1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #define DEBUG_TYPE "loop-simplify"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Constants.h"
43 #include "llvm/Instructions.h"
44 #include "llvm/IntrinsicInst.h"
45 #include "llvm/Function.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/InstructionSimplify.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Support/CFG.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/ADT/SetOperations.h"
58 #include "llvm/ADT/SetVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 using namespace llvm;
62 
63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64 STATISTIC(NumNested  , "Number of nested loops split out");
65 
66 namespace {
67   struct LoopSimplify : public LoopPass {
68     static char ID; // Pass identification, replacement for typeid
LoopSimplify__anon88546e030111::LoopSimplify69     LoopSimplify() : LoopPass(ID) {
70       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71     }
72 
73     // AA - If we have an alias analysis object to update, this is it, otherwise
74     // this is null.
75     AliasAnalysis *AA;
76     LoopInfo *LI;
77     DominatorTree *DT;
78     ScalarEvolution *SE;
79     Loop *L;
80     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81 
getAnalysisUsage__anon88546e030111::LoopSimplify82     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83       // We need loop information to identify the loops...
84       AU.addRequired<DominatorTree>();
85       AU.addPreserved<DominatorTree>();
86 
87       AU.addRequired<LoopInfo>();
88       AU.addPreserved<LoopInfo>();
89 
90       AU.addPreserved<AliasAnalysis>();
91       AU.addPreserved<ScalarEvolution>();
92       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
93     }
94 
95     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
96     void verifyAnalysis() const;
97 
98   private:
99     bool ProcessLoop(Loop *L, LPPassManager &LPM);
100     BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
101     BasicBlock *InsertPreheaderForLoop(Loop *L);
102     Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
103     BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
104     void PlaceSplitBlockCarefully(BasicBlock *NewBB,
105                                   SmallVectorImpl<BasicBlock*> &SplitPreds,
106                                   Loop *L);
107   };
108 }
109 
110 char LoopSimplify::ID = 0;
111 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
112                 "Canonicalize natural loops", true, false)
113 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
115 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
116                 "Canonicalize natural loops", true, false)
117 
118 // Publicly exposed interface to pass...
119 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()120 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
121 
122 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
123 /// it in any convenient order) inserting preheaders...
124 ///
runOnLoop(Loop * l,LPPassManager & LPM)125 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
126   L = l;
127   bool Changed = false;
128   LI = &getAnalysis<LoopInfo>();
129   AA = getAnalysisIfAvailable<AliasAnalysis>();
130   DT = &getAnalysis<DominatorTree>();
131   SE = getAnalysisIfAvailable<ScalarEvolution>();
132 
133   Changed |= ProcessLoop(L, LPM);
134 
135   return Changed;
136 }
137 
138 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
139 /// all loops have preheaders.
140 ///
ProcessLoop(Loop * L,LPPassManager & LPM)141 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
142   bool Changed = false;
143 ReprocessLoop:
144 
145   // Check to see that no blocks (other than the header) in this loop have
146   // predecessors that are not in the loop.  This is not valid for natural
147   // loops, but can occur if the blocks are unreachable.  Since they are
148   // unreachable we can just shamelessly delete those CFG edges!
149   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
150        BB != E; ++BB) {
151     if (*BB == L->getHeader()) continue;
152 
153     SmallPtrSet<BasicBlock*, 4> BadPreds;
154     for (pred_iterator PI = pred_begin(*BB),
155          PE = pred_end(*BB); PI != PE; ++PI) {
156       BasicBlock *P = *PI;
157       if (!L->contains(P))
158         BadPreds.insert(P);
159     }
160 
161     // Delete each unique out-of-loop (and thus dead) predecessor.
162     for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
163          E = BadPreds.end(); I != E; ++I) {
164 
165       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
166                    << (*I)->getName() << "\n");
167 
168       // Inform each successor of each dead pred.
169       for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
170         (*SI)->removePredecessor(*I);
171       // Zap the dead pred's terminator and replace it with unreachable.
172       TerminatorInst *TI = (*I)->getTerminator();
173        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
174       (*I)->getTerminator()->eraseFromParent();
175       new UnreachableInst((*I)->getContext(), *I);
176       Changed = true;
177     }
178   }
179 
180   // If there are exiting blocks with branches on undef, resolve the undef in
181   // the direction which will exit the loop. This will help simplify loop
182   // trip count computations.
183   SmallVector<BasicBlock*, 8> ExitingBlocks;
184   L->getExitingBlocks(ExitingBlocks);
185   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
186        E = ExitingBlocks.end(); I != E; ++I)
187     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
188       if (BI->isConditional()) {
189         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
190 
191           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
192                        << (*I)->getName() << "\n");
193 
194           BI->setCondition(ConstantInt::get(Cond->getType(),
195                                             !L->contains(BI->getSuccessor(0))));
196           Changed = true;
197         }
198       }
199 
200   // Does the loop already have a preheader?  If so, don't insert one.
201   BasicBlock *Preheader = L->getLoopPreheader();
202   if (!Preheader) {
203     Preheader = InsertPreheaderForLoop(L);
204     if (Preheader) {
205       ++NumInserted;
206       Changed = true;
207     }
208   }
209 
210   // Next, check to make sure that all exit nodes of the loop only have
211   // predecessors that are inside of the loop.  This check guarantees that the
212   // loop preheader/header will dominate the exit blocks.  If the exit block has
213   // predecessors from outside of the loop, split the edge now.
214   SmallVector<BasicBlock*, 8> ExitBlocks;
215   L->getExitBlocks(ExitBlocks);
216 
217   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
218                                                ExitBlocks.end());
219   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
220          E = ExitBlockSet.end(); I != E; ++I) {
221     BasicBlock *ExitBlock = *I;
222     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
223          PI != PE; ++PI)
224       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
225       // allowed.
226       if (!L->contains(*PI)) {
227         if (RewriteLoopExitBlock(L, ExitBlock)) {
228           ++NumInserted;
229           Changed = true;
230         }
231         break;
232       }
233   }
234 
235   // If the header has more than two predecessors at this point (from the
236   // preheader and from multiple backedges), we must adjust the loop.
237   BasicBlock *LoopLatch = L->getLoopLatch();
238   if (!LoopLatch) {
239     // If this is really a nested loop, rip it out into a child loop.  Don't do
240     // this for loops with a giant number of backedges, just factor them into a
241     // common backedge instead.
242     if (L->getNumBackEdges() < 8) {
243       if (SeparateNestedLoop(L, LPM)) {
244         ++NumNested;
245         // This is a big restructuring change, reprocess the whole loop.
246         Changed = true;
247         // GCC doesn't tail recursion eliminate this.
248         goto ReprocessLoop;
249       }
250     }
251 
252     // If we either couldn't, or didn't want to, identify nesting of the loops,
253     // insert a new block that all backedges target, then make it jump to the
254     // loop header.
255     LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
256     if (LoopLatch) {
257       ++NumInserted;
258       Changed = true;
259     }
260   }
261 
262   // Scan over the PHI nodes in the loop header.  Since they now have only two
263   // incoming values (the loop is canonicalized), we may have simplified the PHI
264   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
265   PHINode *PN;
266   for (BasicBlock::iterator I = L->getHeader()->begin();
267        (PN = dyn_cast<PHINode>(I++)); )
268     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
269       if (AA) AA->deleteValue(PN);
270       if (SE) SE->forgetValue(PN);
271       PN->replaceAllUsesWith(V);
272       PN->eraseFromParent();
273     }
274 
275   // If this loop has multiple exits and the exits all go to the same
276   // block, attempt to merge the exits. This helps several passes, such
277   // as LoopRotation, which do not support loops with multiple exits.
278   // SimplifyCFG also does this (and this code uses the same utility
279   // function), however this code is loop-aware, where SimplifyCFG is
280   // not. That gives it the advantage of being able to hoist
281   // loop-invariant instructions out of the way to open up more
282   // opportunities, and the disadvantage of having the responsibility
283   // to preserve dominator information.
284   bool UniqueExit = true;
285   if (!ExitBlocks.empty())
286     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
287       if (ExitBlocks[i] != ExitBlocks[0]) {
288         UniqueExit = false;
289         break;
290       }
291   if (UniqueExit) {
292     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
293       BasicBlock *ExitingBlock = ExitingBlocks[i];
294       if (!ExitingBlock->getSinglePredecessor()) continue;
295       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
296       if (!BI || !BI->isConditional()) continue;
297       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
298       if (!CI || CI->getParent() != ExitingBlock) continue;
299 
300       // Attempt to hoist out all instructions except for the
301       // comparison and the branch.
302       bool AllInvariant = true;
303       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
304         Instruction *Inst = I++;
305         // Skip debug info intrinsics.
306         if (isa<DbgInfoIntrinsic>(Inst))
307           continue;
308         if (Inst == CI)
309           continue;
310         if (!L->makeLoopInvariant(Inst, Changed,
311                                   Preheader ? Preheader->getTerminator() : 0)) {
312           AllInvariant = false;
313           break;
314         }
315       }
316       if (!AllInvariant) continue;
317 
318       // The block has now been cleared of all instructions except for
319       // a comparison and a conditional branch. SimplifyCFG may be able
320       // to fold it now.
321       if (!FoldBranchToCommonDest(BI)) continue;
322 
323       // Success. The block is now dead, so remove it from the loop,
324       // update the dominator tree and delete it.
325       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
326                    << ExitingBlock->getName() << "\n");
327 
328       // If any reachable control flow within this loop has changed, notify
329       // ScalarEvolution. Currently assume the parent loop doesn't change
330       // (spliting edges doesn't count). If blocks, CFG edges, or other values
331       // in the parent loop change, then we need call to forgetLoop() for the
332       // parent instead.
333       if (SE)
334         SE->forgetLoop(L);
335 
336       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
337       Changed = true;
338       LI->removeBlock(ExitingBlock);
339 
340       DomTreeNode *Node = DT->getNode(ExitingBlock);
341       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
342         Node->getChildren();
343       while (!Children.empty()) {
344         DomTreeNode *Child = Children.front();
345         DT->changeImmediateDominator(Child, Node->getIDom());
346       }
347       DT->eraseNode(ExitingBlock);
348 
349       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
350       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
351       ExitingBlock->eraseFromParent();
352     }
353   }
354 
355   return Changed;
356 }
357 
358 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
359 /// preheader, this method is called to insert one.  This method has two phases:
360 /// preheader insertion and analysis updating.
361 ///
InsertPreheaderForLoop(Loop * L)362 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
363   BasicBlock *Header = L->getHeader();
364 
365   // Compute the set of predecessors of the loop that are not in the loop.
366   SmallVector<BasicBlock*, 8> OutsideBlocks;
367   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
368        PI != PE; ++PI) {
369     BasicBlock *P = *PI;
370     if (!L->contains(P)) {         // Coming in from outside the loop?
371       // If the loop is branched to from an indirect branch, we won't
372       // be able to fully transform the loop, because it prohibits
373       // edge splitting.
374       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
375 
376       // Keep track of it.
377       OutsideBlocks.push_back(P);
378     }
379   }
380 
381   // Split out the loop pre-header.
382   BasicBlock *NewBB =
383     SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
384                            ".preheader", this);
385 
386   NewBB->getTerminator()->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
387   DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
388                << "\n");
389 
390   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
391   // code layout too horribly.
392   PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
393 
394   return NewBB;
395 }
396 
397 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
398 /// blocks.  This method is used to split exit blocks that have predecessors
399 /// outside of the loop.
RewriteLoopExitBlock(Loop * L,BasicBlock * Exit)400 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
401   SmallVector<BasicBlock*, 8> LoopBlocks;
402   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
403     BasicBlock *P = *I;
404     if (L->contains(P)) {
405       // Don't do this if the loop is exited via an indirect branch.
406       if (isa<IndirectBrInst>(P->getTerminator())) return 0;
407 
408       LoopBlocks.push_back(P);
409     }
410   }
411 
412   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
413   BasicBlock *NewExitBB = 0;
414 
415   if (Exit->isLandingPad()) {
416     SmallVector<BasicBlock*, 2> NewBBs;
417     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
418                                                             LoopBlocks.size()),
419                                 ".loopexit", ".nonloopexit",
420                                 this, NewBBs);
421     NewExitBB = NewBBs[0];
422   } else {
423     NewExitBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
424                                        LoopBlocks.size(), ".loopexit",
425                                        this);
426   }
427 
428   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
429                << NewExitBB->getName() << "\n");
430   return NewExitBB;
431 }
432 
433 /// AddBlockAndPredsToSet - Add the specified block, and all of its
434 /// predecessors, to the specified set, if it's not already in there.  Stop
435 /// predecessor traversal when we reach StopBlock.
AddBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)436 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
437                                   std::set<BasicBlock*> &Blocks) {
438   std::vector<BasicBlock *> WorkList;
439   WorkList.push_back(InputBB);
440   do {
441     BasicBlock *BB = WorkList.back(); WorkList.pop_back();
442     if (Blocks.insert(BB).second && BB != StopBlock)
443       // If BB is not already processed and it is not a stop block then
444       // insert its predecessor in the work list
445       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
446         BasicBlock *WBB = *I;
447         WorkList.push_back(WBB);
448       }
449   } while(!WorkList.empty());
450 }
451 
452 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
453 /// PHI node that tells us how to partition the loops.
FindPHIToPartitionLoops(Loop * L,DominatorTree * DT,AliasAnalysis * AA,LoopInfo * LI)454 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
455                                         AliasAnalysis *AA, LoopInfo *LI) {
456   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
457     PHINode *PN = cast<PHINode>(I);
458     ++I;
459     if (Value *V = SimplifyInstruction(PN, 0, DT)) {
460       // This is a degenerate PHI already, don't modify it!
461       PN->replaceAllUsesWith(V);
462       if (AA) AA->deleteValue(PN);
463       PN->eraseFromParent();
464       continue;
465     }
466 
467     // Scan this PHI node looking for a use of the PHI node by itself.
468     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
469       if (PN->getIncomingValue(i) == PN &&
470           L->contains(PN->getIncomingBlock(i)))
471         // We found something tasty to remove.
472         return PN;
473   }
474   return 0;
475 }
476 
477 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
478 // right after some 'outside block' block.  This prevents the preheader from
479 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
PlaceSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)480 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
481                                        SmallVectorImpl<BasicBlock*> &SplitPreds,
482                                             Loop *L) {
483   // Check to see if NewBB is already well placed.
484   Function::iterator BBI = NewBB; --BBI;
485   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
486     if (&*BBI == SplitPreds[i])
487       return;
488   }
489 
490   // If it isn't already after an outside block, move it after one.  This is
491   // always good as it makes the uncond branch from the outside block into a
492   // fall-through.
493 
494   // Figure out *which* outside block to put this after.  Prefer an outside
495   // block that neighbors a BB actually in the loop.
496   BasicBlock *FoundBB = 0;
497   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
498     Function::iterator BBI = SplitPreds[i];
499     if (++BBI != NewBB->getParent()->end() &&
500         L->contains(BBI)) {
501       FoundBB = SplitPreds[i];
502       break;
503     }
504   }
505 
506   // If our heuristic for a *good* bb to place this after doesn't find
507   // anything, just pick something.  It's likely better than leaving it within
508   // the loop.
509   if (!FoundBB)
510     FoundBB = SplitPreds[0];
511   NewBB->moveAfter(FoundBB);
512 }
513 
514 
515 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
516 /// them out into a nested loop.  This is important for code that looks like
517 /// this:
518 ///
519 ///  Loop:
520 ///     ...
521 ///     br cond, Loop, Next
522 ///     ...
523 ///     br cond2, Loop, Out
524 ///
525 /// To identify this common case, we look at the PHI nodes in the header of the
526 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
527 /// that change in the "outer" loop, but not in the "inner" loop.
528 ///
529 /// If we are able to separate out a loop, return the new outer loop that was
530 /// created.
531 ///
SeparateNestedLoop(Loop * L,LPPassManager & LPM)532 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
533   PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
534   if (PN == 0) return 0;  // No known way to partition.
535 
536   // Pull out all predecessors that have varying values in the loop.  This
537   // handles the case when a PHI node has multiple instances of itself as
538   // arguments.
539   SmallVector<BasicBlock*, 8> OuterLoopPreds;
540   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
541     if (PN->getIncomingValue(i) != PN ||
542         !L->contains(PN->getIncomingBlock(i))) {
543       // We can't split indirectbr edges.
544       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
545         return 0;
546 
547       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
548     }
549 
550   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
551 
552   // If ScalarEvolution is around and knows anything about values in
553   // this loop, tell it to forget them, because we're about to
554   // substantially change it.
555   if (SE)
556     SE->forgetLoop(L);
557 
558   BasicBlock *Header = L->getHeader();
559   BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
560                                              OuterLoopPreds.size(),
561                                              ".outer", this);
562 
563   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
564   // code layout too horribly.
565   PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
566 
567   // Create the new outer loop.
568   Loop *NewOuter = new Loop();
569 
570   // Change the parent loop to use the outer loop as its child now.
571   if (Loop *Parent = L->getParentLoop())
572     Parent->replaceChildLoopWith(L, NewOuter);
573   else
574     LI->changeTopLevelLoop(L, NewOuter);
575 
576   // L is now a subloop of our outer loop.
577   NewOuter->addChildLoop(L);
578 
579   // Add the new loop to the pass manager queue.
580   LPM.insertLoopIntoQueue(NewOuter);
581 
582   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
583        I != E; ++I)
584     NewOuter->addBlockEntry(*I);
585 
586   // Now reset the header in L, which had been moved by
587   // SplitBlockPredecessors for the outer loop.
588   L->moveToHeader(Header);
589 
590   // Determine which blocks should stay in L and which should be moved out to
591   // the Outer loop now.
592   std::set<BasicBlock*> BlocksInL;
593   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
594     BasicBlock *P = *PI;
595     if (DT->dominates(Header, P))
596       AddBlockAndPredsToSet(P, Header, BlocksInL);
597   }
598 
599   // Scan all of the loop children of L, moving them to OuterLoop if they are
600   // not part of the inner loop.
601   const std::vector<Loop*> &SubLoops = L->getSubLoops();
602   for (size_t I = 0; I != SubLoops.size(); )
603     if (BlocksInL.count(SubLoops[I]->getHeader()))
604       ++I;   // Loop remains in L
605     else
606       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
607 
608   // Now that we know which blocks are in L and which need to be moved to
609   // OuterLoop, move any blocks that need it.
610   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
611     BasicBlock *BB = L->getBlocks()[i];
612     if (!BlocksInL.count(BB)) {
613       // Move this block to the parent, updating the exit blocks sets
614       L->removeBlockFromLoop(BB);
615       if ((*LI)[BB] == L)
616         LI->changeLoopFor(BB, NewOuter);
617       --i;
618     }
619   }
620 
621   return NewOuter;
622 }
623 
624 
625 
626 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
627 /// has more than one backedge in it.  If this occurs, revector all of these
628 /// backedges to target a new basic block and have that block branch to the loop
629 /// header.  This ensures that loops have exactly one backedge.
630 ///
631 BasicBlock *
InsertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader)632 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
633   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
634 
635   // Get information about the loop
636   BasicBlock *Header = L->getHeader();
637   Function *F = Header->getParent();
638 
639   // Unique backedge insertion currently depends on having a preheader.
640   if (!Preheader)
641     return 0;
642 
643   // Figure out which basic blocks contain back-edges to the loop header.
644   std::vector<BasicBlock*> BackedgeBlocks;
645   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
646     BasicBlock *P = *I;
647 
648     // Indirectbr edges cannot be split, so we must fail if we find one.
649     if (isa<IndirectBrInst>(P->getTerminator()))
650       return 0;
651 
652     if (P != Preheader) BackedgeBlocks.push_back(P);
653   }
654 
655   // Create and insert the new backedge block...
656   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
657                                            Header->getName()+".backedge", F);
658   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
659 
660   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
661                << BEBlock->getName() << "\n");
662 
663   // Move the new backedge block to right after the last backedge block.
664   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
665   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
666 
667   // Now that the block has been inserted into the function, create PHI nodes in
668   // the backedge block which correspond to any PHI nodes in the header block.
669   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
670     PHINode *PN = cast<PHINode>(I);
671     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
672                                      PN->getName()+".be", BETerminator);
673     if (AA) AA->copyValue(PN, NewPN);
674 
675     // Loop over the PHI node, moving all entries except the one for the
676     // preheader over to the new PHI node.
677     unsigned PreheaderIdx = ~0U;
678     bool HasUniqueIncomingValue = true;
679     Value *UniqueValue = 0;
680     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
681       BasicBlock *IBB = PN->getIncomingBlock(i);
682       Value *IV = PN->getIncomingValue(i);
683       if (IBB == Preheader) {
684         PreheaderIdx = i;
685       } else {
686         NewPN->addIncoming(IV, IBB);
687         if (HasUniqueIncomingValue) {
688           if (UniqueValue == 0)
689             UniqueValue = IV;
690           else if (UniqueValue != IV)
691             HasUniqueIncomingValue = false;
692         }
693       }
694     }
695 
696     // Delete all of the incoming values from the old PN except the preheader's
697     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
698     if (PreheaderIdx != 0) {
699       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
700       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
701     }
702     // Nuke all entries except the zero'th.
703     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
704       PN->removeIncomingValue(e-i, false);
705 
706     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
707     PN->addIncoming(NewPN, BEBlock);
708 
709     // As an optimization, if all incoming values in the new PhiNode (which is a
710     // subset of the incoming values of the old PHI node) have the same value,
711     // eliminate the PHI Node.
712     if (HasUniqueIncomingValue) {
713       NewPN->replaceAllUsesWith(UniqueValue);
714       if (AA) AA->deleteValue(NewPN);
715       BEBlock->getInstList().erase(NewPN);
716     }
717   }
718 
719   // Now that all of the PHI nodes have been inserted and adjusted, modify the
720   // backedge blocks to just to the BEBlock instead of the header.
721   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
722     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
723     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
724       if (TI->getSuccessor(Op) == Header)
725         TI->setSuccessor(Op, BEBlock);
726   }
727 
728   //===--- Update all analyses which we must preserve now -----------------===//
729 
730   // Update Loop Information - we know that this block is now in the current
731   // loop and all parent loops.
732   L->addBasicBlockToLoop(BEBlock, LI->getBase());
733 
734   // Update dominator information
735   DT->splitBlock(BEBlock);
736 
737   return BEBlock;
738 }
739 
verifyAnalysis() const740 void LoopSimplify::verifyAnalysis() const {
741   // It used to be possible to just assert L->isLoopSimplifyForm(), however
742   // with the introduction of indirectbr, there are now cases where it's
743   // not possible to transform a loop as necessary. We can at least check
744   // that there is an indirectbr near any time there's trouble.
745 
746   // Indirectbr can interfere with preheader and unique backedge insertion.
747   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
748     bool HasIndBrPred = false;
749     for (pred_iterator PI = pred_begin(L->getHeader()),
750          PE = pred_end(L->getHeader()); PI != PE; ++PI)
751       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
752         HasIndBrPred = true;
753         break;
754       }
755     assert(HasIndBrPred &&
756            "LoopSimplify has no excuse for missing loop header info!");
757     (void)HasIndBrPred;
758   }
759 
760   // Indirectbr can interfere with exit block canonicalization.
761   if (!L->hasDedicatedExits()) {
762     bool HasIndBrExiting = false;
763     SmallVector<BasicBlock*, 8> ExitingBlocks;
764     L->getExitingBlocks(ExitingBlocks);
765     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
766       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
767         HasIndBrExiting = true;
768         break;
769       }
770     }
771 
772     assert(HasIndBrExiting &&
773            "LoopSimplify has no excuse for missing exit block info!");
774     (void)HasIndBrExiting;
775   }
776 }
777