1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
11 // for eliminating loops with non-infinite computable trip counts that have no
12 // side effects or volatile instructions, and do not contribute to the
13 // computation of the function's return value.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #define DEBUG_TYPE "loop-delete"
18 #include "llvm/Transforms/Scalar.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/SmallVector.h"
24 using namespace llvm;
25
26 STATISTIC(NumDeleted, "Number of loops deleted");
27
28 namespace {
29 class LoopDeletion : public LoopPass {
30 public:
31 static char ID; // Pass ID, replacement for typeid
LoopDeletion()32 LoopDeletion() : LoopPass(ID) {
33 initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
34 }
35
36 // Possibly eliminate loop L if it is dead.
37 bool runOnLoop(Loop* L, LPPassManager& LPM);
38
39 bool IsLoopDead(Loop* L, SmallVector<BasicBlock*, 4>& exitingBlocks,
40 SmallVector<BasicBlock*, 4>& exitBlocks,
41 bool &Changed, BasicBlock *Preheader);
42
getAnalysisUsage(AnalysisUsage & AU) const43 virtual void getAnalysisUsage(AnalysisUsage& AU) const {
44 AU.addRequired<DominatorTree>();
45 AU.addRequired<LoopInfo>();
46 AU.addRequired<ScalarEvolution>();
47 AU.addRequiredID(LoopSimplifyID);
48 AU.addRequiredID(LCSSAID);
49
50 AU.addPreserved<ScalarEvolution>();
51 AU.addPreserved<DominatorTree>();
52 AU.addPreserved<LoopInfo>();
53 AU.addPreservedID(LoopSimplifyID);
54 AU.addPreservedID(LCSSAID);
55 }
56 };
57 }
58
59 char LoopDeletion::ID = 0;
60 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
61 "Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)62 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
64 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
67 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
68 "Delete dead loops", false, false)
69
70 Pass* llvm::createLoopDeletionPass() {
71 return new LoopDeletion();
72 }
73
74 /// IsLoopDead - Determined if a loop is dead. This assumes that we've already
75 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
76 /// form.
IsLoopDead(Loop * L,SmallVector<BasicBlock *,4> & exitingBlocks,SmallVector<BasicBlock *,4> & exitBlocks,bool & Changed,BasicBlock * Preheader)77 bool LoopDeletion::IsLoopDead(Loop* L,
78 SmallVector<BasicBlock*, 4>& exitingBlocks,
79 SmallVector<BasicBlock*, 4>& exitBlocks,
80 bool &Changed, BasicBlock *Preheader) {
81 BasicBlock* exitBlock = exitBlocks[0];
82
83 // Make sure that all PHI entries coming from the loop are loop invariant.
84 // Because the code is in LCSSA form, any values used outside of the loop
85 // must pass through a PHI in the exit block, meaning that this check is
86 // sufficient to guarantee that no loop-variant values are used outside
87 // of the loop.
88 BasicBlock::iterator BI = exitBlock->begin();
89 while (PHINode* P = dyn_cast<PHINode>(BI)) {
90 Value* incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
91
92 // Make sure all exiting blocks produce the same incoming value for the exit
93 // block. If there are different incoming values for different exiting
94 // blocks, then it is impossible to statically determine which value should
95 // be used.
96 for (unsigned i = 1; i < exitingBlocks.size(); ++i) {
97 if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
98 return false;
99 }
100
101 if (Instruction* I = dyn_cast<Instruction>(incoming))
102 if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
103 return false;
104
105 ++BI;
106 }
107
108 // Make sure that no instructions in the block have potential side-effects.
109 // This includes instructions that could write to memory, and loads that are
110 // marked volatile. This could be made more aggressive by using aliasing
111 // information to identify readonly and readnone calls.
112 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
113 LI != LE; ++LI) {
114 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
115 BI != BE; ++BI) {
116 if (BI->mayHaveSideEffects())
117 return false;
118 }
119 }
120
121 return true;
122 }
123
124 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
125 /// observable behavior of the program other than finite running time. Note
126 /// we do ensure that this never remove a loop that might be infinite, as doing
127 /// so could change the halting/non-halting nature of a program.
128 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
129 /// in order to make various safety checks work.
runOnLoop(Loop * L,LPPassManager & LPM)130 bool LoopDeletion::runOnLoop(Loop* L, LPPassManager& LPM) {
131 // We can only remove the loop if there is a preheader that we can
132 // branch from after removing it.
133 BasicBlock* preheader = L->getLoopPreheader();
134 if (!preheader)
135 return false;
136
137 // If LoopSimplify form is not available, stay out of trouble.
138 if (!L->hasDedicatedExits())
139 return false;
140
141 // We can't remove loops that contain subloops. If the subloops were dead,
142 // they would already have been removed in earlier executions of this pass.
143 if (L->begin() != L->end())
144 return false;
145
146 SmallVector<BasicBlock*, 4> exitingBlocks;
147 L->getExitingBlocks(exitingBlocks);
148
149 SmallVector<BasicBlock*, 4> exitBlocks;
150 L->getUniqueExitBlocks(exitBlocks);
151
152 // We require that the loop only have a single exit block. Otherwise, we'd
153 // be in the situation of needing to be able to solve statically which exit
154 // block will be branched to, or trying to preserve the branching logic in
155 // a loop invariant manner.
156 if (exitBlocks.size() != 1)
157 return false;
158
159 // Finally, we have to check that the loop really is dead.
160 bool Changed = false;
161 if (!IsLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
162 return Changed;
163
164 // Don't remove loops for which we can't solve the trip count.
165 // They could be infinite, in which case we'd be changing program behavior.
166 ScalarEvolution& SE = getAnalysis<ScalarEvolution>();
167 const SCEV *S = SE.getMaxBackedgeTakenCount(L);
168 if (isa<SCEVCouldNotCompute>(S))
169 return Changed;
170
171 // Now that we know the removal is safe, remove the loop by changing the
172 // branch from the preheader to go to the single exit block.
173 BasicBlock* exitBlock = exitBlocks[0];
174
175 // Because we're deleting a large chunk of code at once, the sequence in which
176 // we remove things is very important to avoid invalidation issues. Don't
177 // mess with this unless you have good reason and know what you're doing.
178
179 // Tell ScalarEvolution that the loop is deleted. Do this before
180 // deleting the loop so that ScalarEvolution can look at the loop
181 // to determine what it needs to clean up.
182 SE.forgetLoop(L);
183
184 // Connect the preheader directly to the exit block.
185 TerminatorInst* TI = preheader->getTerminator();
186 TI->replaceUsesOfWith(L->getHeader(), exitBlock);
187
188 // Rewrite phis in the exit block to get their inputs from
189 // the preheader instead of the exiting block.
190 BasicBlock* exitingBlock = exitingBlocks[0];
191 BasicBlock::iterator BI = exitBlock->begin();
192 while (PHINode* P = dyn_cast<PHINode>(BI)) {
193 int j = P->getBasicBlockIndex(exitingBlock);
194 assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
195 P->setIncomingBlock(j, preheader);
196 for (unsigned i = 1; i < exitingBlocks.size(); ++i)
197 P->removeIncomingValue(exitingBlocks[i]);
198 ++BI;
199 }
200
201 // Update the dominator tree and remove the instructions and blocks that will
202 // be deleted from the reference counting scheme.
203 DominatorTree& DT = getAnalysis<DominatorTree>();
204 SmallVector<DomTreeNode*, 8> ChildNodes;
205 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
206 LI != LE; ++LI) {
207 // Move all of the block's children to be children of the preheader, which
208 // allows us to remove the domtree entry for the block.
209 ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
210 for (SmallVector<DomTreeNode*, 8>::iterator DI = ChildNodes.begin(),
211 DE = ChildNodes.end(); DI != DE; ++DI) {
212 DT.changeImmediateDominator(*DI, DT[preheader]);
213 }
214
215 ChildNodes.clear();
216 DT.eraseNode(*LI);
217
218 // Remove the block from the reference counting scheme, so that we can
219 // delete it freely later.
220 (*LI)->dropAllReferences();
221 }
222
223 // Erase the instructions and the blocks without having to worry
224 // about ordering because we already dropped the references.
225 // NOTE: This iteration is safe because erasing the block does not remove its
226 // entry from the loop's block list. We do that in the next section.
227 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
228 LI != LE; ++LI)
229 (*LI)->eraseFromParent();
230
231 // Finally, the blocks from loopinfo. This has to happen late because
232 // otherwise our loop iterators won't work.
233 LoopInfo& loopInfo = getAnalysis<LoopInfo>();
234 SmallPtrSet<BasicBlock*, 8> blocks;
235 blocks.insert(L->block_begin(), L->block_end());
236 for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
237 E = blocks.end(); I != E; ++I)
238 loopInfo.removeBlock(*I);
239
240 // The last step is to inform the loop pass manager that we've
241 // eliminated this loop.
242 LPM.deleteLoopFromQueue(L);
243 Changed = true;
244
245 ++NumDeleted;
246
247 return Changed;
248 }
249