1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14
15
16 #include "InstCombine.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/IntrinsicInst.h"
19
20 using namespace llvm;
21
22
23 /// ShrinkDemandedConstant - Check to see if the specified operand of the
24 /// specified instruction is a constant integer. If so, check to see if there
25 /// are any bits set in the constant that are not demanded. If so, shrink the
26 /// constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,APInt Demanded)27 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28 APInt Demanded) {
29 assert(I && "No instruction?");
30 assert(OpNo < I->getNumOperands() && "Operand index too large");
31
32 // If the operand is not a constant integer, nothing to do.
33 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34 if (!OpC) return false;
35
36 // If there are no bits set that aren't demanded, nothing to do.
37 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
38 if ((~Demanded & OpC->getValue()) == 0)
39 return false;
40
41 // This instruction is producing bits that are not demanded. Shrink the RHS.
42 Demanded &= OpC->getValue();
43 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44 return true;
45 }
46
47
48
49 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50 /// SimplifyDemandedBits knows about. See if the instruction has any
51 /// properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)52 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56
57 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58 KnownZero, KnownOne, 0);
59 if (V == 0) return false;
60 if (V == &Inst) return true;
61 ReplaceInstUsesWith(Inst, V);
62 return true;
63 }
64
65 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66 /// specified instruction operand if possible, updating it in place. It returns
67 /// true if it made any change and false otherwise.
SimplifyDemandedBits(Use & U,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)68 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69 APInt &KnownZero, APInt &KnownOne,
70 unsigned Depth) {
71 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72 KnownZero, KnownOne, Depth);
73 if (NewVal == 0) return false;
74 U = NewVal;
75 return true;
76 }
77
78
79 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80 /// value based on the demanded bits. When this function is called, it is known
81 /// that only the bits set in DemandedMask of the result of V are ever used
82 /// downstream. Consequently, depending on the mask and V, it may be possible
83 /// to replace V with a constant or one of its operands. In such cases, this
84 /// function does the replacement and returns true. In all other cases, it
85 /// returns false after analyzing the expression and setting KnownOne and known
86 /// to be one in the expression. KnownZero contains all the bits that are known
87 /// to be zero in the expression. These are provided to potentially allow the
88 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89 /// the expression. KnownOne and KnownZero always follow the invariant that
90 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
92 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93 /// and KnownOne must all be the same.
94 ///
95 /// This returns null if it did not change anything and it permits no
96 /// simplification. This returns V itself if it did some simplification of V's
97 /// operands based on the information about what bits are demanded. This returns
98 /// some other non-null value if it found out that V is equal to another value
99 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,APInt & KnownZero,APInt & KnownOne,unsigned Depth)100 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101 APInt &KnownZero, APInt &KnownOne,
102 unsigned Depth) {
103 assert(V != 0 && "Null pointer of Value???");
104 assert(Depth <= 6 && "Limit Search Depth");
105 uint32_t BitWidth = DemandedMask.getBitWidth();
106 Type *VTy = V->getType();
107 assert((TD || !VTy->isPointerTy()) &&
108 "SimplifyDemandedBits needs to know bit widths!");
109 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
110 (!VTy->isIntOrIntVectorTy() ||
111 VTy->getScalarSizeInBits() == BitWidth) &&
112 KnownZero.getBitWidth() == BitWidth &&
113 KnownOne.getBitWidth() == BitWidth &&
114 "Value *V, DemandedMask, KnownZero and KnownOne "
115 "must have same BitWidth");
116 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117 // We know all of the bits for a constant!
118 KnownOne = CI->getValue() & DemandedMask;
119 KnownZero = ~KnownOne & DemandedMask;
120 return 0;
121 }
122 if (isa<ConstantPointerNull>(V)) {
123 // We know all of the bits for a constant!
124 KnownOne.clearAllBits();
125 KnownZero = DemandedMask;
126 return 0;
127 }
128
129 KnownZero.clearAllBits();
130 KnownOne.clearAllBits();
131 if (DemandedMask == 0) { // Not demanding any bits from V.
132 if (isa<UndefValue>(V))
133 return 0;
134 return UndefValue::get(VTy);
135 }
136
137 if (Depth == 6) // Limit search depth.
138 return 0;
139
140 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
141 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
142
143 Instruction *I = dyn_cast<Instruction>(V);
144 if (!I) {
145 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
146 return 0; // Only analyze instructions.
147 }
148
149 // If there are multiple uses of this value and we aren't at the root, then
150 // we can't do any simplifications of the operands, because DemandedMask
151 // only reflects the bits demanded by *one* of the users.
152 if (Depth != 0 && !I->hasOneUse()) {
153 // Despite the fact that we can't simplify this instruction in all User's
154 // context, we can at least compute the knownzero/knownone bits, and we can
155 // do simplifications that apply to *just* the one user if we know that
156 // this instruction has a simpler value in that context.
157 if (I->getOpcode() == Instruction::And) {
158 // If either the LHS or the RHS are Zero, the result is zero.
159 ComputeMaskedBits(I->getOperand(1), DemandedMask,
160 RHSKnownZero, RHSKnownOne, Depth+1);
161 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162 LHSKnownZero, LHSKnownOne, Depth+1);
163
164 // If all of the demanded bits are known 1 on one side, return the other.
165 // These bits cannot contribute to the result of the 'and' in this
166 // context.
167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168 (DemandedMask & ~LHSKnownZero))
169 return I->getOperand(0);
170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171 (DemandedMask & ~RHSKnownZero))
172 return I->getOperand(1);
173
174 // If all of the demanded bits in the inputs are known zeros, return zero.
175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176 return Constant::getNullValue(VTy);
177
178 } else if (I->getOpcode() == Instruction::Or) {
179 // We can simplify (X|Y) -> X or Y in the user's context if we know that
180 // only bits from X or Y are demanded.
181
182 // If either the LHS or the RHS are One, the result is One.
183 ComputeMaskedBits(I->getOperand(1), DemandedMask,
184 RHSKnownZero, RHSKnownOne, Depth+1);
185 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186 LHSKnownZero, LHSKnownOne, Depth+1);
187
188 // If all of the demanded bits are known zero on one side, return the
189 // other. These bits cannot contribute to the result of the 'or' in this
190 // context.
191 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192 (DemandedMask & ~LHSKnownOne))
193 return I->getOperand(0);
194 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195 (DemandedMask & ~RHSKnownOne))
196 return I->getOperand(1);
197
198 // If all of the potentially set bits on one side are known to be set on
199 // the other side, just use the 'other' side.
200 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201 (DemandedMask & (~RHSKnownZero)))
202 return I->getOperand(0);
203 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204 (DemandedMask & (~LHSKnownZero)))
205 return I->getOperand(1);
206 }
207
208 // Compute the KnownZero/KnownOne bits to simplify things downstream.
209 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210 return 0;
211 }
212
213 // If this is the root being simplified, allow it to have multiple uses,
214 // just set the DemandedMask to all bits so that we can try to simplify the
215 // operands. This allows visitTruncInst (for example) to simplify the
216 // operand of a trunc without duplicating all the logic below.
217 if (Depth == 0 && !V->hasOneUse())
218 DemandedMask = APInt::getAllOnesValue(BitWidth);
219
220 switch (I->getOpcode()) {
221 default:
222 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
223 break;
224 case Instruction::And:
225 // If either the LHS or the RHS are Zero, the result is zero.
226 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227 RHSKnownZero, RHSKnownOne, Depth+1) ||
228 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229 LHSKnownZero, LHSKnownOne, Depth+1))
230 return I;
231 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
233
234 // If all of the demanded bits are known 1 on one side, return the other.
235 // These bits cannot contribute to the result of the 'and'.
236 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237 (DemandedMask & ~LHSKnownZero))
238 return I->getOperand(0);
239 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240 (DemandedMask & ~RHSKnownZero))
241 return I->getOperand(1);
242
243 // If all of the demanded bits in the inputs are known zeros, return zero.
244 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245 return Constant::getNullValue(VTy);
246
247 // If the RHS is a constant, see if we can simplify it.
248 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249 return I;
250
251 // Output known-1 bits are only known if set in both the LHS & RHS.
252 KnownOne = RHSKnownOne & LHSKnownOne;
253 // Output known-0 are known to be clear if zero in either the LHS | RHS.
254 KnownZero = RHSKnownZero | LHSKnownZero;
255 break;
256 case Instruction::Or:
257 // If either the LHS or the RHS are One, the result is One.
258 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259 RHSKnownZero, RHSKnownOne, Depth+1) ||
260 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261 LHSKnownZero, LHSKnownOne, Depth+1))
262 return I;
263 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
265
266 // If all of the demanded bits are known zero on one side, return the other.
267 // These bits cannot contribute to the result of the 'or'.
268 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269 (DemandedMask & ~LHSKnownOne))
270 return I->getOperand(0);
271 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272 (DemandedMask & ~RHSKnownOne))
273 return I->getOperand(1);
274
275 // If all of the potentially set bits on one side are known to be set on
276 // the other side, just use the 'other' side.
277 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278 (DemandedMask & (~RHSKnownZero)))
279 return I->getOperand(0);
280 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281 (DemandedMask & (~LHSKnownZero)))
282 return I->getOperand(1);
283
284 // If the RHS is a constant, see if we can simplify it.
285 if (ShrinkDemandedConstant(I, 1, DemandedMask))
286 return I;
287
288 // Output known-0 bits are only known if clear in both the LHS & RHS.
289 KnownZero = RHSKnownZero & LHSKnownZero;
290 // Output known-1 are known to be set if set in either the LHS | RHS.
291 KnownOne = RHSKnownOne | LHSKnownOne;
292 break;
293 case Instruction::Xor: {
294 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295 RHSKnownZero, RHSKnownOne, Depth+1) ||
296 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297 LHSKnownZero, LHSKnownOne, Depth+1))
298 return I;
299 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
301
302 // If all of the demanded bits are known zero on one side, return the other.
303 // These bits cannot contribute to the result of the 'xor'.
304 if ((DemandedMask & RHSKnownZero) == DemandedMask)
305 return I->getOperand(0);
306 if ((DemandedMask & LHSKnownZero) == DemandedMask)
307 return I->getOperand(1);
308
309 // If all of the demanded bits are known to be zero on one side or the
310 // other, turn this into an *inclusive* or.
311 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313 Instruction *Or =
314 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315 I->getName());
316 return InsertNewInstWith(Or, *I);
317 }
318
319 // If all of the demanded bits on one side are known, and all of the set
320 // bits on that side are also known to be set on the other side, turn this
321 // into an AND, as we know the bits will be cleared.
322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324 // all known
325 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326 Constant *AndC = Constant::getIntegerValue(VTy,
327 ~RHSKnownOne & DemandedMask);
328 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
329 return InsertNewInstWith(And, *I);
330 }
331 }
332
333 // If the RHS is a constant, see if we can simplify it.
334 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
335 if (ShrinkDemandedConstant(I, 1, DemandedMask))
336 return I;
337
338 // If our LHS is an 'and' and if it has one use, and if any of the bits we
339 // are flipping are known to be set, then the xor is just resetting those
340 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
341 // simplifying both of them.
342 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
343 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
344 isa<ConstantInt>(I->getOperand(1)) &&
345 isa<ConstantInt>(LHSInst->getOperand(1)) &&
346 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
347 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
348 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
349 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
350
351 Constant *AndC =
352 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
353 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
354 InsertNewInstWith(NewAnd, *I);
355
356 Constant *XorC =
357 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
358 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
359 return InsertNewInstWith(NewXor, *I);
360 }
361
362 // Output known-0 bits are known if clear or set in both the LHS & RHS.
363 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
364 // Output known-1 are known to be set if set in only one of the LHS, RHS.
365 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
366 break;
367 }
368 case Instruction::Select:
369 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
370 RHSKnownZero, RHSKnownOne, Depth+1) ||
371 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
372 LHSKnownZero, LHSKnownOne, Depth+1))
373 return I;
374 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
375 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
376
377 // If the operands are constants, see if we can simplify them.
378 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
379 ShrinkDemandedConstant(I, 2, DemandedMask))
380 return I;
381
382 // Only known if known in both the LHS and RHS.
383 KnownOne = RHSKnownOne & LHSKnownOne;
384 KnownZero = RHSKnownZero & LHSKnownZero;
385 break;
386 case Instruction::Trunc: {
387 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
388 DemandedMask = DemandedMask.zext(truncBf);
389 KnownZero = KnownZero.zext(truncBf);
390 KnownOne = KnownOne.zext(truncBf);
391 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
392 KnownZero, KnownOne, Depth+1))
393 return I;
394 DemandedMask = DemandedMask.trunc(BitWidth);
395 KnownZero = KnownZero.trunc(BitWidth);
396 KnownOne = KnownOne.trunc(BitWidth);
397 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
398 break;
399 }
400 case Instruction::BitCast:
401 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
402 return 0; // vector->int or fp->int?
403
404 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
405 if (VectorType *SrcVTy =
406 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
407 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
408 // Don't touch a bitcast between vectors of different element counts.
409 return 0;
410 } else
411 // Don't touch a scalar-to-vector bitcast.
412 return 0;
413 } else if (I->getOperand(0)->getType()->isVectorTy())
414 // Don't touch a vector-to-scalar bitcast.
415 return 0;
416
417 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
418 KnownZero, KnownOne, Depth+1))
419 return I;
420 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
421 break;
422 case Instruction::ZExt: {
423 // Compute the bits in the result that are not present in the input.
424 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
425
426 DemandedMask = DemandedMask.trunc(SrcBitWidth);
427 KnownZero = KnownZero.trunc(SrcBitWidth);
428 KnownOne = KnownOne.trunc(SrcBitWidth);
429 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
430 KnownZero, KnownOne, Depth+1))
431 return I;
432 DemandedMask = DemandedMask.zext(BitWidth);
433 KnownZero = KnownZero.zext(BitWidth);
434 KnownOne = KnownOne.zext(BitWidth);
435 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
436 // The top bits are known to be zero.
437 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
438 break;
439 }
440 case Instruction::SExt: {
441 // Compute the bits in the result that are not present in the input.
442 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
443
444 APInt InputDemandedBits = DemandedMask &
445 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
446
447 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
448 // If any of the sign extended bits are demanded, we know that the sign
449 // bit is demanded.
450 if ((NewBits & DemandedMask) != 0)
451 InputDemandedBits.setBit(SrcBitWidth-1);
452
453 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
454 KnownZero = KnownZero.trunc(SrcBitWidth);
455 KnownOne = KnownOne.trunc(SrcBitWidth);
456 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
457 KnownZero, KnownOne, Depth+1))
458 return I;
459 InputDemandedBits = InputDemandedBits.zext(BitWidth);
460 KnownZero = KnownZero.zext(BitWidth);
461 KnownOne = KnownOne.zext(BitWidth);
462 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
463
464 // If the sign bit of the input is known set or clear, then we know the
465 // top bits of the result.
466
467 // If the input sign bit is known zero, or if the NewBits are not demanded
468 // convert this into a zero extension.
469 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
470 // Convert to ZExt cast
471 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
472 return InsertNewInstWith(NewCast, *I);
473 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
474 KnownOne |= NewBits;
475 }
476 break;
477 }
478 case Instruction::Add: {
479 // Figure out what the input bits are. If the top bits of the and result
480 // are not demanded, then the add doesn't demand them from its input
481 // either.
482 unsigned NLZ = DemandedMask.countLeadingZeros();
483
484 // If there is a constant on the RHS, there are a variety of xformations
485 // we can do.
486 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 // If null, this should be simplified elsewhere. Some of the xforms here
488 // won't work if the RHS is zero.
489 if (RHS->isZero())
490 break;
491
492 // If the top bit of the output is demanded, demand everything from the
493 // input. Otherwise, we demand all the input bits except NLZ top bits.
494 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
495
496 // Find information about known zero/one bits in the input.
497 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
498 LHSKnownZero, LHSKnownOne, Depth+1))
499 return I;
500
501 // If the RHS of the add has bits set that can't affect the input, reduce
502 // the constant.
503 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
504 return I;
505
506 // Avoid excess work.
507 if (LHSKnownZero == 0 && LHSKnownOne == 0)
508 break;
509
510 // Turn it into OR if input bits are zero.
511 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
512 Instruction *Or =
513 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
514 I->getName());
515 return InsertNewInstWith(Or, *I);
516 }
517
518 // We can say something about the output known-zero and known-one bits,
519 // depending on potential carries from the input constant and the
520 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
521 // bits set and the RHS constant is 0x01001, then we know we have a known
522 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
523
524 // To compute this, we first compute the potential carry bits. These are
525 // the bits which may be modified. I'm not aware of a better way to do
526 // this scan.
527 const APInt &RHSVal = RHS->getValue();
528 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
529
530 // Now that we know which bits have carries, compute the known-1/0 sets.
531
532 // Bits are known one if they are known zero in one operand and one in the
533 // other, and there is no input carry.
534 KnownOne = ((LHSKnownZero & RHSVal) |
535 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
536
537 // Bits are known zero if they are known zero in both operands and there
538 // is no input carry.
539 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
540 } else {
541 // If the high-bits of this ADD are not demanded, then it does not demand
542 // the high bits of its LHS or RHS.
543 if (DemandedMask[BitWidth-1] == 0) {
544 // Right fill the mask of bits for this ADD to demand the most
545 // significant bit and all those below it.
546 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
547 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
548 LHSKnownZero, LHSKnownOne, Depth+1) ||
549 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
550 LHSKnownZero, LHSKnownOne, Depth+1))
551 return I;
552 }
553 }
554 break;
555 }
556 case Instruction::Sub:
557 // If the high-bits of this SUB are not demanded, then it does not demand
558 // the high bits of its LHS or RHS.
559 if (DemandedMask[BitWidth-1] == 0) {
560 // Right fill the mask of bits for this SUB to demand the most
561 // significant bit and all those below it.
562 uint32_t NLZ = DemandedMask.countLeadingZeros();
563 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
564 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
565 LHSKnownZero, LHSKnownOne, Depth+1) ||
566 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
567 LHSKnownZero, LHSKnownOne, Depth+1))
568 return I;
569 }
570 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
571 // the known zeros and ones.
572 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
573 break;
574 case Instruction::Shl:
575 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
576 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
577 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
578
579 // If the shift is NUW/NSW, then it does demand the high bits.
580 ShlOperator *IOp = cast<ShlOperator>(I);
581 if (IOp->hasNoSignedWrap())
582 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
583 else if (IOp->hasNoUnsignedWrap())
584 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
585
586 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
587 KnownZero, KnownOne, Depth+1))
588 return I;
589 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
590 KnownZero <<= ShiftAmt;
591 KnownOne <<= ShiftAmt;
592 // low bits known zero.
593 if (ShiftAmt)
594 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
595 }
596 break;
597 case Instruction::LShr:
598 // For a logical shift right
599 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
600 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
601
602 // Unsigned shift right.
603 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
604
605 // If the shift is exact, then it does demand the low bits (and knows that
606 // they are zero).
607 if (cast<LShrOperator>(I)->isExact())
608 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
609
610 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
611 KnownZero, KnownOne, Depth+1))
612 return I;
613 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
614 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
615 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
616 if (ShiftAmt) {
617 // Compute the new bits that are at the top now.
618 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
619 KnownZero |= HighBits; // high bits known zero.
620 }
621 }
622 break;
623 case Instruction::AShr:
624 // If this is an arithmetic shift right and only the low-bit is set, we can
625 // always convert this into a logical shr, even if the shift amount is
626 // variable. The low bit of the shift cannot be an input sign bit unless
627 // the shift amount is >= the size of the datatype, which is undefined.
628 if (DemandedMask == 1) {
629 // Perform the logical shift right.
630 Instruction *NewVal = BinaryOperator::CreateLShr(
631 I->getOperand(0), I->getOperand(1), I->getName());
632 return InsertNewInstWith(NewVal, *I);
633 }
634
635 // If the sign bit is the only bit demanded by this ashr, then there is no
636 // need to do it, the shift doesn't change the high bit.
637 if (DemandedMask.isSignBit())
638 return I->getOperand(0);
639
640 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
641 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
642
643 // Signed shift right.
644 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
645 // If any of the "high bits" are demanded, we should set the sign bit as
646 // demanded.
647 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
648 DemandedMaskIn.setBit(BitWidth-1);
649
650 // If the shift is exact, then it does demand the low bits (and knows that
651 // they are zero).
652 if (cast<AShrOperator>(I)->isExact())
653 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
654
655 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
656 KnownZero, KnownOne, Depth+1))
657 return I;
658 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
659 // Compute the new bits that are at the top now.
660 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
661 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
662 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
663
664 // Handle the sign bits.
665 APInt SignBit(APInt::getSignBit(BitWidth));
666 // Adjust to where it is now in the mask.
667 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
668
669 // If the input sign bit is known to be zero, or if none of the top bits
670 // are demanded, turn this into an unsigned shift right.
671 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
672 (HighBits & ~DemandedMask) == HighBits) {
673 // Perform the logical shift right.
674 Instruction *NewVal = BinaryOperator::CreateLShr(
675 I->getOperand(0), SA, I->getName());
676 return InsertNewInstWith(NewVal, *I);
677 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
678 KnownOne |= HighBits;
679 }
680 }
681 break;
682 case Instruction::SRem:
683 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
684 // X % -1 demands all the bits because we don't want to introduce
685 // INT_MIN % -1 (== undef) by accident.
686 if (Rem->isAllOnesValue())
687 break;
688 APInt RA = Rem->getValue().abs();
689 if (RA.isPowerOf2()) {
690 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
691 return I->getOperand(0);
692
693 APInt LowBits = RA - 1;
694 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
695 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
696 LHSKnownZero, LHSKnownOne, Depth+1))
697 return I;
698
699 // The low bits of LHS are unchanged by the srem.
700 KnownZero = LHSKnownZero & LowBits;
701 KnownOne = LHSKnownOne & LowBits;
702
703 // If LHS is non-negative or has all low bits zero, then the upper bits
704 // are all zero.
705 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
706 KnownZero |= ~LowBits;
707
708 // If LHS is negative and not all low bits are zero, then the upper bits
709 // are all one.
710 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
711 KnownOne |= ~LowBits;
712
713 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
714 }
715 }
716
717 // The sign bit is the LHS's sign bit, except when the result of the
718 // remainder is zero.
719 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
720 APInt Mask2 = APInt::getSignBit(BitWidth);
721 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
722 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne,
723 Depth+1);
724 // If it's known zero, our sign bit is also zero.
725 if (LHSKnownZero.isNegative())
726 KnownZero |= LHSKnownZero;
727 }
728 break;
729 case Instruction::URem: {
730 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
731 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
732 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
733 KnownZero2, KnownOne2, Depth+1) ||
734 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
735 KnownZero2, KnownOne2, Depth+1))
736 return I;
737
738 unsigned Leaders = KnownZero2.countLeadingOnes();
739 Leaders = std::max(Leaders,
740 KnownZero2.countLeadingOnes());
741 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
742 break;
743 }
744 case Instruction::Call:
745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
746 switch (II->getIntrinsicID()) {
747 default: break;
748 case Intrinsic::bswap: {
749 // If the only bits demanded come from one byte of the bswap result,
750 // just shift the input byte into position to eliminate the bswap.
751 unsigned NLZ = DemandedMask.countLeadingZeros();
752 unsigned NTZ = DemandedMask.countTrailingZeros();
753
754 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
755 // we need all the bits down to bit 8. Likewise, round NLZ. If we
756 // have 14 leading zeros, round to 8.
757 NLZ &= ~7;
758 NTZ &= ~7;
759 // If we need exactly one byte, we can do this transformation.
760 if (BitWidth-NLZ-NTZ == 8) {
761 unsigned ResultBit = NTZ;
762 unsigned InputBit = BitWidth-NTZ-8;
763
764 // Replace this with either a left or right shift to get the byte into
765 // the right place.
766 Instruction *NewVal;
767 if (InputBit > ResultBit)
768 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
769 ConstantInt::get(I->getType(), InputBit-ResultBit));
770 else
771 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
772 ConstantInt::get(I->getType(), ResultBit-InputBit));
773 NewVal->takeName(I);
774 return InsertNewInstWith(NewVal, *I);
775 }
776
777 // TODO: Could compute known zero/one bits based on the input.
778 break;
779 }
780 case Intrinsic::x86_sse42_crc32_64_8:
781 case Intrinsic::x86_sse42_crc32_64_64:
782 KnownZero = APInt::getHighBitsSet(64, 32);
783 return 0;
784 }
785 }
786 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
787 break;
788 }
789
790 // If the client is only demanding bits that we know, return the known
791 // constant.
792 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
793 return Constant::getIntegerValue(VTy, KnownOne);
794 return 0;
795 }
796
797
798 /// SimplifyDemandedVectorElts - The specified value produces a vector with
799 /// any number of elements. DemandedElts contains the set of elements that are
800 /// actually used by the caller. This method analyzes which elements of the
801 /// operand are undef and returns that information in UndefElts.
802 ///
803 /// If the information about demanded elements can be used to simplify the
804 /// operation, the operation is simplified, then the resultant value is
805 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth)806 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
807 APInt &UndefElts,
808 unsigned Depth) {
809 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
810 APInt EltMask(APInt::getAllOnesValue(VWidth));
811 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
812
813 if (isa<UndefValue>(V)) {
814 // If the entire vector is undefined, just return this info.
815 UndefElts = EltMask;
816 return 0;
817 }
818
819 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
820 UndefElts = EltMask;
821 return UndefValue::get(V->getType());
822 }
823
824 UndefElts = 0;
825 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
826 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
827 Constant *Undef = UndefValue::get(EltTy);
828
829 std::vector<Constant*> Elts;
830 for (unsigned i = 0; i != VWidth; ++i)
831 if (!DemandedElts[i]) { // If not demanded, set to undef.
832 Elts.push_back(Undef);
833 UndefElts.setBit(i);
834 } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef.
835 Elts.push_back(Undef);
836 UndefElts.setBit(i);
837 } else { // Otherwise, defined.
838 Elts.push_back(CV->getOperand(i));
839 }
840
841 // If we changed the constant, return it.
842 Constant *NewCP = ConstantVector::get(Elts);
843 return NewCP != CV ? NewCP : 0;
844 }
845
846 if (isa<ConstantAggregateZero>(V)) {
847 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
848 // set to undef.
849
850 // Check if this is identity. If so, return 0 since we are not simplifying
851 // anything.
852 if (DemandedElts.isAllOnesValue())
853 return 0;
854
855 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
856 Constant *Zero = Constant::getNullValue(EltTy);
857 Constant *Undef = UndefValue::get(EltTy);
858 std::vector<Constant*> Elts;
859 for (unsigned i = 0; i != VWidth; ++i) {
860 Constant *Elt = DemandedElts[i] ? Zero : Undef;
861 Elts.push_back(Elt);
862 }
863 UndefElts = DemandedElts ^ EltMask;
864 return ConstantVector::get(Elts);
865 }
866
867 // Limit search depth.
868 if (Depth == 10)
869 return 0;
870
871 // If multiple users are using the root value, proceed with
872 // simplification conservatively assuming that all elements
873 // are needed.
874 if (!V->hasOneUse()) {
875 // Quit if we find multiple users of a non-root value though.
876 // They'll be handled when it's their turn to be visited by
877 // the main instcombine process.
878 if (Depth != 0)
879 // TODO: Just compute the UndefElts information recursively.
880 return 0;
881
882 // Conservatively assume that all elements are needed.
883 DemandedElts = EltMask;
884 }
885
886 Instruction *I = dyn_cast<Instruction>(V);
887 if (!I) return 0; // Only analyze instructions.
888
889 bool MadeChange = false;
890 APInt UndefElts2(VWidth, 0);
891 Value *TmpV;
892 switch (I->getOpcode()) {
893 default: break;
894
895 case Instruction::InsertElement: {
896 // If this is a variable index, we don't know which element it overwrites.
897 // demand exactly the same input as we produce.
898 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
899 if (Idx == 0) {
900 // Note that we can't propagate undef elt info, because we don't know
901 // which elt is getting updated.
902 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
903 UndefElts2, Depth+1);
904 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
905 break;
906 }
907
908 // If this is inserting an element that isn't demanded, remove this
909 // insertelement.
910 unsigned IdxNo = Idx->getZExtValue();
911 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
912 Worklist.Add(I);
913 return I->getOperand(0);
914 }
915
916 // Otherwise, the element inserted overwrites whatever was there, so the
917 // input demanded set is simpler than the output set.
918 APInt DemandedElts2 = DemandedElts;
919 DemandedElts2.clearBit(IdxNo);
920 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
921 UndefElts, Depth+1);
922 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
923
924 // The inserted element is defined.
925 UndefElts.clearBit(IdxNo);
926 break;
927 }
928 case Instruction::ShuffleVector: {
929 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
930 uint64_t LHSVWidth =
931 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
932 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
933 for (unsigned i = 0; i < VWidth; i++) {
934 if (DemandedElts[i]) {
935 unsigned MaskVal = Shuffle->getMaskValue(i);
936 if (MaskVal != -1u) {
937 assert(MaskVal < LHSVWidth * 2 &&
938 "shufflevector mask index out of range!");
939 if (MaskVal < LHSVWidth)
940 LeftDemanded.setBit(MaskVal);
941 else
942 RightDemanded.setBit(MaskVal - LHSVWidth);
943 }
944 }
945 }
946
947 APInt UndefElts4(LHSVWidth, 0);
948 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
949 UndefElts4, Depth+1);
950 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
951
952 APInt UndefElts3(LHSVWidth, 0);
953 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
954 UndefElts3, Depth+1);
955 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
956
957 bool NewUndefElts = false;
958 for (unsigned i = 0; i < VWidth; i++) {
959 unsigned MaskVal = Shuffle->getMaskValue(i);
960 if (MaskVal == -1u) {
961 UndefElts.setBit(i);
962 } else if (!DemandedElts[i]) {
963 NewUndefElts = true;
964 UndefElts.setBit(i);
965 } else if (MaskVal < LHSVWidth) {
966 if (UndefElts4[MaskVal]) {
967 NewUndefElts = true;
968 UndefElts.setBit(i);
969 }
970 } else {
971 if (UndefElts3[MaskVal - LHSVWidth]) {
972 NewUndefElts = true;
973 UndefElts.setBit(i);
974 }
975 }
976 }
977
978 if (NewUndefElts) {
979 // Add additional discovered undefs.
980 std::vector<Constant*> Elts;
981 for (unsigned i = 0; i < VWidth; ++i) {
982 if (UndefElts[i])
983 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
984 else
985 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
986 Shuffle->getMaskValue(i)));
987 }
988 I->setOperand(2, ConstantVector::get(Elts));
989 MadeChange = true;
990 }
991 break;
992 }
993 case Instruction::BitCast: {
994 // Vector->vector casts only.
995 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
996 if (!VTy) break;
997 unsigned InVWidth = VTy->getNumElements();
998 APInt InputDemandedElts(InVWidth, 0);
999 unsigned Ratio;
1000
1001 if (VWidth == InVWidth) {
1002 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1003 // elements as are demanded of us.
1004 Ratio = 1;
1005 InputDemandedElts = DemandedElts;
1006 } else if (VWidth > InVWidth) {
1007 // Untested so far.
1008 break;
1009
1010 // If there are more elements in the result than there are in the source,
1011 // then an input element is live if any of the corresponding output
1012 // elements are live.
1013 Ratio = VWidth/InVWidth;
1014 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1015 if (DemandedElts[OutIdx])
1016 InputDemandedElts.setBit(OutIdx/Ratio);
1017 }
1018 } else {
1019 // Untested so far.
1020 break;
1021
1022 // If there are more elements in the source than there are in the result,
1023 // then an input element is live if the corresponding output element is
1024 // live.
1025 Ratio = InVWidth/VWidth;
1026 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1027 if (DemandedElts[InIdx/Ratio])
1028 InputDemandedElts.setBit(InIdx);
1029 }
1030
1031 // div/rem demand all inputs, because they don't want divide by zero.
1032 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1033 UndefElts2, Depth+1);
1034 if (TmpV) {
1035 I->setOperand(0, TmpV);
1036 MadeChange = true;
1037 }
1038
1039 UndefElts = UndefElts2;
1040 if (VWidth > InVWidth) {
1041 llvm_unreachable("Unimp");
1042 // If there are more elements in the result than there are in the source,
1043 // then an output element is undef if the corresponding input element is
1044 // undef.
1045 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1046 if (UndefElts2[OutIdx/Ratio])
1047 UndefElts.setBit(OutIdx);
1048 } else if (VWidth < InVWidth) {
1049 llvm_unreachable("Unimp");
1050 // If there are more elements in the source than there are in the result,
1051 // then a result element is undef if all of the corresponding input
1052 // elements are undef.
1053 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1054 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1055 if (!UndefElts2[InIdx]) // Not undef?
1056 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1057 }
1058 break;
1059 }
1060 case Instruction::And:
1061 case Instruction::Or:
1062 case Instruction::Xor:
1063 case Instruction::Add:
1064 case Instruction::Sub:
1065 case Instruction::Mul:
1066 // div/rem demand all inputs, because they don't want divide by zero.
1067 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1068 UndefElts, Depth+1);
1069 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1070 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1071 UndefElts2, Depth+1);
1072 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1073
1074 // Output elements are undefined if both are undefined. Consider things
1075 // like undef&0. The result is known zero, not undef.
1076 UndefElts &= UndefElts2;
1077 break;
1078
1079 case Instruction::Call: {
1080 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1081 if (!II) break;
1082 switch (II->getIntrinsicID()) {
1083 default: break;
1084
1085 // Binary vector operations that work column-wise. A dest element is a
1086 // function of the corresponding input elements from the two inputs.
1087 case Intrinsic::x86_sse_sub_ss:
1088 case Intrinsic::x86_sse_mul_ss:
1089 case Intrinsic::x86_sse_min_ss:
1090 case Intrinsic::x86_sse_max_ss:
1091 case Intrinsic::x86_sse2_sub_sd:
1092 case Intrinsic::x86_sse2_mul_sd:
1093 case Intrinsic::x86_sse2_min_sd:
1094 case Intrinsic::x86_sse2_max_sd:
1095 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1096 UndefElts, Depth+1);
1097 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1098 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1099 UndefElts2, Depth+1);
1100 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1101
1102 // If only the low elt is demanded and this is a scalarizable intrinsic,
1103 // scalarize it now.
1104 if (DemandedElts == 1) {
1105 switch (II->getIntrinsicID()) {
1106 default: break;
1107 case Intrinsic::x86_sse_sub_ss:
1108 case Intrinsic::x86_sse_mul_ss:
1109 case Intrinsic::x86_sse2_sub_sd:
1110 case Intrinsic::x86_sse2_mul_sd:
1111 // TODO: Lower MIN/MAX/ABS/etc
1112 Value *LHS = II->getArgOperand(0);
1113 Value *RHS = II->getArgOperand(1);
1114 // Extract the element as scalars.
1115 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1116 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1117 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1118 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1119
1120 switch (II->getIntrinsicID()) {
1121 default: llvm_unreachable("Case stmts out of sync!");
1122 case Intrinsic::x86_sse_sub_ss:
1123 case Intrinsic::x86_sse2_sub_sd:
1124 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1125 II->getName()), *II);
1126 break;
1127 case Intrinsic::x86_sse_mul_ss:
1128 case Intrinsic::x86_sse2_mul_sd:
1129 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1130 II->getName()), *II);
1131 break;
1132 }
1133
1134 Instruction *New =
1135 InsertElementInst::Create(
1136 UndefValue::get(II->getType()), TmpV,
1137 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1138 II->getName());
1139 InsertNewInstWith(New, *II);
1140 return New;
1141 }
1142 }
1143
1144 // Output elements are undefined if both are undefined. Consider things
1145 // like undef&0. The result is known zero, not undef.
1146 UndefElts &= UndefElts2;
1147 break;
1148 }
1149 break;
1150 }
1151 }
1152 return MadeChange ? I : 0;
1153 }
1154