1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal. Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "dse"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/Dominators.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/Statistic.h"
36 using namespace llvm;
37
38 STATISTIC(NumFastStores, "Number of stores deleted");
39 STATISTIC(NumFastOther , "Number of other instrs removed");
40
41 namespace {
42 struct DSE : public FunctionPass {
43 AliasAnalysis *AA;
44 MemoryDependenceAnalysis *MD;
45
46 static char ID; // Pass identification, replacement for typeid
DSE__anonb28713550111::DSE47 DSE() : FunctionPass(ID), AA(0), MD(0) {
48 initializeDSEPass(*PassRegistry::getPassRegistry());
49 }
50
runOnFunction__anonb28713550111::DSE51 virtual bool runOnFunction(Function &F) {
52 AA = &getAnalysis<AliasAnalysis>();
53 MD = &getAnalysis<MemoryDependenceAnalysis>();
54 DominatorTree &DT = getAnalysis<DominatorTree>();
55
56 bool Changed = false;
57 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
58 // Only check non-dead blocks. Dead blocks may have strange pointer
59 // cycles that will confuse alias analysis.
60 if (DT.isReachableFromEntry(I))
61 Changed |= runOnBasicBlock(*I);
62
63 AA = 0; MD = 0;
64 return Changed;
65 }
66
67 bool runOnBasicBlock(BasicBlock &BB);
68 bool HandleFree(CallInst *F);
69 bool handleEndBlock(BasicBlock &BB);
70 void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
71 SmallPtrSet<Value*, 16> &DeadStackObjects);
72
getAnalysisUsage__anonb28713550111::DSE73 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.setPreservesCFG();
75 AU.addRequired<DominatorTree>();
76 AU.addRequired<AliasAnalysis>();
77 AU.addRequired<MemoryDependenceAnalysis>();
78 AU.addPreserved<AliasAnalysis>();
79 AU.addPreserved<DominatorTree>();
80 AU.addPreserved<MemoryDependenceAnalysis>();
81 }
82 };
83 }
84
85 char DSE::ID = 0;
86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
91
92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
93
94 //===----------------------------------------------------------------------===//
95 // Helper functions
96 //===----------------------------------------------------------------------===//
97
98 /// DeleteDeadInstruction - Delete this instruction. Before we do, go through
99 /// and zero out all the operands of this instruction. If any of them become
100 /// dead, delete them and the computation tree that feeds them.
101 ///
102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
103 ///
DeleteDeadInstruction(Instruction * I,MemoryDependenceAnalysis & MD,SmallPtrSet<Value *,16> * ValueSet=0)104 static void DeleteDeadInstruction(Instruction *I,
105 MemoryDependenceAnalysis &MD,
106 SmallPtrSet<Value*, 16> *ValueSet = 0) {
107 SmallVector<Instruction*, 32> NowDeadInsts;
108
109 NowDeadInsts.push_back(I);
110 --NumFastOther;
111
112 // Before we touch this instruction, remove it from memdep!
113 do {
114 Instruction *DeadInst = NowDeadInsts.pop_back_val();
115 ++NumFastOther;
116
117 // This instruction is dead, zap it, in stages. Start by removing it from
118 // MemDep, which needs to know the operands and needs it to be in the
119 // function.
120 MD.removeInstruction(DeadInst);
121
122 for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
123 Value *Op = DeadInst->getOperand(op);
124 DeadInst->setOperand(op, 0);
125
126 // If this operand just became dead, add it to the NowDeadInsts list.
127 if (!Op->use_empty()) continue;
128
129 if (Instruction *OpI = dyn_cast<Instruction>(Op))
130 if (isInstructionTriviallyDead(OpI))
131 NowDeadInsts.push_back(OpI);
132 }
133
134 DeadInst->eraseFromParent();
135
136 if (ValueSet) ValueSet->erase(DeadInst);
137 } while (!NowDeadInsts.empty());
138 }
139
140
141 /// hasMemoryWrite - Does this instruction write some memory? This only returns
142 /// true for things that we can analyze with other helpers below.
hasMemoryWrite(Instruction * I)143 static bool hasMemoryWrite(Instruction *I) {
144 if (isa<StoreInst>(I))
145 return true;
146 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
147 switch (II->getIntrinsicID()) {
148 default:
149 return false;
150 case Intrinsic::memset:
151 case Intrinsic::memmove:
152 case Intrinsic::memcpy:
153 case Intrinsic::init_trampoline:
154 case Intrinsic::lifetime_end:
155 return true;
156 }
157 }
158 return false;
159 }
160
161 /// getLocForWrite - Return a Location stored to by the specified instruction.
162 /// If isRemovable returns true, this function and getLocForRead completely
163 /// describe the memory operations for this instruction.
164 static AliasAnalysis::Location
getLocForWrite(Instruction * Inst,AliasAnalysis & AA)165 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
166 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
167 return AA.getLocation(SI);
168
169 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
170 // memcpy/memmove/memset.
171 AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
172 // If we don't have target data around, an unknown size in Location means
173 // that we should use the size of the pointee type. This isn't valid for
174 // memset/memcpy, which writes more than an i8.
175 if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
176 return AliasAnalysis::Location();
177 return Loc;
178 }
179
180 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
181 if (II == 0) return AliasAnalysis::Location();
182
183 switch (II->getIntrinsicID()) {
184 default: return AliasAnalysis::Location(); // Unhandled intrinsic.
185 case Intrinsic::init_trampoline:
186 // If we don't have target data around, an unknown size in Location means
187 // that we should use the size of the pointee type. This isn't valid for
188 // init.trampoline, which writes more than an i8.
189 if (AA.getTargetData() == 0) return AliasAnalysis::Location();
190
191 // FIXME: We don't know the size of the trampoline, so we can't really
192 // handle it here.
193 return AliasAnalysis::Location(II->getArgOperand(0));
194 case Intrinsic::lifetime_end: {
195 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
196 return AliasAnalysis::Location(II->getArgOperand(1), Len);
197 }
198 }
199 }
200
201 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
202 /// instruction if any.
203 static AliasAnalysis::Location
getLocForRead(Instruction * Inst,AliasAnalysis & AA)204 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
205 assert(hasMemoryWrite(Inst) && "Unknown instruction case");
206
207 // The only instructions that both read and write are the mem transfer
208 // instructions (memcpy/memmove).
209 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
210 return AA.getLocationForSource(MTI);
211 return AliasAnalysis::Location();
212 }
213
214
215 /// isRemovable - If the value of this instruction and the memory it writes to
216 /// is unused, may we delete this instruction?
isRemovable(Instruction * I)217 static bool isRemovable(Instruction *I) {
218 // Don't remove volatile/atomic stores.
219 if (StoreInst *SI = dyn_cast<StoreInst>(I))
220 return SI->isUnordered();
221
222 IntrinsicInst *II = cast<IntrinsicInst>(I);
223 switch (II->getIntrinsicID()) {
224 default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
225 case Intrinsic::lifetime_end:
226 // Never remove dead lifetime_end's, e.g. because it is followed by a
227 // free.
228 return false;
229 case Intrinsic::init_trampoline:
230 // Always safe to remove init_trampoline.
231 return true;
232
233 case Intrinsic::memset:
234 case Intrinsic::memmove:
235 case Intrinsic::memcpy:
236 // Don't remove volatile memory intrinsics.
237 return !cast<MemIntrinsic>(II)->isVolatile();
238 }
239 }
240
241 /// getStoredPointerOperand - Return the pointer that is being written to.
getStoredPointerOperand(Instruction * I)242 static Value *getStoredPointerOperand(Instruction *I) {
243 if (StoreInst *SI = dyn_cast<StoreInst>(I))
244 return SI->getPointerOperand();
245 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
246 return MI->getDest();
247
248 IntrinsicInst *II = cast<IntrinsicInst>(I);
249 switch (II->getIntrinsicID()) {
250 default: assert(false && "Unexpected intrinsic!");
251 case Intrinsic::init_trampoline:
252 return II->getArgOperand(0);
253 }
254 }
255
getPointerSize(Value * V,AliasAnalysis & AA)256 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
257 const TargetData *TD = AA.getTargetData();
258 if (TD == 0)
259 return AliasAnalysis::UnknownSize;
260
261 if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
262 // Get size information for the alloca
263 if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
264 return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
265 return AliasAnalysis::UnknownSize;
266 }
267
268 assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
269 PointerType *PT = cast<PointerType>(V->getType());
270 return TD->getTypeAllocSize(PT->getElementType());
271 }
272
273 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
274 /// pointing to an object with a pointer size we can trust.
isObjectPointerWithTrustworthySize(const Value * V)275 static bool isObjectPointerWithTrustworthySize(const Value *V) {
276 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
277 return !AI->isArrayAllocation();
278 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
279 return !GV->mayBeOverridden();
280 if (const Argument *A = dyn_cast<Argument>(V))
281 return A->hasByValAttr();
282 return false;
283 }
284
285 /// isCompleteOverwrite - Return true if a store to the 'Later' location
286 /// completely overwrites a store to the 'Earlier' location.
isCompleteOverwrite(const AliasAnalysis::Location & Later,const AliasAnalysis::Location & Earlier,AliasAnalysis & AA)287 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
288 const AliasAnalysis::Location &Earlier,
289 AliasAnalysis &AA) {
290 const Value *P1 = Earlier.Ptr->stripPointerCasts();
291 const Value *P2 = Later.Ptr->stripPointerCasts();
292
293 // If the start pointers are the same, we just have to compare sizes to see if
294 // the later store was larger than the earlier store.
295 if (P1 == P2) {
296 // If we don't know the sizes of either access, then we can't do a
297 // comparison.
298 if (Later.Size == AliasAnalysis::UnknownSize ||
299 Earlier.Size == AliasAnalysis::UnknownSize) {
300 // If we have no TargetData information around, then the size of the store
301 // is inferrable from the pointee type. If they are the same type, then
302 // we know that the store is safe.
303 if (AA.getTargetData() == 0)
304 return Later.Ptr->getType() == Earlier.Ptr->getType();
305 return false;
306 }
307
308 // Make sure that the Later size is >= the Earlier size.
309 if (Later.Size < Earlier.Size)
310 return false;
311 return true;
312 }
313
314 // Otherwise, we have to have size information, and the later store has to be
315 // larger than the earlier one.
316 if (Later.Size == AliasAnalysis::UnknownSize ||
317 Earlier.Size == AliasAnalysis::UnknownSize ||
318 Later.Size <= Earlier.Size || AA.getTargetData() == 0)
319 return false;
320
321 // Check to see if the later store is to the entire object (either a global,
322 // an alloca, or a byval argument). If so, then it clearly overwrites any
323 // other store to the same object.
324 const TargetData &TD = *AA.getTargetData();
325
326 const Value *UO1 = GetUnderlyingObject(P1, &TD),
327 *UO2 = GetUnderlyingObject(P2, &TD);
328
329 // If we can't resolve the same pointers to the same object, then we can't
330 // analyze them at all.
331 if (UO1 != UO2)
332 return false;
333
334 // If the "Later" store is to a recognizable object, get its size.
335 if (isObjectPointerWithTrustworthySize(UO2)) {
336 uint64_t ObjectSize =
337 TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
338 if (ObjectSize == Later.Size)
339 return true;
340 }
341
342 // Okay, we have stores to two completely different pointers. Try to
343 // decompose the pointer into a "base + constant_offset" form. If the base
344 // pointers are equal, then we can reason about the two stores.
345 int64_t EarlierOff = 0, LaterOff = 0;
346 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
347 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
348
349 // If the base pointers still differ, we have two completely different stores.
350 if (BP1 != BP2)
351 return false;
352
353 // The later store completely overlaps the earlier store if:
354 //
355 // 1. Both start at the same offset and the later one's size is greater than
356 // or equal to the earlier one's, or
357 //
358 // |--earlier--|
359 // |-- later --|
360 //
361 // 2. The earlier store has an offset greater than the later offset, but which
362 // still lies completely within the later store.
363 //
364 // |--earlier--|
365 // |----- later ------|
366 //
367 // We have to be careful here as *Off is signed while *.Size is unsigned.
368 if (EarlierOff >= LaterOff &&
369 uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
370 return true;
371
372 // Otherwise, they don't completely overlap.
373 return false;
374 }
375
376 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
377 /// memory region into an identical pointer) then it doesn't actually make its
378 /// input dead in the traditional sense. Consider this case:
379 ///
380 /// memcpy(A <- B)
381 /// memcpy(A <- A)
382 ///
383 /// In this case, the second store to A does not make the first store to A dead.
384 /// The usual situation isn't an explicit A<-A store like this (which can be
385 /// trivially removed) but a case where two pointers may alias.
386 ///
387 /// This function detects when it is unsafe to remove a dependent instruction
388 /// because the DSE inducing instruction may be a self-read.
isPossibleSelfRead(Instruction * Inst,const AliasAnalysis::Location & InstStoreLoc,Instruction * DepWrite,AliasAnalysis & AA)389 static bool isPossibleSelfRead(Instruction *Inst,
390 const AliasAnalysis::Location &InstStoreLoc,
391 Instruction *DepWrite, AliasAnalysis &AA) {
392 // Self reads can only happen for instructions that read memory. Get the
393 // location read.
394 AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
395 if (InstReadLoc.Ptr == 0) return false; // Not a reading instruction.
396
397 // If the read and written loc obviously don't alias, it isn't a read.
398 if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
399
400 // Okay, 'Inst' may copy over itself. However, we can still remove a the
401 // DepWrite instruction if we can prove that it reads from the same location
402 // as Inst. This handles useful cases like:
403 // memcpy(A <- B)
404 // memcpy(A <- B)
405 // Here we don't know if A/B may alias, but we do know that B/B are must
406 // aliases, so removing the first memcpy is safe (assuming it writes <= #
407 // bytes as the second one.
408 AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
409
410 if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
411 return false;
412
413 // If DepWrite doesn't read memory or if we can't prove it is a must alias,
414 // then it can't be considered dead.
415 return true;
416 }
417
418
419 //===----------------------------------------------------------------------===//
420 // DSE Pass
421 //===----------------------------------------------------------------------===//
422
runOnBasicBlock(BasicBlock & BB)423 bool DSE::runOnBasicBlock(BasicBlock &BB) {
424 bool MadeChange = false;
425
426 // Do a top-down walk on the BB.
427 for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
428 Instruction *Inst = BBI++;
429
430 // Handle 'free' calls specially.
431 if (CallInst *F = isFreeCall(Inst)) {
432 MadeChange |= HandleFree(F);
433 continue;
434 }
435
436 // If we find something that writes memory, get its memory dependence.
437 if (!hasMemoryWrite(Inst))
438 continue;
439
440 MemDepResult InstDep = MD->getDependency(Inst);
441
442 // Ignore any store where we can't find a local dependence.
443 // FIXME: cross-block DSE would be fun. :)
444 if (!InstDep.isDef() && !InstDep.isClobber())
445 continue;
446
447 // If we're storing the same value back to a pointer that we just
448 // loaded from, then the store can be removed.
449 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
450 if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
451 if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
452 SI->getOperand(0) == DepLoad && isRemovable(SI)) {
453 DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n "
454 << "LOAD: " << *DepLoad << "\n STORE: " << *SI << '\n');
455
456 // DeleteDeadInstruction can delete the current instruction. Save BBI
457 // in case we need it.
458 WeakVH NextInst(BBI);
459
460 DeleteDeadInstruction(SI, *MD);
461
462 if (NextInst == 0) // Next instruction deleted.
463 BBI = BB.begin();
464 else if (BBI != BB.begin()) // Revisit this instruction if possible.
465 --BBI;
466 ++NumFastStores;
467 MadeChange = true;
468 continue;
469 }
470 }
471 }
472
473 // Figure out what location is being stored to.
474 AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
475
476 // If we didn't get a useful location, fail.
477 if (Loc.Ptr == 0)
478 continue;
479
480 while (InstDep.isDef() || InstDep.isClobber()) {
481 // Get the memory clobbered by the instruction we depend on. MemDep will
482 // skip any instructions that 'Loc' clearly doesn't interact with. If we
483 // end up depending on a may- or must-aliased load, then we can't optimize
484 // away the store and we bail out. However, if we depend on on something
485 // that overwrites the memory location we *can* potentially optimize it.
486 //
487 // Find out what memory location the dependent instruction stores.
488 Instruction *DepWrite = InstDep.getInst();
489 AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
490 // If we didn't get a useful location, or if it isn't a size, bail out.
491 if (DepLoc.Ptr == 0)
492 break;
493
494 // If we find a write that is a) removable (i.e., non-volatile), b) is
495 // completely obliterated by the store to 'Loc', and c) which we know that
496 // 'Inst' doesn't load from, then we can remove it.
497 if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
498 !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
499 DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
500 << *DepWrite << "\n KILLER: " << *Inst << '\n');
501
502 // Delete the store and now-dead instructions that feed it.
503 DeleteDeadInstruction(DepWrite, *MD);
504 ++NumFastStores;
505 MadeChange = true;
506
507 // DeleteDeadInstruction can delete the current instruction in loop
508 // cases, reset BBI.
509 BBI = Inst;
510 if (BBI != BB.begin())
511 --BBI;
512 break;
513 }
514
515 // If this is a may-aliased store that is clobbering the store value, we
516 // can keep searching past it for another must-aliased pointer that stores
517 // to the same location. For example, in:
518 // store -> P
519 // store -> Q
520 // store -> P
521 // we can remove the first store to P even though we don't know if P and Q
522 // alias.
523 if (DepWrite == &BB.front()) break;
524
525 // Can't look past this instruction if it might read 'Loc'.
526 if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
527 break;
528
529 InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
530 }
531 }
532
533 // If this block ends in a return, unwind, or unreachable, all allocas are
534 // dead at its end, which means stores to them are also dead.
535 if (BB.getTerminator()->getNumSuccessors() == 0)
536 MadeChange |= handleEndBlock(BB);
537
538 return MadeChange;
539 }
540
541 /// HandleFree - Handle frees of entire structures whose dependency is a store
542 /// to a field of that structure.
HandleFree(CallInst * F)543 bool DSE::HandleFree(CallInst *F) {
544 bool MadeChange = false;
545
546 MemDepResult Dep = MD->getDependency(F);
547
548 while (Dep.isDef() || Dep.isClobber()) {
549 Instruction *Dependency = Dep.getInst();
550 if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
551 return MadeChange;
552
553 Value *DepPointer =
554 GetUnderlyingObject(getStoredPointerOperand(Dependency));
555
556 // Check for aliasing.
557 if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
558 return MadeChange;
559
560 // DCE instructions only used to calculate that store
561 DeleteDeadInstruction(Dependency, *MD);
562 ++NumFastStores;
563 MadeChange = true;
564
565 // Inst's old Dependency is now deleted. Compute the next dependency,
566 // which may also be dead, as in
567 // s[0] = 0;
568 // s[1] = 0; // This has just been deleted.
569 // free(s);
570 Dep = MD->getDependency(F);
571 };
572
573 return MadeChange;
574 }
575
576 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
577 /// function end block. Ex:
578 /// %A = alloca i32
579 /// ...
580 /// store i32 1, i32* %A
581 /// ret void
handleEndBlock(BasicBlock & BB)582 bool DSE::handleEndBlock(BasicBlock &BB) {
583 bool MadeChange = false;
584
585 // Keep track of all of the stack objects that are dead at the end of the
586 // function.
587 SmallPtrSet<Value*, 16> DeadStackObjects;
588
589 // Find all of the alloca'd pointers in the entry block.
590 BasicBlock *Entry = BB.getParent()->begin();
591 for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
592 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
593 DeadStackObjects.insert(AI);
594
595 // Treat byval arguments the same, stores to them are dead at the end of the
596 // function.
597 for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
598 AE = BB.getParent()->arg_end(); AI != AE; ++AI)
599 if (AI->hasByValAttr())
600 DeadStackObjects.insert(AI);
601
602 // Scan the basic block backwards
603 for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
604 --BBI;
605
606 // If we find a store, check to see if it points into a dead stack value.
607 if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
608 // See through pointer-to-pointer bitcasts
609 Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
610
611 // Stores to stack values are valid candidates for removal.
612 if (DeadStackObjects.count(Pointer)) {
613 Instruction *Dead = BBI++;
614
615 DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
616 << *Dead << "\n Object: " << *Pointer << '\n');
617
618 // DCE instructions only used to calculate that store.
619 DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
620 ++NumFastStores;
621 MadeChange = true;
622 continue;
623 }
624 }
625
626 // Remove any dead non-memory-mutating instructions.
627 if (isInstructionTriviallyDead(BBI)) {
628 Instruction *Inst = BBI++;
629 DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
630 ++NumFastOther;
631 MadeChange = true;
632 continue;
633 }
634
635 if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
636 DeadStackObjects.erase(A);
637 continue;
638 }
639
640 if (CallSite CS = cast<Value>(BBI)) {
641 // If this call does not access memory, it can't be loading any of our
642 // pointers.
643 if (AA->doesNotAccessMemory(CS))
644 continue;
645
646 // If the call might load from any of our allocas, then any store above
647 // the call is live.
648 SmallVector<Value*, 8> LiveAllocas;
649 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
650 E = DeadStackObjects.end(); I != E; ++I) {
651 // See if the call site touches it.
652 AliasAnalysis::ModRefResult A =
653 AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
654
655 if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
656 LiveAllocas.push_back(*I);
657 }
658
659 for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
660 E = LiveAllocas.end(); I != E; ++I)
661 DeadStackObjects.erase(*I);
662
663 // If all of the allocas were clobbered by the call then we're not going
664 // to find anything else to process.
665 if (DeadStackObjects.empty())
666 return MadeChange;
667
668 continue;
669 }
670
671 AliasAnalysis::Location LoadedLoc;
672
673 // If we encounter a use of the pointer, it is no longer considered dead
674 if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
675 if (!L->isUnordered()) // Be conservative with atomic/volatile load
676 break;
677 LoadedLoc = AA->getLocation(L);
678 } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
679 LoadedLoc = AA->getLocation(V);
680 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
681 LoadedLoc = AA->getLocationForSource(MTI);
682 } else if (!BBI->mayReadFromMemory()) {
683 // Instruction doesn't read memory. Note that stores that weren't removed
684 // above will hit this case.
685 continue;
686 } else {
687 // Unknown inst; assume it clobbers everything.
688 break;
689 }
690
691 // Remove any allocas from the DeadPointer set that are loaded, as this
692 // makes any stores above the access live.
693 RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
694
695 // If all of the allocas were clobbered by the access then we're not going
696 // to find anything else to process.
697 if (DeadStackObjects.empty())
698 break;
699 }
700
701 return MadeChange;
702 }
703
704 /// RemoveAccessedObjects - Check to see if the specified location may alias any
705 /// of the stack objects in the DeadStackObjects set. If so, they become live
706 /// because the location is being loaded.
RemoveAccessedObjects(const AliasAnalysis::Location & LoadedLoc,SmallPtrSet<Value *,16> & DeadStackObjects)707 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
708 SmallPtrSet<Value*, 16> &DeadStackObjects) {
709 const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
710
711 // A constant can't be in the dead pointer set.
712 if (isa<Constant>(UnderlyingPointer))
713 return;
714
715 // If the kill pointer can be easily reduced to an alloca, don't bother doing
716 // extraneous AA queries.
717 if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
718 DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
719 return;
720 }
721
722 SmallVector<Value*, 16> NowLive;
723 for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
724 E = DeadStackObjects.end(); I != E; ++I) {
725 // See if the loaded location could alias the stack location.
726 AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
727 if (!AA->isNoAlias(StackLoc, LoadedLoc))
728 NowLive.push_back(*I);
729 }
730
731 for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
732 I != E; ++I)
733 DeadStackObjects.erase(*I);
734 }
735
736