1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion, attempting to remove as much
11 // code from the body of a loop as possible. It does this by either hoisting
12 // code into the preheader block, or by sinking code to the exit blocks if it is
13 // safe. This pass also promotes must-aliased memory locations in the loop to
14 // live in registers, thus hoisting and sinking "invariant" loads and stores.
15 //
16 // This pass uses alias analysis for two purposes:
17 //
18 // 1. Moving loop invariant loads and calls out of loops. If we can determine
19 // that a load or call inside of a loop never aliases anything stored to,
20 // we can hoist it or sink it like any other instruction.
21 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
22 // the loop, we try to move the store to happen AFTER the loop instead of
23 // inside of the loop. This can only happen if a few conditions are true:
24 // A. The pointer stored through is loop invariant
25 // B. There are no stores or loads in the loop which _may_ alias the
26 // pointer. There are no calls in the loop which mod/ref the pointer.
27 // If these conditions are true, we can promote the loads and stores in the
28 // loop of the pointer to use a temporary alloca'd variable. We then use
29 // the SSAUpdater to construct the appropriate SSA form for the value.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #define DEBUG_TYPE "licm"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Constants.h"
36 #include "llvm/DerivedTypes.h"
37 #include "llvm/IntrinsicInst.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/AliasSetTracker.h"
42 #include "llvm/Analysis/ConstantFolding.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopPass.h"
45 #include "llvm/Analysis/Dominators.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/SSAUpdater.h"
48 #include "llvm/Support/CFG.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/ADT/Statistic.h"
53 #include <algorithm>
54 using namespace llvm;
55
56 STATISTIC(NumSunk , "Number of instructions sunk out of loop");
57 STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
58 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60 STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
61
62 static cl::opt<bool>
63 DisablePromotion("disable-licm-promotion", cl::Hidden,
64 cl::desc("Disable memory promotion in LICM pass"));
65
66 namespace {
67 struct LICM : public LoopPass {
68 static char ID; // Pass identification, replacement for typeid
LICM__anonb19208a60111::LICM69 LICM() : LoopPass(ID) {
70 initializeLICMPass(*PassRegistry::getPassRegistry());
71 }
72
73 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
74
75 /// This transformation requires natural loop information & requires that
76 /// loop preheaders be inserted into the CFG...
77 ///
getAnalysisUsage__anonb19208a60111::LICM78 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
79 AU.setPreservesCFG();
80 AU.addRequired<DominatorTree>();
81 AU.addRequired<LoopInfo>();
82 AU.addRequiredID(LoopSimplifyID);
83 AU.addRequired<AliasAnalysis>();
84 AU.addPreserved<AliasAnalysis>();
85 AU.addPreserved("scalar-evolution");
86 AU.addPreservedID(LoopSimplifyID);
87 }
88
doFinalization__anonb19208a60111::LICM89 bool doFinalization() {
90 assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
91 return false;
92 }
93
94 private:
95 AliasAnalysis *AA; // Current AliasAnalysis information
96 LoopInfo *LI; // Current LoopInfo
97 DominatorTree *DT; // Dominator Tree for the current Loop.
98
99 // State that is updated as we process loops.
100 bool Changed; // Set to true when we change anything.
101 BasicBlock *Preheader; // The preheader block of the current loop...
102 Loop *CurLoop; // The current loop we are working on...
103 AliasSetTracker *CurAST; // AliasSet information for the current loop...
104 DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
105
106 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
107 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
108
109 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
110 /// set.
111 void deleteAnalysisValue(Value *V, Loop *L);
112
113 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
114 /// dominated by the specified block, and that are in the current loop) in
115 /// reverse depth first order w.r.t the DominatorTree. This allows us to
116 /// visit uses before definitions, allowing us to sink a loop body in one
117 /// pass without iteration.
118 ///
119 void SinkRegion(DomTreeNode *N);
120
121 /// HoistRegion - Walk the specified region of the CFG (defined by all
122 /// blocks dominated by the specified block, and that are in the current
123 /// loop) in depth first order w.r.t the DominatorTree. This allows us to
124 /// visit definitions before uses, allowing us to hoist a loop body in one
125 /// pass without iteration.
126 ///
127 void HoistRegion(DomTreeNode *N);
128
129 /// inSubLoop - Little predicate that returns true if the specified basic
130 /// block is in a subloop of the current one, not the current one itself.
131 ///
inSubLoop__anonb19208a60111::LICM132 bool inSubLoop(BasicBlock *BB) {
133 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
134 return LI->getLoopFor(BB) != CurLoop;
135 }
136
137 /// sink - When an instruction is found to only be used outside of the loop,
138 /// this function moves it to the exit blocks and patches up SSA form as
139 /// needed.
140 ///
141 void sink(Instruction &I);
142
143 /// hoist - When an instruction is found to only use loop invariant operands
144 /// that is safe to hoist, this instruction is called to do the dirty work.
145 ///
146 void hoist(Instruction &I);
147
148 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
149 /// is not a trapping instruction or if it is a trapping instruction and is
150 /// guaranteed to execute.
151 ///
152 bool isSafeToExecuteUnconditionally(Instruction &I);
153
154 /// isGuaranteedToExecute - Check that the instruction is guaranteed to
155 /// execute.
156 ///
157 bool isGuaranteedToExecute(Instruction &I);
158
159 /// pointerInvalidatedByLoop - Return true if the body of this loop may
160 /// store into the memory location pointed to by V.
161 ///
pointerInvalidatedByLoop__anonb19208a60111::LICM162 bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
163 const MDNode *TBAAInfo) {
164 // Check to see if any of the basic blocks in CurLoop invalidate *V.
165 return CurAST->getAliasSetForPointer(V, Size, TBAAInfo).isMod();
166 }
167
168 bool canSinkOrHoistInst(Instruction &I);
169 bool isNotUsedInLoop(Instruction &I);
170
171 void PromoteAliasSet(AliasSet &AS);
172 };
173 }
174
175 char LICM::ID = 0;
176 INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)177 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
178 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
179 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
180 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
181 INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
182
183 Pass *llvm::createLICMPass() { return new LICM(); }
184
185 /// Hoist expressions out of the specified loop. Note, alias info for inner
186 /// loop is not preserved so it is not a good idea to run LICM multiple
187 /// times on one loop.
188 ///
runOnLoop(Loop * L,LPPassManager & LPM)189 bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
190 Changed = false;
191
192 // Get our Loop and Alias Analysis information...
193 LI = &getAnalysis<LoopInfo>();
194 AA = &getAnalysis<AliasAnalysis>();
195 DT = &getAnalysis<DominatorTree>();
196
197 CurAST = new AliasSetTracker(*AA);
198 // Collect Alias info from subloops.
199 for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
200 LoopItr != LoopItrE; ++LoopItr) {
201 Loop *InnerL = *LoopItr;
202 AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
203 assert(InnerAST && "Where is my AST?");
204
205 // What if InnerLoop was modified by other passes ?
206 CurAST->add(*InnerAST);
207
208 // Once we've incorporated the inner loop's AST into ours, we don't need the
209 // subloop's anymore.
210 delete InnerAST;
211 LoopToAliasSetMap.erase(InnerL);
212 }
213
214 CurLoop = L;
215
216 // Get the preheader block to move instructions into...
217 Preheader = L->getLoopPreheader();
218
219 // Loop over the body of this loop, looking for calls, invokes, and stores.
220 // Because subloops have already been incorporated into AST, we skip blocks in
221 // subloops.
222 //
223 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
224 I != E; ++I) {
225 BasicBlock *BB = *I;
226 if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
227 CurAST->add(*BB); // Incorporate the specified basic block
228 }
229
230 // We want to visit all of the instructions in this loop... that are not parts
231 // of our subloops (they have already had their invariants hoisted out of
232 // their loop, into this loop, so there is no need to process the BODIES of
233 // the subloops).
234 //
235 // Traverse the body of the loop in depth first order on the dominator tree so
236 // that we are guaranteed to see definitions before we see uses. This allows
237 // us to sink instructions in one pass, without iteration. After sinking
238 // instructions, we perform another pass to hoist them out of the loop.
239 //
240 if (L->hasDedicatedExits())
241 SinkRegion(DT->getNode(L->getHeader()));
242 if (Preheader)
243 HoistRegion(DT->getNode(L->getHeader()));
244
245 // Now that all loop invariants have been removed from the loop, promote any
246 // memory references to scalars that we can.
247 if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
248 // Loop over all of the alias sets in the tracker object.
249 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
250 I != E; ++I)
251 PromoteAliasSet(*I);
252 }
253
254 // Clear out loops state information for the next iteration
255 CurLoop = 0;
256 Preheader = 0;
257
258 // If this loop is nested inside of another one, save the alias information
259 // for when we process the outer loop.
260 if (L->getParentLoop())
261 LoopToAliasSetMap[L] = CurAST;
262 else
263 delete CurAST;
264 return Changed;
265 }
266
267 /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
268 /// dominated by the specified block, and that are in the current loop) in
269 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
270 /// uses before definitions, allowing us to sink a loop body in one pass without
271 /// iteration.
272 ///
SinkRegion(DomTreeNode * N)273 void LICM::SinkRegion(DomTreeNode *N) {
274 assert(N != 0 && "Null dominator tree node?");
275 BasicBlock *BB = N->getBlock();
276
277 // If this subregion is not in the top level loop at all, exit.
278 if (!CurLoop->contains(BB)) return;
279
280 // We are processing blocks in reverse dfo, so process children first.
281 const std::vector<DomTreeNode*> &Children = N->getChildren();
282 for (unsigned i = 0, e = Children.size(); i != e; ++i)
283 SinkRegion(Children[i]);
284
285 // Only need to process the contents of this block if it is not part of a
286 // subloop (which would already have been processed).
287 if (inSubLoop(BB)) return;
288
289 for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
290 Instruction &I = *--II;
291
292 // If the instruction is dead, we would try to sink it because it isn't used
293 // in the loop, instead, just delete it.
294 if (isInstructionTriviallyDead(&I)) {
295 DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
296 ++II;
297 CurAST->deleteValue(&I);
298 I.eraseFromParent();
299 Changed = true;
300 continue;
301 }
302
303 // Check to see if we can sink this instruction to the exit blocks
304 // of the loop. We can do this if the all users of the instruction are
305 // outside of the loop. In this case, it doesn't even matter if the
306 // operands of the instruction are loop invariant.
307 //
308 if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
309 ++II;
310 sink(I);
311 }
312 }
313 }
314
315 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks
316 /// dominated by the specified block, and that are in the current loop) in depth
317 /// first order w.r.t the DominatorTree. This allows us to visit definitions
318 /// before uses, allowing us to hoist a loop body in one pass without iteration.
319 ///
HoistRegion(DomTreeNode * N)320 void LICM::HoistRegion(DomTreeNode *N) {
321 assert(N != 0 && "Null dominator tree node?");
322 BasicBlock *BB = N->getBlock();
323
324 // If this subregion is not in the top level loop at all, exit.
325 if (!CurLoop->contains(BB)) return;
326
327 // Only need to process the contents of this block if it is not part of a
328 // subloop (which would already have been processed).
329 if (!inSubLoop(BB))
330 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
331 Instruction &I = *II++;
332
333 // Try constant folding this instruction. If all the operands are
334 // constants, it is technically hoistable, but it would be better to just
335 // fold it.
336 if (Constant *C = ConstantFoldInstruction(&I)) {
337 DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
338 CurAST->copyValue(&I, C);
339 CurAST->deleteValue(&I);
340 I.replaceAllUsesWith(C);
341 I.eraseFromParent();
342 continue;
343 }
344
345 // Try hoisting the instruction out to the preheader. We can only do this
346 // if all of the operands of the instruction are loop invariant and if it
347 // is safe to hoist the instruction.
348 //
349 if (CurLoop->hasLoopInvariantOperands(&I) && canSinkOrHoistInst(I) &&
350 isSafeToExecuteUnconditionally(I))
351 hoist(I);
352 }
353
354 const std::vector<DomTreeNode*> &Children = N->getChildren();
355 for (unsigned i = 0, e = Children.size(); i != e; ++i)
356 HoistRegion(Children[i]);
357 }
358
359 /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
360 /// instruction.
361 ///
canSinkOrHoistInst(Instruction & I)362 bool LICM::canSinkOrHoistInst(Instruction &I) {
363 // Loads have extra constraints we have to verify before we can hoist them.
364 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
365 if (!LI->isUnordered())
366 return false; // Don't hoist volatile/atomic loads!
367
368 // Loads from constant memory are always safe to move, even if they end up
369 // in the same alias set as something that ends up being modified.
370 if (AA->pointsToConstantMemory(LI->getOperand(0)))
371 return true;
372
373 // Don't hoist loads which have may-aliased stores in loop.
374 uint64_t Size = 0;
375 if (LI->getType()->isSized())
376 Size = AA->getTypeStoreSize(LI->getType());
377 return !pointerInvalidatedByLoop(LI->getOperand(0), Size,
378 LI->getMetadata(LLVMContext::MD_tbaa));
379 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
380 // Don't sink or hoist dbg info; it's legal, but not useful.
381 if (isa<DbgInfoIntrinsic>(I))
382 return false;
383
384 // Handle simple cases by querying alias analysis.
385 AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
386 if (Behavior == AliasAnalysis::DoesNotAccessMemory)
387 return true;
388 if (AliasAnalysis::onlyReadsMemory(Behavior)) {
389 // If this call only reads from memory and there are no writes to memory
390 // in the loop, we can hoist or sink the call as appropriate.
391 bool FoundMod = false;
392 for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
393 I != E; ++I) {
394 AliasSet &AS = *I;
395 if (!AS.isForwardingAliasSet() && AS.isMod()) {
396 FoundMod = true;
397 break;
398 }
399 }
400 if (!FoundMod) return true;
401 }
402
403 // FIXME: This should use mod/ref information to see if we can hoist or sink
404 // the call.
405
406 return false;
407 }
408
409 // Otherwise these instructions are hoistable/sinkable
410 return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
411 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
412 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
413 isa<ShuffleVectorInst>(I);
414 }
415
416 /// isNotUsedInLoop - Return true if the only users of this instruction are
417 /// outside of the loop. If this is true, we can sink the instruction to the
418 /// exit blocks of the loop.
419 ///
isNotUsedInLoop(Instruction & I)420 bool LICM::isNotUsedInLoop(Instruction &I) {
421 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
422 Instruction *User = cast<Instruction>(*UI);
423 if (PHINode *PN = dyn_cast<PHINode>(User)) {
424 // PHI node uses occur in predecessor blocks!
425 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
426 if (PN->getIncomingValue(i) == &I)
427 if (CurLoop->contains(PN->getIncomingBlock(i)))
428 return false;
429 } else if (CurLoop->contains(User)) {
430 return false;
431 }
432 }
433 return true;
434 }
435
436
437 /// sink - When an instruction is found to only be used outside of the loop,
438 /// this function moves it to the exit blocks and patches up SSA form as needed.
439 /// This method is guaranteed to remove the original instruction from its
440 /// position, and may either delete it or move it to outside of the loop.
441 ///
sink(Instruction & I)442 void LICM::sink(Instruction &I) {
443 DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
444
445 SmallVector<BasicBlock*, 8> ExitBlocks;
446 CurLoop->getUniqueExitBlocks(ExitBlocks);
447
448 if (isa<LoadInst>(I)) ++NumMovedLoads;
449 else if (isa<CallInst>(I)) ++NumMovedCalls;
450 ++NumSunk;
451 Changed = true;
452
453 // The case where there is only a single exit node of this loop is common
454 // enough that we handle it as a special (more efficient) case. It is more
455 // efficient to handle because there are no PHI nodes that need to be placed.
456 if (ExitBlocks.size() == 1) {
457 if (!DT->dominates(I.getParent(), ExitBlocks[0])) {
458 // Instruction is not used, just delete it.
459 CurAST->deleteValue(&I);
460 // If I has users in unreachable blocks, eliminate.
461 // If I is not void type then replaceAllUsesWith undef.
462 // This allows ValueHandlers and custom metadata to adjust itself.
463 if (!I.use_empty())
464 I.replaceAllUsesWith(UndefValue::get(I.getType()));
465 I.eraseFromParent();
466 } else {
467 // Move the instruction to the start of the exit block, after any PHI
468 // nodes in it.
469 I.moveBefore(ExitBlocks[0]->getFirstInsertionPt());
470
471 // This instruction is no longer in the AST for the current loop, because
472 // we just sunk it out of the loop. If we just sunk it into an outer
473 // loop, we will rediscover the operation when we process it.
474 CurAST->deleteValue(&I);
475 }
476 return;
477 }
478
479 if (ExitBlocks.empty()) {
480 // The instruction is actually dead if there ARE NO exit blocks.
481 CurAST->deleteValue(&I);
482 // If I has users in unreachable blocks, eliminate.
483 // If I is not void type then replaceAllUsesWith undef.
484 // This allows ValueHandlers and custom metadata to adjust itself.
485 if (!I.use_empty())
486 I.replaceAllUsesWith(UndefValue::get(I.getType()));
487 I.eraseFromParent();
488 return;
489 }
490
491 // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
492 // hard work of inserting PHI nodes as necessary.
493 SmallVector<PHINode*, 8> NewPHIs;
494 SSAUpdater SSA(&NewPHIs);
495
496 if (!I.use_empty())
497 SSA.Initialize(I.getType(), I.getName());
498
499 // Insert a copy of the instruction in each exit block of the loop that is
500 // dominated by the instruction. Each exit block is known to only be in the
501 // ExitBlocks list once.
502 BasicBlock *InstOrigBB = I.getParent();
503 unsigned NumInserted = 0;
504
505 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
506 BasicBlock *ExitBlock = ExitBlocks[i];
507
508 if (!DT->dominates(InstOrigBB, ExitBlock))
509 continue;
510
511 // Insert the code after the last PHI node.
512 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
513
514 // If this is the first exit block processed, just move the original
515 // instruction, otherwise clone the original instruction and insert
516 // the copy.
517 Instruction *New;
518 if (NumInserted++ == 0) {
519 I.moveBefore(InsertPt);
520 New = &I;
521 } else {
522 New = I.clone();
523 if (!I.getName().empty())
524 New->setName(I.getName()+".le");
525 ExitBlock->getInstList().insert(InsertPt, New);
526 }
527
528 // Now that we have inserted the instruction, inform SSAUpdater.
529 if (!I.use_empty())
530 SSA.AddAvailableValue(ExitBlock, New);
531 }
532
533 // If the instruction doesn't dominate any exit blocks, it must be dead.
534 if (NumInserted == 0) {
535 CurAST->deleteValue(&I);
536 if (!I.use_empty())
537 I.replaceAllUsesWith(UndefValue::get(I.getType()));
538 I.eraseFromParent();
539 return;
540 }
541
542 // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
543 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
544 // Grab the use before incrementing the iterator.
545 Use &U = UI.getUse();
546 // Increment the iterator before removing the use from the list.
547 ++UI;
548 SSA.RewriteUseAfterInsertions(U);
549 }
550
551 // Update CurAST for NewPHIs if I had pointer type.
552 if (I.getType()->isPointerTy())
553 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
554 CurAST->copyValue(&I, NewPHIs[i]);
555
556 // Finally, remove the instruction from CurAST. It is no longer in the loop.
557 CurAST->deleteValue(&I);
558 }
559
560 /// hoist - When an instruction is found to only use loop invariant operands
561 /// that is safe to hoist, this instruction is called to do the dirty work.
562 ///
hoist(Instruction & I)563 void LICM::hoist(Instruction &I) {
564 DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
565 << I << "\n");
566
567 // Move the new node to the Preheader, before its terminator.
568 I.moveBefore(Preheader->getTerminator());
569
570 if (isa<LoadInst>(I)) ++NumMovedLoads;
571 else if (isa<CallInst>(I)) ++NumMovedCalls;
572 ++NumHoisted;
573 Changed = true;
574 }
575
576 /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
577 /// not a trapping instruction or if it is a trapping instruction and is
578 /// guaranteed to execute.
579 ///
isSafeToExecuteUnconditionally(Instruction & Inst)580 bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
581 // If it is not a trapping instruction, it is always safe to hoist.
582 if (Inst.isSafeToSpeculativelyExecute())
583 return true;
584
585 return isGuaranteedToExecute(Inst);
586 }
587
isGuaranteedToExecute(Instruction & Inst)588 bool LICM::isGuaranteedToExecute(Instruction &Inst) {
589 // Otherwise we have to check to make sure that the instruction dominates all
590 // of the exit blocks. If it doesn't, then there is a path out of the loop
591 // which does not execute this instruction, so we can't hoist it.
592
593 // If the instruction is in the header block for the loop (which is very
594 // common), it is always guaranteed to dominate the exit blocks. Since this
595 // is a common case, and can save some work, check it now.
596 if (Inst.getParent() == CurLoop->getHeader())
597 return true;
598
599 // Get the exit blocks for the current loop.
600 SmallVector<BasicBlock*, 8> ExitBlocks;
601 CurLoop->getExitBlocks(ExitBlocks);
602
603 // Verify that the block dominates each of the exit blocks of the loop.
604 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
605 if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
606 return false;
607
608 return true;
609 }
610
611 namespace {
612 class LoopPromoter : public LoadAndStorePromoter {
613 Value *SomePtr; // Designated pointer to store to.
614 SmallPtrSet<Value*, 4> &PointerMustAliases;
615 SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
616 AliasSetTracker &AST;
617 DebugLoc DL;
618 int Alignment;
619 public:
LoopPromoter(Value * SP,const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,SmallPtrSet<Value *,4> & PMA,SmallVectorImpl<BasicBlock * > & LEB,AliasSetTracker & ast,DebugLoc dl,int alignment)620 LoopPromoter(Value *SP,
621 const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
622 SmallPtrSet<Value*, 4> &PMA,
623 SmallVectorImpl<BasicBlock*> &LEB, AliasSetTracker &ast,
624 DebugLoc dl, int alignment)
625 : LoadAndStorePromoter(Insts, S), SomePtr(SP),
626 PointerMustAliases(PMA), LoopExitBlocks(LEB), AST(ast), DL(dl),
627 Alignment(alignment) {}
628
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const629 virtual bool isInstInList(Instruction *I,
630 const SmallVectorImpl<Instruction*> &) const {
631 Value *Ptr;
632 if (LoadInst *LI = dyn_cast<LoadInst>(I))
633 Ptr = LI->getOperand(0);
634 else
635 Ptr = cast<StoreInst>(I)->getPointerOperand();
636 return PointerMustAliases.count(Ptr);
637 }
638
doExtraRewritesBeforeFinalDeletion() const639 virtual void doExtraRewritesBeforeFinalDeletion() const {
640 // Insert stores after in the loop exit blocks. Each exit block gets a
641 // store of the live-out values that feed them. Since we've already told
642 // the SSA updater about the defs in the loop and the preheader
643 // definition, it is all set and we can start using it.
644 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
645 BasicBlock *ExitBlock = LoopExitBlocks[i];
646 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
647 Instruction *InsertPos = ExitBlock->getFirstInsertionPt();
648 StoreInst *NewSI = new StoreInst(LiveInValue, SomePtr, InsertPos);
649 NewSI->setAlignment(Alignment);
650 NewSI->setDebugLoc(DL);
651 }
652 }
653
replaceLoadWithValue(LoadInst * LI,Value * V) const654 virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const {
655 // Update alias analysis.
656 AST.copyValue(LI, V);
657 }
instructionDeleted(Instruction * I) const658 virtual void instructionDeleted(Instruction *I) const {
659 AST.deleteValue(I);
660 }
661 };
662 } // end anon namespace
663
664 /// PromoteAliasSet - Try to promote memory values to scalars by sinking
665 /// stores out of the loop and moving loads to before the loop. We do this by
666 /// looping over the stores in the loop, looking for stores to Must pointers
667 /// which are loop invariant.
668 ///
PromoteAliasSet(AliasSet & AS)669 void LICM::PromoteAliasSet(AliasSet &AS) {
670 // We can promote this alias set if it has a store, if it is a "Must" alias
671 // set, if the pointer is loop invariant, and if we are not eliminating any
672 // volatile loads or stores.
673 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
674 AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
675 return;
676
677 assert(!AS.empty() &&
678 "Must alias set should have at least one pointer element in it!");
679 Value *SomePtr = AS.begin()->getValue();
680
681 // It isn't safe to promote a load/store from the loop if the load/store is
682 // conditional. For example, turning:
683 //
684 // for () { if (c) *P += 1; }
685 //
686 // into:
687 //
688 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
689 //
690 // is not safe, because *P may only be valid to access if 'c' is true.
691 //
692 // It is safe to promote P if all uses are direct load/stores and if at
693 // least one is guaranteed to be executed.
694 bool GuaranteedToExecute = false;
695
696 SmallVector<Instruction*, 64> LoopUses;
697 SmallPtrSet<Value*, 4> PointerMustAliases;
698
699 // We start with an alignment of one and try to find instructions that allow
700 // us to prove better alignment.
701 unsigned Alignment = 1;
702
703 // Check that all of the pointers in the alias set have the same type. We
704 // cannot (yet) promote a memory location that is loaded and stored in
705 // different sizes.
706 for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
707 Value *ASIV = ASI->getValue();
708 PointerMustAliases.insert(ASIV);
709
710 // Check that all of the pointers in the alias set have the same type. We
711 // cannot (yet) promote a memory location that is loaded and stored in
712 // different sizes.
713 if (SomePtr->getType() != ASIV->getType())
714 return;
715
716 for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
717 UI != UE; ++UI) {
718 // Ignore instructions that are outside the loop.
719 Instruction *Use = dyn_cast<Instruction>(*UI);
720 if (!Use || !CurLoop->contains(Use))
721 continue;
722
723 // If there is an non-load/store instruction in the loop, we can't promote
724 // it.
725 if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
726 assert(!load->isVolatile() && "AST broken");
727 if (!load->isSimple())
728 return;
729 } else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
730 // Stores *of* the pointer are not interesting, only stores *to* the
731 // pointer.
732 if (Use->getOperand(1) != ASIV)
733 continue;
734 assert(!store->isVolatile() && "AST broken");
735 if (!store->isSimple())
736 return;
737
738 // Note that we only check GuaranteedToExecute inside the store case
739 // so that we do not introduce stores where they did not exist before
740 // (which would break the LLVM concurrency model).
741
742 // If the alignment of this instruction allows us to specify a more
743 // restrictive (and performant) alignment and if we are sure this
744 // instruction will be executed, update the alignment.
745 // Larger is better, with the exception of 0 being the best alignment.
746 unsigned InstAlignment = store->getAlignment();
747 if ((InstAlignment > Alignment || InstAlignment == 0)
748 && (Alignment != 0))
749 if (isGuaranteedToExecute(*Use)) {
750 GuaranteedToExecute = true;
751 Alignment = InstAlignment;
752 }
753
754 if (!GuaranteedToExecute)
755 GuaranteedToExecute = isGuaranteedToExecute(*Use);
756
757 } else
758 return; // Not a load or store.
759
760 LoopUses.push_back(Use);
761 }
762 }
763
764 // If there isn't a guaranteed-to-execute instruction, we can't promote.
765 if (!GuaranteedToExecute)
766 return;
767
768 // Otherwise, this is safe to promote, lets do it!
769 DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
770 Changed = true;
771 ++NumPromoted;
772
773 // Grab a debug location for the inserted loads/stores; given that the
774 // inserted loads/stores have little relation to the original loads/stores,
775 // this code just arbitrarily picks a location from one, since any debug
776 // location is better than none.
777 DebugLoc DL = LoopUses[0]->getDebugLoc();
778
779 SmallVector<BasicBlock*, 8> ExitBlocks;
780 CurLoop->getUniqueExitBlocks(ExitBlocks);
781
782 // We use the SSAUpdater interface to insert phi nodes as required.
783 SmallVector<PHINode*, 16> NewPHIs;
784 SSAUpdater SSA(&NewPHIs);
785 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
786 *CurAST, DL, Alignment);
787
788 // Set up the preheader to have a definition of the value. It is the live-out
789 // value from the preheader that uses in the loop will use.
790 LoadInst *PreheaderLoad =
791 new LoadInst(SomePtr, SomePtr->getName()+".promoted",
792 Preheader->getTerminator());
793 PreheaderLoad->setAlignment(Alignment);
794 PreheaderLoad->setDebugLoc(DL);
795 SSA.AddAvailableValue(Preheader, PreheaderLoad);
796
797 // Rewrite all the loads in the loop and remember all the definitions from
798 // stores in the loop.
799 Promoter.run(LoopUses);
800
801 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
802 if (PreheaderLoad->use_empty())
803 PreheaderLoad->eraseFromParent();
804 }
805
806
807 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
cloneBasicBlockAnalysis(BasicBlock * From,BasicBlock * To,Loop * L)808 void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
809 AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
810 if (!AST)
811 return;
812
813 AST->copyValue(From, To);
814 }
815
816 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
817 /// set.
deleteAnalysisValue(Value * V,Loop * L)818 void LICM::deleteAnalysisValue(Value *V, Loop *L) {
819 AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
820 if (!AST)
821 return;
822
823 AST->deleteValue(V);
824 }
825