1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal.  Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "dse"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/Dominators.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/Statistic.h"
36 using namespace llvm;
37 
38 STATISTIC(NumFastStores, "Number of stores deleted");
39 STATISTIC(NumFastOther , "Number of other instrs removed");
40 
41 namespace {
42   struct DSE : public FunctionPass {
43     AliasAnalysis *AA;
44     MemoryDependenceAnalysis *MD;
45 
46     static char ID; // Pass identification, replacement for typeid
DSE__anonb28713550111::DSE47     DSE() : FunctionPass(ID), AA(0), MD(0) {
48       initializeDSEPass(*PassRegistry::getPassRegistry());
49     }
50 
runOnFunction__anonb28713550111::DSE51     virtual bool runOnFunction(Function &F) {
52       AA = &getAnalysis<AliasAnalysis>();
53       MD = &getAnalysis<MemoryDependenceAnalysis>();
54       DominatorTree &DT = getAnalysis<DominatorTree>();
55 
56       bool Changed = false;
57       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
58         // Only check non-dead blocks.  Dead blocks may have strange pointer
59         // cycles that will confuse alias analysis.
60         if (DT.isReachableFromEntry(I))
61           Changed |= runOnBasicBlock(*I);
62 
63       AA = 0; MD = 0;
64       return Changed;
65     }
66 
67     bool runOnBasicBlock(BasicBlock &BB);
68     bool HandleFree(CallInst *F);
69     bool handleEndBlock(BasicBlock &BB);
70     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
71                                SmallPtrSet<Value*, 16> &DeadStackObjects);
72 
getAnalysisUsage__anonb28713550111::DSE73     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74       AU.setPreservesCFG();
75       AU.addRequired<DominatorTree>();
76       AU.addRequired<AliasAnalysis>();
77       AU.addRequired<MemoryDependenceAnalysis>();
78       AU.addPreserved<AliasAnalysis>();
79       AU.addPreserved<DominatorTree>();
80       AU.addPreserved<MemoryDependenceAnalysis>();
81     }
82   };
83 }
84 
85 char DSE::ID = 0;
86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
91 
92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
93 
94 //===----------------------------------------------------------------------===//
95 // Helper functions
96 //===----------------------------------------------------------------------===//
97 
98 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
99 /// and zero out all the operands of this instruction.  If any of them become
100 /// dead, delete them and the computation tree that feeds them.
101 ///
102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
103 ///
DeleteDeadInstruction(Instruction * I,MemoryDependenceAnalysis & MD,SmallPtrSet<Value *,16> * ValueSet=0)104 static void DeleteDeadInstruction(Instruction *I,
105                                   MemoryDependenceAnalysis &MD,
106                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
107   SmallVector<Instruction*, 32> NowDeadInsts;
108 
109   NowDeadInsts.push_back(I);
110   --NumFastOther;
111 
112   // Before we touch this instruction, remove it from memdep!
113   do {
114     Instruction *DeadInst = NowDeadInsts.pop_back_val();
115     ++NumFastOther;
116 
117     // This instruction is dead, zap it, in stages.  Start by removing it from
118     // MemDep, which needs to know the operands and needs it to be in the
119     // function.
120     MD.removeInstruction(DeadInst);
121 
122     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
123       Value *Op = DeadInst->getOperand(op);
124       DeadInst->setOperand(op, 0);
125 
126       // If this operand just became dead, add it to the NowDeadInsts list.
127       if (!Op->use_empty()) continue;
128 
129       if (Instruction *OpI = dyn_cast<Instruction>(Op))
130         if (isInstructionTriviallyDead(OpI))
131           NowDeadInsts.push_back(OpI);
132     }
133 
134     DeadInst->eraseFromParent();
135 
136     if (ValueSet) ValueSet->erase(DeadInst);
137   } while (!NowDeadInsts.empty());
138 }
139 
140 
141 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
142 /// true for things that we can analyze with other helpers below.
hasMemoryWrite(Instruction * I)143 static bool hasMemoryWrite(Instruction *I) {
144   if (isa<StoreInst>(I))
145     return true;
146   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
147     switch (II->getIntrinsicID()) {
148     default:
149       return false;
150     case Intrinsic::memset:
151     case Intrinsic::memmove:
152     case Intrinsic::memcpy:
153     case Intrinsic::init_trampoline:
154     case Intrinsic::lifetime_end:
155       return true;
156     }
157   }
158   return false;
159 }
160 
161 /// getLocForWrite - Return a Location stored to by the specified instruction.
162 /// If isRemovable returns true, this function and getLocForRead completely
163 /// describe the memory operations for this instruction.
164 static AliasAnalysis::Location
getLocForWrite(Instruction * Inst,AliasAnalysis & AA)165 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
166   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
167     return AA.getLocation(SI);
168 
169   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
170     // memcpy/memmove/memset.
171     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
172     // If we don't have target data around, an unknown size in Location means
173     // that we should use the size of the pointee type.  This isn't valid for
174     // memset/memcpy, which writes more than an i8.
175     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
176       return AliasAnalysis::Location();
177     return Loc;
178   }
179 
180   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
181   if (II == 0) return AliasAnalysis::Location();
182 
183   switch (II->getIntrinsicID()) {
184   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
185   case Intrinsic::init_trampoline:
186     // If we don't have target data around, an unknown size in Location means
187     // that we should use the size of the pointee type.  This isn't valid for
188     // init.trampoline, which writes more than an i8.
189     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
190 
191     // FIXME: We don't know the size of the trampoline, so we can't really
192     // handle it here.
193     return AliasAnalysis::Location(II->getArgOperand(0));
194   case Intrinsic::lifetime_end: {
195     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
196     return AliasAnalysis::Location(II->getArgOperand(1), Len);
197   }
198   }
199 }
200 
201 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
202 /// instruction if any.
203 static AliasAnalysis::Location
getLocForRead(Instruction * Inst,AliasAnalysis & AA)204 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
205   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
206 
207   // The only instructions that both read and write are the mem transfer
208   // instructions (memcpy/memmove).
209   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
210     return AA.getLocationForSource(MTI);
211   return AliasAnalysis::Location();
212 }
213 
214 
215 /// isRemovable - If the value of this instruction and the memory it writes to
216 /// is unused, may we delete this instruction?
isRemovable(Instruction * I)217 static bool isRemovable(Instruction *I) {
218   // Don't remove volatile/atomic stores.
219   if (StoreInst *SI = dyn_cast<StoreInst>(I))
220     return SI->isUnordered();
221 
222   IntrinsicInst *II = cast<IntrinsicInst>(I);
223   switch (II->getIntrinsicID()) {
224   default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
225   case Intrinsic::lifetime_end:
226     // Never remove dead lifetime_end's, e.g. because it is followed by a
227     // free.
228     return false;
229   case Intrinsic::init_trampoline:
230     // Always safe to remove init_trampoline.
231     return true;
232 
233   case Intrinsic::memset:
234   case Intrinsic::memmove:
235   case Intrinsic::memcpy:
236     // Don't remove volatile memory intrinsics.
237     return !cast<MemIntrinsic>(II)->isVolatile();
238   }
239 }
240 
241 /// getStoredPointerOperand - Return the pointer that is being written to.
getStoredPointerOperand(Instruction * I)242 static Value *getStoredPointerOperand(Instruction *I) {
243   if (StoreInst *SI = dyn_cast<StoreInst>(I))
244     return SI->getPointerOperand();
245   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
246     return MI->getDest();
247 
248   IntrinsicInst *II = cast<IntrinsicInst>(I);
249   switch (II->getIntrinsicID()) {
250   default: assert(false && "Unexpected intrinsic!");
251   case Intrinsic::init_trampoline:
252     return II->getArgOperand(0);
253   }
254 }
255 
getPointerSize(Value * V,AliasAnalysis & AA)256 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
257   const TargetData *TD = AA.getTargetData();
258   if (TD == 0)
259     return AliasAnalysis::UnknownSize;
260 
261   if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
262     // Get size information for the alloca
263     if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
264       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
265     return AliasAnalysis::UnknownSize;
266   }
267 
268   assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
269   PointerType *PT = cast<PointerType>(V->getType());
270   return TD->getTypeAllocSize(PT->getElementType());
271 }
272 
273 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
274 /// pointing to an object with a pointer size we can trust.
isObjectPointerWithTrustworthySize(const Value * V)275 static bool isObjectPointerWithTrustworthySize(const Value *V) {
276   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
277     return !AI->isArrayAllocation();
278   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
279     return !GV->mayBeOverridden();
280   if (const Argument *A = dyn_cast<Argument>(V))
281     return A->hasByValAttr();
282   return false;
283 }
284 
285 /// isCompleteOverwrite - Return true if a store to the 'Later' location
286 /// completely overwrites a store to the 'Earlier' location.
isCompleteOverwrite(const AliasAnalysis::Location & Later,const AliasAnalysis::Location & Earlier,AliasAnalysis & AA)287 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
288                                 const AliasAnalysis::Location &Earlier,
289                                 AliasAnalysis &AA) {
290   const Value *P1 = Earlier.Ptr->stripPointerCasts();
291   const Value *P2 = Later.Ptr->stripPointerCasts();
292 
293   // If the start pointers are the same, we just have to compare sizes to see if
294   // the later store was larger than the earlier store.
295   if (P1 == P2) {
296     // If we don't know the sizes of either access, then we can't do a
297     // comparison.
298     if (Later.Size == AliasAnalysis::UnknownSize ||
299         Earlier.Size == AliasAnalysis::UnknownSize) {
300       // If we have no TargetData information around, then the size of the store
301       // is inferrable from the pointee type.  If they are the same type, then
302       // we know that the store is safe.
303       if (AA.getTargetData() == 0)
304         return Later.Ptr->getType() == Earlier.Ptr->getType();
305       return false;
306     }
307 
308     // Make sure that the Later size is >= the Earlier size.
309     if (Later.Size < Earlier.Size)
310       return false;
311     return true;
312   }
313 
314   // Otherwise, we have to have size information, and the later store has to be
315   // larger than the earlier one.
316   if (Later.Size == AliasAnalysis::UnknownSize ||
317       Earlier.Size == AliasAnalysis::UnknownSize ||
318       Later.Size <= Earlier.Size || AA.getTargetData() == 0)
319     return false;
320 
321   // Check to see if the later store is to the entire object (either a global,
322   // an alloca, or a byval argument).  If so, then it clearly overwrites any
323   // other store to the same object.
324   const TargetData &TD = *AA.getTargetData();
325 
326   const Value *UO1 = GetUnderlyingObject(P1, &TD),
327               *UO2 = GetUnderlyingObject(P2, &TD);
328 
329   // If we can't resolve the same pointers to the same object, then we can't
330   // analyze them at all.
331   if (UO1 != UO2)
332     return false;
333 
334   // If the "Later" store is to a recognizable object, get its size.
335   if (isObjectPointerWithTrustworthySize(UO2)) {
336     uint64_t ObjectSize =
337       TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
338     if (ObjectSize == Later.Size)
339       return true;
340   }
341 
342   // Okay, we have stores to two completely different pointers.  Try to
343   // decompose the pointer into a "base + constant_offset" form.  If the base
344   // pointers are equal, then we can reason about the two stores.
345   int64_t EarlierOff = 0, LaterOff = 0;
346   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
347   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
348 
349   // If the base pointers still differ, we have two completely different stores.
350   if (BP1 != BP2)
351     return false;
352 
353   // The later store completely overlaps the earlier store if:
354   //
355   // 1. Both start at the same offset and the later one's size is greater than
356   //    or equal to the earlier one's, or
357   //
358   //      |--earlier--|
359   //      |--   later   --|
360   //
361   // 2. The earlier store has an offset greater than the later offset, but which
362   //    still lies completely within the later store.
363   //
364   //        |--earlier--|
365   //    |-----  later  ------|
366   //
367   // We have to be careful here as *Off is signed while *.Size is unsigned.
368   if (EarlierOff >= LaterOff &&
369       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
370     return true;
371 
372   // Otherwise, they don't completely overlap.
373   return false;
374 }
375 
376 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
377 /// memory region into an identical pointer) then it doesn't actually make its
378 /// input dead in the traditional sense.  Consider this case:
379 ///
380 ///   memcpy(A <- B)
381 ///   memcpy(A <- A)
382 ///
383 /// In this case, the second store to A does not make the first store to A dead.
384 /// The usual situation isn't an explicit A<-A store like this (which can be
385 /// trivially removed) but a case where two pointers may alias.
386 ///
387 /// This function detects when it is unsafe to remove a dependent instruction
388 /// because the DSE inducing instruction may be a self-read.
isPossibleSelfRead(Instruction * Inst,const AliasAnalysis::Location & InstStoreLoc,Instruction * DepWrite,AliasAnalysis & AA)389 static bool isPossibleSelfRead(Instruction *Inst,
390                                const AliasAnalysis::Location &InstStoreLoc,
391                                Instruction *DepWrite, AliasAnalysis &AA) {
392   // Self reads can only happen for instructions that read memory.  Get the
393   // location read.
394   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
395   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
396 
397   // If the read and written loc obviously don't alias, it isn't a read.
398   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
399 
400   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
401   // DepWrite instruction if we can prove that it reads from the same location
402   // as Inst.  This handles useful cases like:
403   //   memcpy(A <- B)
404   //   memcpy(A <- B)
405   // Here we don't know if A/B may alias, but we do know that B/B are must
406   // aliases, so removing the first memcpy is safe (assuming it writes <= #
407   // bytes as the second one.
408   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
409 
410   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
411     return false;
412 
413   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
414   // then it can't be considered dead.
415   return true;
416 }
417 
418 
419 //===----------------------------------------------------------------------===//
420 // DSE Pass
421 //===----------------------------------------------------------------------===//
422 
runOnBasicBlock(BasicBlock & BB)423 bool DSE::runOnBasicBlock(BasicBlock &BB) {
424   bool MadeChange = false;
425 
426   // Do a top-down walk on the BB.
427   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
428     Instruction *Inst = BBI++;
429 
430     // Handle 'free' calls specially.
431     if (CallInst *F = isFreeCall(Inst)) {
432       MadeChange |= HandleFree(F);
433       continue;
434     }
435 
436     // If we find something that writes memory, get its memory dependence.
437     if (!hasMemoryWrite(Inst))
438       continue;
439 
440     MemDepResult InstDep = MD->getDependency(Inst);
441 
442     // Ignore any store where we can't find a local dependence.
443     // FIXME: cross-block DSE would be fun. :)
444     if (!InstDep.isDef() && !InstDep.isClobber())
445       continue;
446 
447     // If we're storing the same value back to a pointer that we just
448     // loaded from, then the store can be removed.
449     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
450       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
451         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
452             SI->getOperand(0) == DepLoad && isRemovable(SI)) {
453           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
454                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
455 
456           // DeleteDeadInstruction can delete the current instruction.  Save BBI
457           // in case we need it.
458           WeakVH NextInst(BBI);
459 
460           DeleteDeadInstruction(SI, *MD);
461 
462           if (NextInst == 0)  // Next instruction deleted.
463             BBI = BB.begin();
464           else if (BBI != BB.begin())  // Revisit this instruction if possible.
465             --BBI;
466           ++NumFastStores;
467           MadeChange = true;
468           continue;
469         }
470       }
471     }
472 
473     // Figure out what location is being stored to.
474     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
475 
476     // If we didn't get a useful location, fail.
477     if (Loc.Ptr == 0)
478       continue;
479 
480     while (InstDep.isDef() || InstDep.isClobber()) {
481       // Get the memory clobbered by the instruction we depend on.  MemDep will
482       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
483       // end up depending on a may- or must-aliased load, then we can't optimize
484       // away the store and we bail out.  However, if we depend on on something
485       // that overwrites the memory location we *can* potentially optimize it.
486       //
487       // Find out what memory location the dependent instruction stores.
488       Instruction *DepWrite = InstDep.getInst();
489       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
490       // If we didn't get a useful location, or if it isn't a size, bail out.
491       if (DepLoc.Ptr == 0)
492         break;
493 
494       // If we find a write that is a) removable (i.e., non-volatile), b) is
495       // completely obliterated by the store to 'Loc', and c) which we know that
496       // 'Inst' doesn't load from, then we can remove it.
497       if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
498           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
499         DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
500               << *DepWrite << "\n  KILLER: " << *Inst << '\n');
501 
502         // Delete the store and now-dead instructions that feed it.
503         DeleteDeadInstruction(DepWrite, *MD);
504         ++NumFastStores;
505         MadeChange = true;
506 
507         // DeleteDeadInstruction can delete the current instruction in loop
508         // cases, reset BBI.
509         BBI = Inst;
510         if (BBI != BB.begin())
511           --BBI;
512         break;
513       }
514 
515       // If this is a may-aliased store that is clobbering the store value, we
516       // can keep searching past it for another must-aliased pointer that stores
517       // to the same location.  For example, in:
518       //   store -> P
519       //   store -> Q
520       //   store -> P
521       // we can remove the first store to P even though we don't know if P and Q
522       // alias.
523       if (DepWrite == &BB.front()) break;
524 
525       // Can't look past this instruction if it might read 'Loc'.
526       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
527         break;
528 
529       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
530     }
531   }
532 
533   // If this block ends in a return, unwind, or unreachable, all allocas are
534   // dead at its end, which means stores to them are also dead.
535   if (BB.getTerminator()->getNumSuccessors() == 0)
536     MadeChange |= handleEndBlock(BB);
537 
538   return MadeChange;
539 }
540 
541 /// HandleFree - Handle frees of entire structures whose dependency is a store
542 /// to a field of that structure.
HandleFree(CallInst * F)543 bool DSE::HandleFree(CallInst *F) {
544   bool MadeChange = false;
545 
546   MemDepResult Dep = MD->getDependency(F);
547 
548   while (Dep.isDef() || Dep.isClobber()) {
549     Instruction *Dependency = Dep.getInst();
550     if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
551       return MadeChange;
552 
553     Value *DepPointer =
554       GetUnderlyingObject(getStoredPointerOperand(Dependency));
555 
556     // Check for aliasing.
557     if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
558       return MadeChange;
559 
560     // DCE instructions only used to calculate that store
561     DeleteDeadInstruction(Dependency, *MD);
562     ++NumFastStores;
563     MadeChange = true;
564 
565     // Inst's old Dependency is now deleted. Compute the next dependency,
566     // which may also be dead, as in
567     //    s[0] = 0;
568     //    s[1] = 0; // This has just been deleted.
569     //    free(s);
570     Dep = MD->getDependency(F);
571   };
572 
573   return MadeChange;
574 }
575 
576 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
577 /// function end block.  Ex:
578 /// %A = alloca i32
579 /// ...
580 /// store i32 1, i32* %A
581 /// ret void
handleEndBlock(BasicBlock & BB)582 bool DSE::handleEndBlock(BasicBlock &BB) {
583   bool MadeChange = false;
584 
585   // Keep track of all of the stack objects that are dead at the end of the
586   // function.
587   SmallPtrSet<Value*, 16> DeadStackObjects;
588 
589   // Find all of the alloca'd pointers in the entry block.
590   BasicBlock *Entry = BB.getParent()->begin();
591   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
592     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
593       DeadStackObjects.insert(AI);
594 
595   // Treat byval arguments the same, stores to them are dead at the end of the
596   // function.
597   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
598        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
599     if (AI->hasByValAttr())
600       DeadStackObjects.insert(AI);
601 
602   // Scan the basic block backwards
603   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
604     --BBI;
605 
606     // If we find a store, check to see if it points into a dead stack value.
607     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
608       // See through pointer-to-pointer bitcasts
609       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
610 
611       // Stores to stack values are valid candidates for removal.
612       if (DeadStackObjects.count(Pointer)) {
613         Instruction *Dead = BBI++;
614 
615         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
616                      << *Dead << "\n  Object: " << *Pointer << '\n');
617 
618         // DCE instructions only used to calculate that store.
619         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
620         ++NumFastStores;
621         MadeChange = true;
622         continue;
623       }
624     }
625 
626     // Remove any dead non-memory-mutating instructions.
627     if (isInstructionTriviallyDead(BBI)) {
628       Instruction *Inst = BBI++;
629       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
630       ++NumFastOther;
631       MadeChange = true;
632       continue;
633     }
634 
635     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
636       DeadStackObjects.erase(A);
637       continue;
638     }
639 
640     if (CallSite CS = cast<Value>(BBI)) {
641       // If this call does not access memory, it can't be loading any of our
642       // pointers.
643       if (AA->doesNotAccessMemory(CS))
644         continue;
645 
646       // If the call might load from any of our allocas, then any store above
647       // the call is live.
648       SmallVector<Value*, 8> LiveAllocas;
649       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
650            E = DeadStackObjects.end(); I != E; ++I) {
651         // See if the call site touches it.
652         AliasAnalysis::ModRefResult A =
653           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
654 
655         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
656           LiveAllocas.push_back(*I);
657       }
658 
659       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
660            E = LiveAllocas.end(); I != E; ++I)
661         DeadStackObjects.erase(*I);
662 
663       // If all of the allocas were clobbered by the call then we're not going
664       // to find anything else to process.
665       if (DeadStackObjects.empty())
666         return MadeChange;
667 
668       continue;
669     }
670 
671     AliasAnalysis::Location LoadedLoc;
672 
673     // If we encounter a use of the pointer, it is no longer considered dead
674     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
675       if (!L->isUnordered()) // Be conservative with atomic/volatile load
676         break;
677       LoadedLoc = AA->getLocation(L);
678     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
679       LoadedLoc = AA->getLocation(V);
680     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
681       LoadedLoc = AA->getLocationForSource(MTI);
682     } else if (!BBI->mayReadFromMemory()) {
683       // Instruction doesn't read memory.  Note that stores that weren't removed
684       // above will hit this case.
685       continue;
686     } else {
687       // Unknown inst; assume it clobbers everything.
688       break;
689     }
690 
691     // Remove any allocas from the DeadPointer set that are loaded, as this
692     // makes any stores above the access live.
693     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
694 
695     // If all of the allocas were clobbered by the access then we're not going
696     // to find anything else to process.
697     if (DeadStackObjects.empty())
698       break;
699   }
700 
701   return MadeChange;
702 }
703 
704 /// RemoveAccessedObjects - Check to see if the specified location may alias any
705 /// of the stack objects in the DeadStackObjects set.  If so, they become live
706 /// because the location is being loaded.
RemoveAccessedObjects(const AliasAnalysis::Location & LoadedLoc,SmallPtrSet<Value *,16> & DeadStackObjects)707 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
708                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
709   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
710 
711   // A constant can't be in the dead pointer set.
712   if (isa<Constant>(UnderlyingPointer))
713     return;
714 
715   // If the kill pointer can be easily reduced to an alloca, don't bother doing
716   // extraneous AA queries.
717   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
718     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
719     return;
720   }
721 
722   SmallVector<Value*, 16> NowLive;
723   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
724        E = DeadStackObjects.end(); I != E; ++I) {
725     // See if the loaded location could alias the stack location.
726     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
727     if (!AA->isNoAlias(StackLoc, LoadedLoc))
728       NowLive.push_back(*I);
729   }
730 
731   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
732        I != E; ++I)
733     DeadStackObjects.erase(*I);
734 }
735 
736