1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block.  This pass may be "required" by passes that
12 // cannot deal with critical edges.  For this usage, the structure type is
13 // forward declared.  This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "break-crit-edges"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Analysis/Dominators.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ProfileInfo.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Type.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 using namespace llvm;
32 
33 STATISTIC(NumBroken, "Number of blocks inserted");
34 
35 namespace {
36   struct BreakCriticalEdges : public FunctionPass {
37     static char ID; // Pass identification, replacement for typeid
BreakCriticalEdges__anon98aab8340111::BreakCriticalEdges38     BreakCriticalEdges() : FunctionPass(ID) {
39       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40     }
41 
42     virtual bool runOnFunction(Function &F);
43 
getAnalysisUsage__anon98aab8340111::BreakCriticalEdges44     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45       AU.addPreserved<DominatorTree>();
46       AU.addPreserved<LoopInfo>();
47       AU.addPreserved<ProfileInfo>();
48 
49       // No loop canonicalization guarantees are broken by this pass.
50       AU.addPreservedID(LoopSimplifyID);
51     }
52   };
53 }
54 
55 char BreakCriticalEdges::ID = 0;
56 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57                 "Break critical edges in CFG", false, false)
58 
59 // Publicly exposed interface to pass...
60 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
createBreakCriticalEdgesPass()61 FunctionPass *llvm::createBreakCriticalEdgesPass() {
62   return new BreakCriticalEdges();
63 }
64 
65 // runOnFunction - Loop over all of the edges in the CFG, breaking critical
66 // edges as they are found.
67 //
runOnFunction(Function & F)68 bool BreakCriticalEdges::runOnFunction(Function &F) {
69   bool Changed = false;
70   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71     TerminatorInst *TI = I->getTerminator();
72     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74         if (SplitCriticalEdge(TI, i, this)) {
75           ++NumBroken;
76           Changed = true;
77         }
78   }
79 
80   return Changed;
81 }
82 
83 //===----------------------------------------------------------------------===//
84 //    Implementation of the external critical edge manipulation functions
85 //===----------------------------------------------------------------------===//
86 
87 // isCriticalEdge - Return true if the specified edge is a critical edge.
88 // Critical edges are edges from a block with multiple successors to a block
89 // with multiple predecessors.
90 //
isCriticalEdge(const TerminatorInst * TI,unsigned SuccNum,bool AllowIdenticalEdges)91 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92                           bool AllowIdenticalEdges) {
93   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94   if (TI->getNumSuccessors() == 1) return false;
95 
96   const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98 
99   // If there is more than one predecessor, this is a critical edge...
100   assert(I != E && "No preds, but we have an edge to the block?");
101   const BasicBlock *FirstPred = *I;
102   ++I;        // Skip one edge due to the incoming arc from TI.
103   if (!AllowIdenticalEdges)
104     return I != E;
105 
106   // If AllowIdenticalEdges is true, then we allow this edge to be considered
107   // non-critical iff all preds come from TI's block.
108   while (I != E) {
109     const BasicBlock *P = *I;
110     if (P != FirstPred)
111       return true;
112     // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113     // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114     E = pred_end(P);
115     ++I;
116   }
117   return false;
118 }
119 
120 /// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121 /// may require new PHIs in the new exit block. This function inserts the
122 /// new PHIs, as needed.  Preds is a list of preds inside the loop, SplitBB
123 /// is the new loop exit block, and DestBB is the old loop exit, now the
124 /// successor of SplitBB.
CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock * > & Preds,BasicBlock * SplitBB,BasicBlock * DestBB)125 static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126                                        BasicBlock *SplitBB,
127                                        BasicBlock *DestBB) {
128   // SplitBB shouldn't have anything non-trivial in it yet.
129   assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130          "SplitBB has non-PHI nodes!");
131 
132   // For each PHI in the destination block...
133   for (BasicBlock::iterator I = DestBB->begin();
134        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136     Value *V = PN->getIncomingValue(Idx);
137     // If the input is a PHI which already satisfies LCSSA, don't create
138     // a new one.
139     if (const PHINode *VP = dyn_cast<PHINode>(V))
140       if (VP->getParent() == SplitBB)
141         continue;
142     // Otherwise a new PHI is needed. Create one and populate it.
143     PHINode *NewPN = PHINode::Create(PN->getType(), Preds.size(), "split",
144                                      SplitBB->getTerminator());
145     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146       NewPN->addIncoming(V, Preds[i]);
147     // Update the original PHI.
148     PN->setIncomingValue(Idx, NewPN);
149   }
150 }
151 
152 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153 /// split the critical edge.  This will update DominatorTree information if it
154 /// is available, thus calling this pass will not invalidate either of them.
155 /// This returns the new block if the edge was split, null otherwise.
156 ///
157 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
158 /// specified successor will be merged into the same critical edge block.
159 /// This is most commonly interesting with switch instructions, which may
160 /// have many edges to any one destination.  This ensures that all edges to that
161 /// dest go to one block instead of each going to a different block, but isn't
162 /// the standard definition of a "critical edge".
163 ///
164 /// It is invalid to call this function on a critical edge that starts at an
165 /// IndirectBrInst.  Splitting these edges will almost always create an invalid
166 /// program because the address of the new block won't be the one that is jumped
167 /// to.
168 ///
SplitCriticalEdge(TerminatorInst * TI,unsigned SuccNum,Pass * P,bool MergeIdenticalEdges,bool DontDeleteUselessPhis)169 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
170                                     Pass *P, bool MergeIdenticalEdges,
171                                     bool DontDeleteUselessPhis) {
172   if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
173 
174   assert(!isa<IndirectBrInst>(TI) &&
175          "Cannot split critical edge from IndirectBrInst");
176 
177   BasicBlock *TIBB = TI->getParent();
178   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
179 
180   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
181   // it in this generic function.
182   if (DestBB->isLandingPad()) return 0;
183 
184   // Create a new basic block, linking it into the CFG.
185   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
186                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
187   // Create our unconditional branch.
188   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
189   NewBI->setDebugLoc(TI->getDebugLoc());
190 
191   // Branch to the new block, breaking the edge.
192   TI->setSuccessor(SuccNum, NewBB);
193 
194   // Insert the block into the function... right after the block TI lives in.
195   Function &F = *TIBB->getParent();
196   Function::iterator FBBI = TIBB;
197   F.getBasicBlockList().insert(++FBBI, NewBB);
198 
199   // If there are any PHI nodes in DestBB, we need to update them so that they
200   // merge incoming values from NewBB instead of from TIBB.
201   {
202     unsigned BBIdx = 0;
203     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
204       // We no longer enter through TIBB, now we come in through NewBB.
205       // Revector exactly one entry in the PHI node that used to come from
206       // TIBB to come from NewBB.
207       PHINode *PN = cast<PHINode>(I);
208 
209       // Reuse the previous value of BBIdx if it lines up.  In cases where we
210       // have multiple phi nodes with *lots* of predecessors, this is a speed
211       // win because we don't have to scan the PHI looking for TIBB.  This
212       // happens because the BB list of PHI nodes are usually in the same
213       // order.
214       if (PN->getIncomingBlock(BBIdx) != TIBB)
215         BBIdx = PN->getBasicBlockIndex(TIBB);
216       PN->setIncomingBlock(BBIdx, NewBB);
217     }
218   }
219 
220   // If there are any other edges from TIBB to DestBB, update those to go
221   // through the split block, making those edges non-critical as well (and
222   // reducing the number of phi entries in the DestBB if relevant).
223   if (MergeIdenticalEdges) {
224     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
225       if (TI->getSuccessor(i) != DestBB) continue;
226 
227       // Remove an entry for TIBB from DestBB phi nodes.
228       DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
229 
230       // We found another edge to DestBB, go to NewBB instead.
231       TI->setSuccessor(i, NewBB);
232     }
233   }
234 
235 
236 
237   // If we don't have a pass object, we can't update anything...
238   if (P == 0) return NewBB;
239 
240   DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
241   LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
242   ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
243 
244   // If we have nothing to update, just return.
245   if (DT == 0 && LI == 0 && PI == 0)
246     return NewBB;
247 
248   // Now update analysis information.  Since the only predecessor of NewBB is
249   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
250   // anything, as there are other successors of DestBB.  However, if all other
251   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
252   // loop header) then NewBB dominates DestBB.
253   SmallVector<BasicBlock*, 8> OtherPreds;
254 
255   // If there is a PHI in the block, loop over predecessors with it, which is
256   // faster than iterating pred_begin/end.
257   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
258     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
259       if (PN->getIncomingBlock(i) != NewBB)
260         OtherPreds.push_back(PN->getIncomingBlock(i));
261   } else {
262     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
263          I != E; ++I) {
264       BasicBlock *P = *I;
265       if (P != NewBB)
266         OtherPreds.push_back(P);
267     }
268   }
269 
270   bool NewBBDominatesDestBB = true;
271 
272   // Should we update DominatorTree information?
273   if (DT) {
274     DomTreeNode *TINode = DT->getNode(TIBB);
275 
276     // The new block is not the immediate dominator for any other nodes, but
277     // TINode is the immediate dominator for the new node.
278     //
279     if (TINode) {       // Don't break unreachable code!
280       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
281       DomTreeNode *DestBBNode = 0;
282 
283       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
284       if (!OtherPreds.empty()) {
285         DestBBNode = DT->getNode(DestBB);
286         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
287           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
288             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
289           OtherPreds.pop_back();
290         }
291         OtherPreds.clear();
292       }
293 
294       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
295       // doesn't dominate anything.
296       if (NewBBDominatesDestBB) {
297         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
298         DT->changeImmediateDominator(DestBBNode, NewBBNode);
299       }
300     }
301   }
302 
303   // Update LoopInfo if it is around.
304   if (LI) {
305     if (Loop *TIL = LI->getLoopFor(TIBB)) {
306       // If one or the other blocks were not in a loop, the new block is not
307       // either, and thus LI doesn't need to be updated.
308       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
309         if (TIL == DestLoop) {
310           // Both in the same loop, the NewBB joins loop.
311           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
312         } else if (TIL->contains(DestLoop)) {
313           // Edge from an outer loop to an inner loop.  Add to the outer loop.
314           TIL->addBasicBlockToLoop(NewBB, LI->getBase());
315         } else if (DestLoop->contains(TIL)) {
316           // Edge from an inner loop to an outer loop.  Add to the outer loop.
317           DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
318         } else {
319           // Edge from two loops with no containment relation.  Because these
320           // are natural loops, we know that the destination block must be the
321           // header of its loop (adding a branch into a loop elsewhere would
322           // create an irreducible loop).
323           assert(DestLoop->getHeader() == DestBB &&
324                  "Should not create irreducible loops!");
325           if (Loop *P = DestLoop->getParentLoop())
326             P->addBasicBlockToLoop(NewBB, LI->getBase());
327         }
328       }
329       // If TIBB is in a loop and DestBB is outside of that loop, split the
330       // other exit blocks of the loop that also have predecessors outside
331       // the loop, to maintain a LoopSimplify guarantee.
332       if (!TIL->contains(DestBB) &&
333           P->mustPreserveAnalysisID(LoopSimplifyID)) {
334         assert(!TIL->contains(NewBB) &&
335                "Split point for loop exit is contained in loop!");
336 
337         // Update LCSSA form in the newly created exit block.
338         if (P->mustPreserveAnalysisID(LCSSAID)) {
339           SmallVector<BasicBlock *, 1> OrigPred;
340           OrigPred.push_back(TIBB);
341           CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
342         }
343 
344         // For each unique exit block...
345         // FIXME: This code is functionally equivalent to the corresponding
346         // loop in LoopSimplify.
347         SmallVector<BasicBlock *, 4> ExitBlocks;
348         TIL->getExitBlocks(ExitBlocks);
349         for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
350           // Collect all the preds that are inside the loop, and note
351           // whether there are any preds outside the loop.
352           SmallVector<BasicBlock *, 4> Preds;
353           bool HasPredOutsideOfLoop = false;
354           BasicBlock *Exit = ExitBlocks[i];
355           for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
356                I != E; ++I) {
357             BasicBlock *P = *I;
358             if (TIL->contains(P)) {
359               if (isa<IndirectBrInst>(P->getTerminator())) {
360                 Preds.clear();
361                 break;
362               }
363               Preds.push_back(P);
364             } else {
365               HasPredOutsideOfLoop = true;
366             }
367           }
368           // If there are any preds not in the loop, we'll need to split
369           // the edges. The Preds.empty() check is needed because a block
370           // may appear multiple times in the list. We can't use
371           // getUniqueExitBlocks above because that depends on LoopSimplify
372           // form, which we're in the process of restoring!
373           if (!Preds.empty() && HasPredOutsideOfLoop) {
374             BasicBlock *NewExitBB =
375               SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
376                                      "split", P);
377             if (P->mustPreserveAnalysisID(LCSSAID))
378               CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
379           }
380         }
381       }
382       // LCSSA form was updated above for the case where LoopSimplify is
383       // available, which means that all predecessors of loop exit blocks
384       // are within the loop. Without LoopSimplify form, it would be
385       // necessary to insert a new phi.
386       assert((!P->mustPreserveAnalysisID(LCSSAID) ||
387               P->mustPreserveAnalysisID(LoopSimplifyID)) &&
388              "SplitCriticalEdge doesn't know how to update LCCSA form "
389              "without LoopSimplify!");
390     }
391   }
392 
393   // Update ProfileInfo if it is around.
394   if (PI)
395     PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
396 
397   return NewBB;
398 }
399