1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/IntrinsicInst.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Support/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
commonShiftTransforms(BinaryOperator & I)22 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
23   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
24   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
25 
26   // See if we can fold away this shift.
27   if (SimplifyDemandedInstructionBits(I))
28     return &I;
29 
30   // Try to fold constant and into select arguments.
31   if (isa<Constant>(Op0))
32     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
33       if (Instruction *R = FoldOpIntoSelect(I, SI))
34         return R;
35 
36   if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
37     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
38       return Res;
39 
40   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
41   // Because shifts by negative values (which could occur if A were negative)
42   // are undefined.
43   Value *A; const APInt *B;
44   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
45     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
46     // demand the sign bit (and many others) here??
47     Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
48                                     Op1->getName());
49     I.setOperand(1, Rem);
50     return &I;
51   }
52 
53   return 0;
54 }
55 
56 /// CanEvaluateShifted - See if we can compute the specified value, but shifted
57 /// logically to the left or right by some number of bits.  This should return
58 /// true if the expression can be computed for the same cost as the current
59 /// expression tree.  This is used to eliminate extraneous shifting from things
60 /// like:
61 ///      %C = shl i128 %A, 64
62 ///      %D = shl i128 %B, 96
63 ///      %E = or i128 %C, %D
64 ///      %F = lshr i128 %E, 64
65 /// where the client will ask if E can be computed shifted right by 64-bits.  If
66 /// this succeeds, the GetShiftedValue function will be called to produce the
67 /// value.
CanEvaluateShifted(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC)68 static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
69                                InstCombiner &IC) {
70   // We can always evaluate constants shifted.
71   if (isa<Constant>(V))
72     return true;
73 
74   Instruction *I = dyn_cast<Instruction>(V);
75   if (!I) return false;
76 
77   // If this is the opposite shift, we can directly reuse the input of the shift
78   // if the needed bits are already zero in the input.  This allows us to reuse
79   // the value which means that we don't care if the shift has multiple uses.
80   //  TODO:  Handle opposite shift by exact value.
81   ConstantInt *CI = 0;
82   if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
83       (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
84     if (CI->getZExtValue() == NumBits) {
85       // TODO: Check that the input bits are already zero with MaskedValueIsZero
86 #if 0
87       // If this is a truncate of a logical shr, we can truncate it to a smaller
88       // lshr iff we know that the bits we would otherwise be shifting in are
89       // already zeros.
90       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
91       uint32_t BitWidth = Ty->getScalarSizeInBits();
92       if (MaskedValueIsZero(I->getOperand(0),
93             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
94           CI->getLimitedValue(BitWidth) < BitWidth) {
95         return CanEvaluateTruncated(I->getOperand(0), Ty);
96       }
97 #endif
98 
99     }
100   }
101 
102   // We can't mutate something that has multiple uses: doing so would
103   // require duplicating the instruction in general, which isn't profitable.
104   if (!I->hasOneUse()) return false;
105 
106   switch (I->getOpcode()) {
107   default: return false;
108   case Instruction::And:
109   case Instruction::Or:
110   case Instruction::Xor:
111     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
112     return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) &&
113            CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC);
114 
115   case Instruction::Shl: {
116     // We can often fold the shift into shifts-by-a-constant.
117     CI = dyn_cast<ConstantInt>(I->getOperand(1));
118     if (CI == 0) return false;
119 
120     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
121     if (isLeftShift) return true;
122 
123     // We can always turn shl(c)+shr(c) -> and(c2).
124     if (CI->getValue() == NumBits) return true;
125 
126     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
127 
128     // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
129     // profitable unless we know the and'd out bits are already zero.
130     if (CI->getZExtValue() > NumBits) {
131       unsigned LowBits = TypeWidth - CI->getZExtValue();
132       if (MaskedValueIsZero(I->getOperand(0),
133                        APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
134         return true;
135     }
136 
137     return false;
138   }
139   case Instruction::LShr: {
140     // We can often fold the shift into shifts-by-a-constant.
141     CI = dyn_cast<ConstantInt>(I->getOperand(1));
142     if (CI == 0) return false;
143 
144     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
145     if (!isLeftShift) return true;
146 
147     // We can always turn lshr(c)+shl(c) -> and(c2).
148     if (CI->getValue() == NumBits) return true;
149 
150     unsigned TypeWidth = I->getType()->getScalarSizeInBits();
151 
152     // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't
153     // profitable unless we know the and'd out bits are already zero.
154     if (CI->getZExtValue() > NumBits) {
155       unsigned LowBits = CI->getZExtValue() - NumBits;
156       if (MaskedValueIsZero(I->getOperand(0),
157                           APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
158         return true;
159     }
160 
161     return false;
162   }
163   case Instruction::Select: {
164     SelectInst *SI = cast<SelectInst>(I);
165     return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) &&
166            CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC);
167   }
168   case Instruction::PHI: {
169     // We can change a phi if we can change all operands.  Note that we never
170     // get into trouble with cyclic PHIs here because we only consider
171     // instructions with a single use.
172     PHINode *PN = cast<PHINode>(I);
173     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
174       if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC))
175         return false;
176     return true;
177   }
178   }
179 }
180 
181 /// GetShiftedValue - When CanEvaluateShifted returned true for an expression,
182 /// this value inserts the new computation that produces the shifted value.
GetShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC)183 static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
184                               InstCombiner &IC) {
185   // We can always evaluate constants shifted.
186   if (Constant *C = dyn_cast<Constant>(V)) {
187     if (isLeftShift)
188       V = IC.Builder->CreateShl(C, NumBits);
189     else
190       V = IC.Builder->CreateLShr(C, NumBits);
191     // If we got a constantexpr back, try to simplify it with TD info.
192     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193       V = ConstantFoldConstantExpression(CE, IC.getTargetData());
194     return V;
195   }
196 
197   Instruction *I = cast<Instruction>(V);
198   IC.Worklist.Add(I);
199 
200   switch (I->getOpcode()) {
201   default: assert(0 && "Inconsistency with CanEvaluateShifted");
202   case Instruction::And:
203   case Instruction::Or:
204   case Instruction::Xor:
205     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
206     I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC));
207     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
208     return I;
209 
210   case Instruction::Shl: {
211     BinaryOperator *BO = cast<BinaryOperator>(I);
212     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
213 
214     // We only accept shifts-by-a-constant in CanEvaluateShifted.
215     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
216 
217     // We can always fold shl(c1)+shl(c2) -> shl(c1+c2).
218     if (isLeftShift) {
219       // If this is oversized composite shift, then unsigned shifts get 0.
220       unsigned NewShAmt = NumBits+CI->getZExtValue();
221       if (NewShAmt >= TypeWidth)
222         return Constant::getNullValue(I->getType());
223 
224       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
225       BO->setHasNoUnsignedWrap(false);
226       BO->setHasNoSignedWrap(false);
227       return I;
228     }
229 
230     // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have
231     // zeros.
232     if (CI->getValue() == NumBits) {
233       APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits));
234       V = IC.Builder->CreateAnd(BO->getOperand(0),
235                                 ConstantInt::get(BO->getContext(), Mask));
236       if (Instruction *VI = dyn_cast<Instruction>(V)) {
237         VI->moveBefore(BO);
238         VI->takeName(BO);
239       }
240       return V;
241     }
242 
243     // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that
244     // the and won't be needed.
245     assert(CI->getZExtValue() > NumBits);
246     BO->setOperand(1, ConstantInt::get(BO->getType(),
247                                        CI->getZExtValue() - NumBits));
248     BO->setHasNoUnsignedWrap(false);
249     BO->setHasNoSignedWrap(false);
250     return BO;
251   }
252   case Instruction::LShr: {
253     BinaryOperator *BO = cast<BinaryOperator>(I);
254     unsigned TypeWidth = BO->getType()->getScalarSizeInBits();
255     // We only accept shifts-by-a-constant in CanEvaluateShifted.
256     ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
257 
258     // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2).
259     if (!isLeftShift) {
260       // If this is oversized composite shift, then unsigned shifts get 0.
261       unsigned NewShAmt = NumBits+CI->getZExtValue();
262       if (NewShAmt >= TypeWidth)
263         return Constant::getNullValue(BO->getType());
264 
265       BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt));
266       BO->setIsExact(false);
267       return I;
268     }
269 
270     // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have
271     // zeros.
272     if (CI->getValue() == NumBits) {
273       APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits));
274       V = IC.Builder->CreateAnd(I->getOperand(0),
275                                 ConstantInt::get(BO->getContext(), Mask));
276       if (Instruction *VI = dyn_cast<Instruction>(V)) {
277         VI->moveBefore(I);
278         VI->takeName(I);
279       }
280       return V;
281     }
282 
283     // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that
284     // the and won't be needed.
285     assert(CI->getZExtValue() > NumBits);
286     BO->setOperand(1, ConstantInt::get(BO->getType(),
287                                        CI->getZExtValue() - NumBits));
288     BO->setIsExact(false);
289     return BO;
290   }
291 
292   case Instruction::Select:
293     I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC));
294     I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC));
295     return I;
296   case Instruction::PHI: {
297     // We can change a phi if we can change all operands.  Note that we never
298     // get into trouble with cyclic PHIs here because we only consider
299     // instructions with a single use.
300     PHINode *PN = cast<PHINode>(I);
301     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
302       PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i),
303                                               NumBits, isLeftShift, IC));
304     return PN;
305   }
306   }
307 }
308 
309 
310 
FoldShiftByConstant(Value * Op0,ConstantInt * Op1,BinaryOperator & I)311 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
312                                                BinaryOperator &I) {
313   bool isLeftShift = I.getOpcode() == Instruction::Shl;
314 
315 
316   // See if we can propagate this shift into the input, this covers the trivial
317   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
318   if (I.getOpcode() != Instruction::AShr &&
319       CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) {
320     DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression"
321               " to eliminate shift:\n  IN: " << *Op0 << "\n  SH: " << I <<"\n");
322 
323     return ReplaceInstUsesWith(I,
324                  GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this));
325   }
326 
327 
328   // See if we can simplify any instructions used by the instruction whose sole
329   // purpose is to compute bits we don't care about.
330   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
331 
332   // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
333   // a signed shift.
334   //
335   if (Op1->uge(TypeBits)) {
336     if (I.getOpcode() != Instruction::AShr)
337       return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
338     // ashr i32 X, 32 --> ashr i32 X, 31
339     I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
340     return &I;
341   }
342 
343   // ((X*C1) << C2) == (X * (C1 << C2))
344   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
345     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
346       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
347         return BinaryOperator::CreateMul(BO->getOperand(0),
348                                         ConstantExpr::getShl(BOOp, Op1));
349 
350   // Try to fold constant and into select arguments.
351   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
352     if (Instruction *R = FoldOpIntoSelect(I, SI))
353       return R;
354   if (isa<PHINode>(Op0))
355     if (Instruction *NV = FoldOpIntoPhi(I))
356       return NV;
357 
358   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
359   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
360     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
361     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
362     // place.  Don't try to do this transformation in this case.  Also, we
363     // require that the input operand is a shift-by-constant so that we have
364     // confidence that the shifts will get folded together.  We could do this
365     // xform in more cases, but it is unlikely to be profitable.
366     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
367         isa<ConstantInt>(TrOp->getOperand(1))) {
368       // Okay, we'll do this xform.  Make the shift of shift.
369       Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
370       // (shift2 (shift1 & 0x00FF), c2)
371       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
372 
373       // For logical shifts, the truncation has the effect of making the high
374       // part of the register be zeros.  Emulate this by inserting an AND to
375       // clear the top bits as needed.  This 'and' will usually be zapped by
376       // other xforms later if dead.
377       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
378       unsigned DstSize = TI->getType()->getScalarSizeInBits();
379       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
380 
381       // The mask we constructed says what the trunc would do if occurring
382       // between the shifts.  We want to know the effect *after* the second
383       // shift.  We know that it is a logical shift by a constant, so adjust the
384       // mask as appropriate.
385       if (I.getOpcode() == Instruction::Shl)
386         MaskV <<= Op1->getZExtValue();
387       else {
388         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
389         MaskV = MaskV.lshr(Op1->getZExtValue());
390       }
391 
392       // shift1 & 0x00FF
393       Value *And = Builder->CreateAnd(NSh,
394                                       ConstantInt::get(I.getContext(), MaskV),
395                                       TI->getName());
396 
397       // Return the value truncated to the interesting size.
398       return new TruncInst(And, I.getType());
399     }
400   }
401 
402   if (Op0->hasOneUse()) {
403     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
404       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
405       Value *V1, *V2;
406       ConstantInt *CC;
407       switch (Op0BO->getOpcode()) {
408       default: break;
409       case Instruction::Add:
410       case Instruction::And:
411       case Instruction::Or:
412       case Instruction::Xor: {
413         // These operators commute.
414         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
415         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
416             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
417                   m_Specific(Op1)))) {
418           Value *YS =         // (Y << C)
419             Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
420           // (X + (Y << C))
421           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
422                                           Op0BO->getOperand(1)->getName());
423           uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
424           return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
425                      APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
426         }
427 
428         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
429         Value *Op0BOOp1 = Op0BO->getOperand(1);
430         if (isLeftShift && Op0BOOp1->hasOneUse() &&
431             match(Op0BOOp1,
432                   m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
433                         m_ConstantInt(CC))) &&
434             cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
435           Value *YS =   // (Y << C)
436             Builder->CreateShl(Op0BO->getOperand(0), Op1,
437                                          Op0BO->getName());
438           // X & (CC << C)
439           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
440                                          V1->getName()+".mask");
441           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
442         }
443       }
444 
445       // FALL THROUGH.
446       case Instruction::Sub: {
447         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
448         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
449             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
450                   m_Specific(Op1)))) {
451           Value *YS =  // (Y << C)
452             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
453           // (X + (Y << C))
454           Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
455                                           Op0BO->getOperand(0)->getName());
456           uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
457           return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(),
458                      APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
459         }
460 
461         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
462         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
463             match(Op0BO->getOperand(0),
464                   m_And(m_Shr(m_Value(V1), m_Value(V2)),
465                         m_ConstantInt(CC))) && V2 == Op1 &&
466             cast<BinaryOperator>(Op0BO->getOperand(0))
467                 ->getOperand(0)->hasOneUse()) {
468           Value *YS = // (Y << C)
469             Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
470           // X & (CC << C)
471           Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
472                                          V1->getName()+".mask");
473 
474           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
475         }
476 
477         break;
478       }
479       }
480 
481 
482       // If the operand is an bitwise operator with a constant RHS, and the
483       // shift is the only use, we can pull it out of the shift.
484       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
485         bool isValid = true;     // Valid only for And, Or, Xor
486         bool highBitSet = false; // Transform if high bit of constant set?
487 
488         switch (Op0BO->getOpcode()) {
489         default: isValid = false; break;   // Do not perform transform!
490         case Instruction::Add:
491           isValid = isLeftShift;
492           break;
493         case Instruction::Or:
494         case Instruction::Xor:
495           highBitSet = false;
496           break;
497         case Instruction::And:
498           highBitSet = true;
499           break;
500         }
501 
502         // If this is a signed shift right, and the high bit is modified
503         // by the logical operation, do not perform the transformation.
504         // The highBitSet boolean indicates the value of the high bit of
505         // the constant which would cause it to be modified for this
506         // operation.
507         //
508         if (isValid && I.getOpcode() == Instruction::AShr)
509           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
510 
511         if (isValid) {
512           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
513 
514           Value *NewShift =
515             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
516           NewShift->takeName(Op0BO);
517 
518           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
519                                         NewRHS);
520         }
521       }
522     }
523   }
524 
525   // Find out if this is a shift of a shift by a constant.
526   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
527   if (ShiftOp && !ShiftOp->isShift())
528     ShiftOp = 0;
529 
530   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
531     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
532     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
533     uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
534     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
535     if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
536     Value *X = ShiftOp->getOperand(0);
537 
538     uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
539 
540     IntegerType *Ty = cast<IntegerType>(I.getType());
541 
542     // Check for (X << c1) << c2  and  (X >> c1) >> c2
543     if (I.getOpcode() == ShiftOp->getOpcode()) {
544       // If this is oversized composite shift, then unsigned shifts get 0, ashr
545       // saturates.
546       if (AmtSum >= TypeBits) {
547         if (I.getOpcode() != Instruction::AShr)
548           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
549         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
550       }
551 
552       return BinaryOperator::Create(I.getOpcode(), X,
553                                     ConstantInt::get(Ty, AmtSum));
554     }
555 
556     if (ShiftAmt1 == ShiftAmt2) {
557       // If we have ((X >>? C) << C), turn this into X & (-1 << C).
558       if (I.getOpcode() == Instruction::Shl &&
559           ShiftOp->getOpcode() != Instruction::Shl) {
560         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
561         return BinaryOperator::CreateAnd(X,
562                                          ConstantInt::get(I.getContext(),Mask));
563       }
564       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
565       if (I.getOpcode() == Instruction::LShr &&
566           ShiftOp->getOpcode() == Instruction::Shl) {
567         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
568         return BinaryOperator::CreateAnd(X,
569                                         ConstantInt::get(I.getContext(), Mask));
570       }
571     } else if (ShiftAmt1 < ShiftAmt2) {
572       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
573 
574       // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
575       if (I.getOpcode() == Instruction::Shl &&
576           ShiftOp->getOpcode() != Instruction::Shl) {
577         assert(ShiftOp->getOpcode() == Instruction::LShr ||
578                ShiftOp->getOpcode() == Instruction::AShr);
579         Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
580 
581         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
582         return BinaryOperator::CreateAnd(Shift,
583                                          ConstantInt::get(I.getContext(),Mask));
584       }
585 
586       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
587       if (I.getOpcode() == Instruction::LShr &&
588           ShiftOp->getOpcode() == Instruction::Shl) {
589         assert(ShiftOp->getOpcode() == Instruction::Shl);
590         Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
591 
592         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
593         return BinaryOperator::CreateAnd(Shift,
594                                          ConstantInt::get(I.getContext(),Mask));
595       }
596 
597       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
598     } else {
599       assert(ShiftAmt2 < ShiftAmt1);
600       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
601 
602       // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
603       if (I.getOpcode() == Instruction::Shl &&
604           ShiftOp->getOpcode() != Instruction::Shl) {
605         Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
606                                             ConstantInt::get(Ty, ShiftDiff));
607 
608         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
609         return BinaryOperator::CreateAnd(Shift,
610                                          ConstantInt::get(I.getContext(),Mask));
611       }
612 
613       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
614       if (I.getOpcode() == Instruction::LShr &&
615           ShiftOp->getOpcode() == Instruction::Shl) {
616         Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
617 
618         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
619         return BinaryOperator::CreateAnd(Shift,
620                                          ConstantInt::get(I.getContext(),Mask));
621       }
622 
623       // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
624     }
625   }
626   return 0;
627 }
628 
visitShl(BinaryOperator & I)629 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
630   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
631                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
632                                  TD))
633     return ReplaceInstUsesWith(I, V);
634 
635   if (Instruction *V = commonShiftTransforms(I))
636     return V;
637 
638   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
639     unsigned ShAmt = Op1C->getZExtValue();
640 
641     // If the shifted-out value is known-zero, then this is a NUW shift.
642     if (!I.hasNoUnsignedWrap() &&
643         MaskedValueIsZero(I.getOperand(0),
644                           APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
645           I.setHasNoUnsignedWrap();
646           return &I;
647         }
648 
649     // If the shifted out value is all signbits, this is a NSW shift.
650     if (!I.hasNoSignedWrap() &&
651         ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
652       I.setHasNoSignedWrap();
653       return &I;
654     }
655   }
656 
657   // (C1 << A) << C2 -> (C1 << C2) << A
658   Constant *C1, *C2;
659   Value *A;
660   if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) &&
661       match(I.getOperand(1), m_Constant(C2)))
662     return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A);
663 
664   return 0;
665 }
666 
visitLShr(BinaryOperator & I)667 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
668   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
669                                   I.isExact(), TD))
670     return ReplaceInstUsesWith(I, V);
671 
672   if (Instruction *R = commonShiftTransforms(I))
673     return R;
674 
675   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
676 
677   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
678     unsigned ShAmt = Op1C->getZExtValue();
679 
680     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
681       unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
682       // ctlz.i32(x)>>5  --> zext(x == 0)
683       // cttz.i32(x)>>5  --> zext(x == 0)
684       // ctpop.i32(x)>>5 --> zext(x == -1)
685       if ((II->getIntrinsicID() == Intrinsic::ctlz ||
686            II->getIntrinsicID() == Intrinsic::cttz ||
687            II->getIntrinsicID() == Intrinsic::ctpop) &&
688           isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
689         bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
690         Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
691         Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
692         return new ZExtInst(Cmp, II->getType());
693       }
694     }
695 
696     // If the shifted-out value is known-zero, then this is an exact shift.
697     if (!I.isExact() &&
698         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
699       I.setIsExact();
700       return &I;
701     }
702   }
703 
704   return 0;
705 }
706 
visitAShr(BinaryOperator & I)707 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
708   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
709                                   I.isExact(), TD))
710     return ReplaceInstUsesWith(I, V);
711 
712   if (Instruction *R = commonShiftTransforms(I))
713     return R;
714 
715   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
716 
717   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
718     unsigned ShAmt = Op1C->getZExtValue();
719 
720     // If the input is a SHL by the same constant (ashr (shl X, C), C), then we
721     // have a sign-extend idiom.
722     Value *X;
723     if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
724       // If the left shift is just shifting out partial signbits, delete the
725       // extension.
726       if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
727         return ReplaceInstUsesWith(I, X);
728 
729       // If the input is an extension from the shifted amount value, e.g.
730       //   %x = zext i8 %A to i32
731       //   %y = shl i32 %x, 24
732       //   %z = ashr %y, 24
733       // then turn this into "z = sext i8 A to i32".
734       if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) {
735         uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits();
736         uint32_t DestBits = ZI->getType()->getScalarSizeInBits();
737         if (Op1C->getZExtValue() == DestBits-SrcBits)
738           return new SExtInst(ZI->getOperand(0), ZI->getType());
739       }
740     }
741 
742     // If the shifted-out value is known-zero, then this is an exact shift.
743     if (!I.isExact() &&
744         MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
745       I.setIsExact();
746       return &I;
747     }
748   }
749 
750   // See if we can turn a signed shr into an unsigned shr.
751   if (MaskedValueIsZero(Op0,
752                         APInt::getSignBit(I.getType()->getScalarSizeInBits())))
753     return BinaryOperator::CreateLShr(Op0, Op1);
754 
755   // Arithmetic shifting an all-sign-bit value is a no-op.
756   unsigned NumSignBits = ComputeNumSignBits(Op0);
757   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
758     return ReplaceInstUsesWith(I, Op0);
759 
760   return 0;
761 }
762 
763