   // Add has the property that adding any two 2's complement numbers can only
69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
70   // have at least two sign bits, we know that the addition of the two values
71   // will sign extend fine.
72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
73     return true;
74 
75 
76   // If one of the operands only has one non-zero bit, and if the other operand
77   // has a known-zero bit in a more significant place than it (not including the
78   // sign bit) the ripple may go up to and fill the zero, but won't change the
79   // sign.  For example, (X & ~4) + 1.
80 
81   // TODO: Implement.
82 
83   return false;
84 }
85 
visitAdd(BinaryOperator & I)86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
87   bool Changed = SimplifyAssociativeOrCommutative(I);
88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
89 
90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
91                                  I.hasNoUnsignedWrap(), TD))
92     return ReplaceInstUsesWith(I, V);
93 
94   // (A*B)+(A*C) -> A*(B+C) etc
95   if (Value *V = SimplifyUsingDistributiveLaws(I))
96     return ReplaceInstUsesWith(I, V);
97 
98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
99     // X + (signbit) --> X ^ signbit
100     const APInt &Val = CI->getValue();
101     if (Val.isSignBit())
102       return BinaryOperator::CreateXor(LHS, RHS);
103 
104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
105     // (X & 254)+1 -> (X&254)|1
106     if (SimplifyDemandedInstructionBits(I))
107       return &I;
108 
109     // zext(bool) + C -> bool ? C + 1 : C
110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
111       if (ZI->getSrcTy()->isIntegerTy(1))
112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
113 
114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
117       const APInt &RHSVal = CI->getValue();
118       unsigned ExtendAmt = 0;
119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
121       if (XorRHS->getValue() == -RHSVal) {
122         if (RHSVal.isPowerOf2())
123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
124         else if (XorRHS->getValue().isPowerOf2())
125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
126       }
127 
128       if (ExtendAmt) {
129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
130         if (!MaskedValueIsZero(XorLHS, Mask))
131           ExtendAmt = 0;
132       }
133 
134       if (ExtendAmt) {
135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
138       }
139     }
140   }
141 
142   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
143     if (Instruction *NV = FoldOpIntoPhi(I))
144       return NV;
145 
146   if (I.getType()->isIntegerTy(1))
147     return BinaryOperator::CreateXor(LHS, RHS);
148 
149   // X + X --> X << 1
150   if (LHS == RHS) {
151     BinaryOperator *New =
152       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
153     New->setHasNoSignedWrap(I.hasNoSignedWrap());
154     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
155     return New;
156   }
157 
158   // -A + B  -->  B - A
159   // -A + -B  -->  -(A + B)
160   if (Value *LHSV = dyn_castNegVal(LHS)) {
161     if (Value *RHSV = dyn_castNegVal(RHS)) {
162       Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
163       return BinaryOperator::CreateNeg(NewAdd);
164     }
165 
166     return BinaryOperator::CreateSub(RHS, LHSV);
167   }
168 
169   // A + -B  -->  A - B
170   if (!isa<Constant>(RHS))
171     if (Value *V = dyn_castNegVal(RHS))
172       return BinaryOperator::CreateSub(LHS, V);
173 
174 
175   ConstantInt *C2;
176   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
177     if (X == RHS)   // X*C + X --> X * (C+1)
178       return BinaryOperator::CreateMul(RHS, AddOne(C2));
179 
180     // X*C1 + X*C2 --> X * (C1+C2)
181     ConstantInt *C1;
182     if (X == dyn_castFoldableMul(RHS, C1))
183       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
184   }
185 
186   // X + X*C --> X * (C+1)
187   if (dyn_castFoldableMul(RHS, C2) == LHS)
188     return BinaryOperator::CreateMul(LHS, AddOne(C2));
189 
190   // A+B --> A|B iff A and B have no bits set in common.
191   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
192     APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
193     APInt LHSKnownOne(IT->getBitWidth(), 0);
194     APInt LHSKnownZero(IT->getBitWidth(), 0);
195     ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
196     if (LHSKnownZero != 0) {
197       APInt RHSKnownOne(IT->getBitWidth(), 0);
198       APInt RHSKnownZero(IT->getBitWidth(), 0);
199       ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
200 
201       // No bits in common -> bitwise or.
202       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
203         return BinaryOperator::CreateOr(LHS, RHS);
204     }
205   }
206 
207   // W*X + Y*Z --> W * (X+Z)  iff W == Y
208   {
209     Value *W, *X, *Y, *Z;
210     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
211         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
212       if (W != Y) {
213         if (W == Z) {
214           std::swap(Y, Z);
215         } else if (Y == X) {
216           std::swap(W, X);
217         } else if (X == Z) {
218           std::swap(Y, Z);
219           std::swap(W, X);
220         }
221       }
222 
223       if (W == Y) {
224         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
225         return BinaryOperator::CreateMul(W, NewAdd);
226       }
227     }
228   }
229 
230   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
231     Value *X = 0;
232     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
233       return BinaryOperator::CreateSub(SubOne(CRHS), X);
234 
235     // (X & FF00) + xx00  -> (X+xx00) & FF00
236     if (LHS->hasOneUse() &&
237         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
238         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
239       // See if all bits from the first bit set in the Add RHS up are included
240       // in the mask.  First, get the rightmost bit.
241       const APInt &AddRHSV = CRHS->getValue();
242 
243       // Form a mask of all bits from the lowest bit added through the top.
244       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
245 
246       // See if the and mask includes all of these bits.
247       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
248 
249       if (AddRHSHighBits == AddRHSHighBitsAnd) {
250         // Okay, the xform is safe.  Insert the new add pronto.
251         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
252         return BinaryOperator::CreateAnd(NewAdd, C2);
253       }
254     }
255 
256     // Try to fold constant add into select arguments.
257     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
258       if (Instruction *R = FoldOpIntoSelect(I, SI))
259         return R;
260   }
261 
262   // add (select X 0 (sub n A)) A  -->  select X A n
263   {
264     SelectInst *SI = dyn_cast<SelectInst>(LHS);
265     Value *A = RHS;
266     if (!SI) {
267       SI = dyn_cast<SelectInst>(RHS);
268       A = LHS;
269     }
270     if (SI && SI->hasOneUse()) {
271       Value *TV = SI->getTrueValue();
272       Value *FV = SI->getFalseValue();
273       Value *N;
274 
275       // Can we fold the add into the argument of the select?
276       // We check both true and false select arguments for a matching subtract.
277       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
278         // Fold the add into the true select value.
279         return SelectInst::Create(SI->getCondition(), N, A);
280 
281       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
282         // Fold the add into the false select value.
283         return SelectInst::Create(SI->getCondition(), A, N);
284     }
285   }
286 
287   // Check for (add (sext x), y), see if we can merge this into an
288   // integer add followed by a sext.
289   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
290     // (add (sext x), cst) --> (sext (add x, cst'))
291     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
292       Constant *CI =
293         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
294       if (LHSConv->hasOneUse() &&
295           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
296           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
297         // Insert the new, smaller add.
298         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
299                                               CI, "addconv");
300         return new SExtInst(NewAdd, I.getType());
301       }
302     }
303 
304     // (add (sext x), (sext y)) --> (sext (add int x, y))
305     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
306       // Only do this if x/y have the same type, if at last one of them has a
307       // single use (so we don't increase the number of sexts), and if the
308       // integer add will not overflow.
309       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
310           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
311           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
312                                    RHSConv->getOperand(0))) {
313         // Insert the new integer add.
314         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
315                                              RHSConv->getOperand(0), "addconv");
316         return new SExtInst(NewAdd, I.getType());
317       }
318     }
319   }
320 
321   return Changed ? &I : 0;
322 }
323 
visitFAdd(BinaryOperator & I)324 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
325   bool Changed = SimplifyAssociativeOrCommutative(I);
326   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
327 
328   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
329     // X + 0 --> X
330     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
331       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
332                               (I.getType())->getValueAPF()))
333         return ReplaceInstUsesWith(I, LHS);
334     }
335 
336     if (isa<PHINode>(LHS))
337       if (Instruction *NV = FoldOpIntoPhi(I))
338         return NV;
339   }
340 
341   // -A + B  -->  B - A
342   // -A + -B  -->  -(A + B)
343   if (Value *LHSV = dyn_castFNegVal(LHS))
344     return BinaryOperator::CreateFSub(RHS, LHSV);
345 
346   // A + -B  -->  A - B
347   if (!isa<Constant>(RHS))
348     if (Value *V = dyn_castFNegVal(RHS))
349       return BinaryOperator::CreateFSub(LHS, V);
350 
351   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
352   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
353     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
354       return ReplaceInstUsesWith(I, LHS);
355 
356   // Check for (fadd double (sitofp x), y), see if we can merge this into an
357   // integer add followed by a promotion.
358   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
359     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
360     // ... if the constant fits in the integer value.  This is useful for things
361     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
362     // requires a constant pool load, and generally allows the add to be better
363     // instcombined.
364     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
365       Constant *CI =
366       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
367       if (LHSConv->hasOneUse() &&
368           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
369           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
370         // Insert the new integer add.
371         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
372                                               CI, "addconv");
373         return new SIToFPInst(NewAdd, I.getType());
374       }
375     }
376 
377     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
378     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
379       // Only do this if x/y have the same type, if at last one of them has a
380       // single use (so we don't increase the number of int->fp conversions),
381       // and if the integer add will not overflow.
382       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
383           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
384           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
385                                    RHSConv->getOperand(0))) {
386         // Insert the new integer add.
387         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
388                                               RHSConv->getOperand(0),"addconv");
389         return new SIToFPInst(NewAdd, I.getType());
390       }
391     }
392   }
393 
394   return Changed ? &I : 0;
395 }
396 
397 
398 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
399 /// code necessary to compute the offset from the base pointer (without adding
400 /// in the base pointer).  Return the result as a signed integer of intptr size.
EmitGEPOffset(User * GEP)401 Value *InstCombiner::EmitGEPOffset(User *GEP) {
402   TargetData &TD = *getTargetData();
403   gep_type_iterator GTI = gep_type_begin(GEP);
404   Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
405   Value *Result = Constant::getNullValue(IntPtrTy);
406 
407   // If the GEP is inbounds, we know that none of the addressing operations will
408   // overflow in an unsigned sense.
409   bool isInBounds = cast<GEPOperator>(GEP)->isInBounds();
410 
411   // Build a mask for high order bits.
412   unsigned IntPtrWidth = TD.getPointerSizeInBits();
413   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
414 
415   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
416        ++i, ++GTI) {
417     Value *Op = *i;
418     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
419     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
420       if (OpC->isZero()) continue;
421 
422       // Handle a struct index, which adds its field offset to the pointer.
423       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
424         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
425 
426         if (Size)
427           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
428                                       GEP->getName()+".offs");
429         continue;
430       }
431 
432       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
433       Constant *OC =
434               ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
435       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
436       // Emit an add instruction.
437       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
438       continue;
439     }
440     // Convert to correct type.
441     if (Op->getType() != IntPtrTy)
442       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
443     if (Size != 1) {
444       // We'll let instcombine(mul) convert this to a shl if possible.
445       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
446                               GEP->getName()+".idx", isInBounds /*NUW*/);
447     }
448 
449     // Emit an add instruction.
450     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
451   }
452   return Result;
453 }
454 
455 
456 
457 
458 /// Optimize pointer differences into the same array into a size.  Consider:
459 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
460 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
461 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)462 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
463                                                Type *Ty) {
464   assert(TD && "Must have target data info for this");
465 
466   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
467   // this.
468   bool Swapped = false;
469   GetElementPtrInst *GEP = 0;
470   ConstantExpr *CstGEP = 0;
471 
472   // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
473   // For now we require one side to be the base pointer "A" or a constant
474   // expression derived from it.
475   if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
476     // (gep X, ...) - X
477     if (LHSGEP->getOperand(0) == RHS) {
478       GEP = LHSGEP;
479       Swapped = false;
480     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
481       // (gep X, ...) - (ce_gep X, ...)
482       if (CE->getOpcode() == Instruction::GetElementPtr &&
483           LHSGEP->getOperand(0) == CE->getOperand(0)) {
484         CstGEP = CE;
485         GEP = LHSGEP;
486         Swapped = false;
487       }
488     }
489   }
490 
491   if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
492     // X - (gep X, ...)
493     if (RHSGEP->getOperand(0) == LHS) {
494       GEP = RHSGEP;
495       Swapped = true;
496     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
497       // (ce_gep X, ...) - (gep X, ...)
498       if (CE->getOpcode() == Instruction::GetElementPtr &&
499           RHSGEP->getOperand(0) == CE->getOperand(0)) {
500         CstGEP = CE;
501         GEP = RHSGEP;
502         Swapped = true;
503       }
504     }
505   }
506 
507   if (GEP == 0)
508     return 0;
509 
510   // Emit the offset of the GEP and an intptr_t.
511   Value *Result = EmitGEPOffset(GEP);
512 
513   // If we had a constant expression GEP on the other side offsetting the
514   // pointer, subtract it from the offset we have.
515   if (CstGEP) {
516     Value *CstOffset = EmitGEPOffset(CstGEP);
517     Result = Builder->CreateSub(Result, CstOffset);
518   }
519 
520 
521   // If we have p - gep(p, ...)  then we have to negate the result.
522   if (Swapped)
523     Result = Builder->CreateNeg(Result, "diff.neg");
524 
525   return Builder->CreateIntCast(Result, Ty, true);
526 }
527 
528 
visitSub(BinaryOperator & I)529 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
530   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
531 
532   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
533                                  I.hasNoUnsignedWrap(), TD))
534     return ReplaceInstUsesWith(I, V);
535 
536   // (A*B)-(A*C) -> A*(B-C) etc
537   if (Value *V = SimplifyUsingDistributiveLaws(I))
538     return ReplaceInstUsesWith(I, V);
539 
540   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
541   if (Value *V = dyn_castNegVal(Op1)) {
542     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
543     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
544     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
545     return Res;
546   }
547 
548   if (I.getType()->isIntegerTy(1))
549     return BinaryOperator::CreateXor(Op0, Op1);
550 
551   // Replace (-1 - A) with (~A).
552   if (match(Op0, m_AllOnes()))
553     return BinaryOperator::CreateNot(Op1);
554 
555   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
556     // C - ~X == X + (1+C)
557     Value *X = 0;
558     if (match(Op1, m_Not(m_Value(X))))
559       return BinaryOperator::CreateAdd(X, AddOne(C));
560 
561     // -(X >>u 31) -> (X >>s 31)
562     // -(X >>s 31) -> (X >>u 31)
563     if (C->isZero()) {
564       Value *X; ConstantInt *CI;
565       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
566           // Verify we are shifting out everything but the sign bit.
567           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
568         return BinaryOperator::CreateAShr(X, CI);
569 
570       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
571           // Verify we are shifting out everything but the sign bit.
572           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
573         return BinaryOperator::CreateLShr(X, CI);
574     }
575 
576     // Try to fold constant sub into select arguments.
577     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
578       if (Instruction *R = FoldOpIntoSelect(I, SI))
579         return R;
580 
581     // C - zext(bool) -> bool ? C - 1 : C
582     if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
583       if (ZI->getSrcTy()->isIntegerTy(1))
584         return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
585 
586     // C-(X+C2) --> (C-C2)-X
587     ConstantInt *C2;
588     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
589       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
590   }
591 
592 
593   { Value *Y;
594     // X-(X+Y) == -Y    X-(Y+X) == -Y
595     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
596         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
597       return BinaryOperator::CreateNeg(Y);
598 
599     // (X-Y)-X == -Y
600     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
601       return BinaryOperator::CreateNeg(Y);
602   }
603 
604   if (Op1->hasOneUse()) {
605     Value *X = 0, *Y = 0, *Z = 0;
606     Constant *C = 0;
607     ConstantInt *CI = 0;
608 
609     // (X - (Y - Z))  -->  (X + (Z - Y)).
610     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
611       return BinaryOperator::CreateAdd(Op0,
612                                       Builder->CreateSub(Z, Y, Op1->getName()));
613 
614     // (X - (X & Y))   -->   (X & ~Y)
615     //
616     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
617         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
618       return BinaryOperator::CreateAnd(Op0,
619                                   Builder->CreateNot(Y, Y->getName() + ".not"));
620 
621     // 0 - (X sdiv C)  -> (X sdiv -C)
622     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
623         match(Op0, m_Zero()))
624       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
625 
626     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
627     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
628       if (Value *XNeg = dyn_castNegVal(X))
629         return BinaryOperator::CreateShl(XNeg, Y);
630 
631     // X - X*C --> X * (1-C)
632     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
633       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
634       return BinaryOperator::CreateMul(Op0, CP1);
635     }
636 
637     // X - X<<C --> X * (1-(1<<C))
638     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
639       Constant *One = ConstantInt::get(I.getType(), 1);
640       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
641       return BinaryOperator::CreateMul(Op0, C);
642     }
643 
644     // X - A*-B -> X + A*B
645     // X - -A*B -> X + A*B
646     Value *A, *B;
647     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
648         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
649       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
650 
651     // X - A*CI -> X + A*-CI
652     // X - CI*A -> X + A*-CI
653     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
654         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
655       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
656       return BinaryOperator::CreateAdd(Op0, NewMul);
657     }
658   }
659 
660   ConstantInt *C1;
661   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
662     if (X == Op1)  // X*C - X --> X * (C-1)
663       return BinaryOperator::CreateMul(Op1, SubOne(C1));
664 
665     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
666     if (X == dyn_castFoldableMul(Op1, C2))
667       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
668   }
669 
670   // Optimize pointer differences into the same array into a size.  Consider:
671   //  &A[10] - &A[0]: we should compile this to "10".
672   if (TD) {
673     Value *LHSOp, *RHSOp;
674     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
675         match(Op1, m_PtrToInt(m_Value(RHSOp))))
676       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
677         return ReplaceInstUsesWith(I, Res);
678 
679     // trunc(p)-trunc(q) -> trunc(p-q)
680     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
681         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
682       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
683         return ReplaceInstUsesWith(I, Res);
684   }
685 
686   return 0;
687 }
688 
visitFSub(BinaryOperator & I)689 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
690   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
691 
692   // If this is a 'B = x-(-A)', change to B = x+A...
693   if (Value *V = dyn_castFNegVal(Op1))
694     return BinaryOperator::CreateFAdd(Op0, V);
695 
696   return 0;
697 }
698