1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches.  This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #define DEBUG_TYPE "loop-unroll"
20 #include "llvm/Transforms/Utils/UnrollLoop.h"
21 #include "llvm/BasicBlock.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
33 using namespace llvm;
34 
35 // TODO: Should these be here or in LoopUnroll?
36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
38 
39 /// RemapInstruction - Convert the instruction operands from referencing the
40 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)41 static inline void RemapInstruction(Instruction *I,
42                                     ValueToValueMapTy &VMap) {
43   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
44     Value *Op = I->getOperand(op);
45     ValueToValueMapTy::iterator It = VMap.find(Op);
46     if (It != VMap.end())
47       I->setOperand(op, It->second);
48   }
49 
50   if (PHINode *PN = dyn_cast<PHINode>(I)) {
51     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
52       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
53       if (It != VMap.end())
54         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
55     }
56   }
57 }
58 
59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
60 /// only has one predecessor, and that predecessor only has one successor.
61 /// The LoopInfo Analysis that is passed will be kept consistent.
62 /// Returns the new combined block.
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM)63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
64                                             LPPassManager *LPM) {
65   // Merge basic blocks into their predecessor if there is only one distinct
66   // pred, and if there is only one distinct successor of the predecessor, and
67   // if there are no PHI nodes.
68   BasicBlock *OnlyPred = BB->getSinglePredecessor();
69   if (!OnlyPred) return 0;
70 
71   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
72     return 0;
73 
74   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
75 
76   // Resolve any PHI nodes at the start of the block.  They are all
77   // guaranteed to have exactly one entry if they exist, unless there are
78   // multiple duplicate (but guaranteed to be equal) entries for the
79   // incoming edges.  This occurs when there are multiple edges from
80   // OnlyPred to OnlySucc.
81   FoldSingleEntryPHINodes(BB);
82 
83   // Delete the unconditional branch from the predecessor...
84   OnlyPred->getInstList().pop_back();
85 
86   // Make all PHI nodes that referred to BB now refer to Pred as their
87   // source...
88   BB->replaceAllUsesWith(OnlyPred);
89 
90   // Move all definitions in the successor to the predecessor...
91   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
92 
93   std::string OldName = BB->getName();
94 
95   // Erase basic block from the function...
96 
97   // ScalarEvolution holds references to loop exit blocks.
98   if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
99     if (Loop *L = LI->getLoopFor(BB))
100       SE->forgetLoop(L);
101   }
102   LI->removeBlock(BB);
103   BB->eraseFromParent();
104 
105   // Inherit predecessor's name if it exists...
106   if (!OldName.empty() && !OnlyPred->hasName())
107     OnlyPred->setName(OldName);
108 
109   return OnlyPred;
110 }
111 
112 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
113 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
114 /// can only fail when the loop's latch block is not terminated by a conditional
115 /// branch instruction. However, if the trip count (and multiple) are not known,
116 /// loop unrolling will mostly produce more code that is no faster.
117 ///
118 /// TripCount is generally defined as the number of times the loop header
119 /// executes. UnrollLoop relaxes the definition to permit early exits: here
120 /// TripCount is the iteration on which control exits LatchBlock if no early
121 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
122 /// terminates LatchBlock in order to remove unnecesssary instances of the
123 /// test. In other words, control may exit the loop prior to TripCount
124 /// iterations via an early branch, but control may not exit the loop from the
125 /// LatchBlock's terminator prior to TripCount iterations.
126 ///
127 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
128 /// execute without exiting the loop.
129 ///
130 /// The LoopInfo Analysis that is passed will be kept consistent.
131 ///
132 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
133 /// removed from the LoopPassManager as well. LPM can also be NULL.
134 ///
135 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
136 /// available it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,unsigned TripMultiple,LoopInfo * LI,LPPassManager * LPM)137 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
138                       unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
139   BasicBlock *Preheader = L->getLoopPreheader();
140   if (!Preheader) {
141     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
142     return false;
143   }
144 
145   BasicBlock *LatchBlock = L->getLoopLatch();
146   if (!LatchBlock) {
147     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
148     return false;
149   }
150 
151   BasicBlock *Header = L->getHeader();
152   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
153 
154   if (!BI || BI->isUnconditional()) {
155     // The loop-rotate pass can be helpful to avoid this in many cases.
156     DEBUG(dbgs() <<
157              "  Can't unroll; loop not terminated by a conditional branch.\n");
158     return false;
159   }
160 
161   if (Header->hasAddressTaken()) {
162     // The loop-rotate pass can be helpful to avoid this in many cases.
163     DEBUG(dbgs() <<
164           "  Won't unroll loop: address of header block is taken.\n");
165     return false;
166   }
167 
168   // Notify ScalarEvolution that the loop will be substantially changed,
169   // if not outright eliminated.
170   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
171   if (SE)
172     SE->forgetLoop(L);
173 
174   if (TripCount != 0)
175     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
176   if (TripMultiple != 1)
177     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
178 
179   // Effectively "DCE" unrolled iterations that are beyond the tripcount
180   // and will never be executed.
181   if (TripCount != 0 && Count > TripCount)
182     Count = TripCount;
183 
184   assert(Count > 0);
185   assert(TripMultiple > 0);
186   assert(TripCount == 0 || TripCount % TripMultiple == 0);
187 
188   // Are we eliminating the loop control altogether?
189   bool CompletelyUnroll = Count == TripCount;
190 
191   // If we know the trip count, we know the multiple...
192   unsigned BreakoutTrip = 0;
193   if (TripCount != 0) {
194     BreakoutTrip = TripCount % Count;
195     TripMultiple = 0;
196   } else {
197     // Figure out what multiple to use.
198     BreakoutTrip = TripMultiple =
199       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
200   }
201 
202   if (CompletelyUnroll) {
203     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
204           << " with trip count " << TripCount << "!\n");
205   } else {
206     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
207           << " by " << Count);
208     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
209       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
210     } else if (TripMultiple != 1) {
211       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
212     }
213     DEBUG(dbgs() << "!\n");
214   }
215 
216   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
217 
218   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
219   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
220 
221   // For the first iteration of the loop, we should use the precloned values for
222   // PHI nodes.  Insert associations now.
223   ValueToValueMapTy LastValueMap;
224   std::vector<PHINode*> OrigPHINode;
225   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
226     OrigPHINode.push_back(cast<PHINode>(I));
227   }
228 
229   std::vector<BasicBlock*> Headers;
230   std::vector<BasicBlock*> Latches;
231   Headers.push_back(Header);
232   Latches.push_back(LatchBlock);
233 
234   // The current on-the-fly SSA update requires blocks to be processed in
235   // reverse postorder so that LastValueMap contains the correct value at each
236   // exit.
237   LoopBlocksDFS DFS(L);
238   DFS.perform(LI);
239 
240   // Stash the DFS iterators before adding blocks to the loop.
241   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
242   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
243 
244   for (unsigned It = 1; It != Count; ++It) {
245     std::vector<BasicBlock*> NewBlocks;
246 
247     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
248       ValueToValueMapTy VMap;
249       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
250       Header->getParent()->getBasicBlockList().push_back(New);
251 
252       // Loop over all of the PHI nodes in the block, changing them to use the
253       // incoming values from the previous block.
254       if (*BB == Header)
255         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
256           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
257           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
258           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
259             if (It > 1 && L->contains(InValI))
260               InVal = LastValueMap[InValI];
261           VMap[OrigPHINode[i]] = InVal;
262           New->getInstList().erase(NewPHI);
263         }
264 
265       // Update our running map of newest clones
266       LastValueMap[*BB] = New;
267       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
268            VI != VE; ++VI)
269         LastValueMap[VI->first] = VI->second;
270 
271       L->addBasicBlockToLoop(New, LI->getBase());
272 
273       // Add phi entries for newly created values to all exit blocks.
274       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
275            SI != SE; ++SI) {
276         if (L->contains(*SI))
277           continue;
278         for (BasicBlock::iterator BBI = (*SI)->begin();
279              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
280           Value *Incoming = phi->getIncomingValueForBlock(*BB);
281           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
282           if (It != LastValueMap.end())
283             Incoming = It->second;
284           phi->addIncoming(Incoming, New);
285         }
286       }
287       // Keep track of new headers and latches as we create them, so that
288       // we can insert the proper branches later.
289       if (*BB == Header)
290         Headers.push_back(New);
291       if (*BB == LatchBlock)
292         Latches.push_back(New);
293 
294       NewBlocks.push_back(New);
295     }
296 
297     // Remap all instructions in the most recent iteration
298     for (unsigned i = 0; i < NewBlocks.size(); ++i)
299       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
300            E = NewBlocks[i]->end(); I != E; ++I)
301         ::RemapInstruction(I, LastValueMap);
302   }
303 
304   // Loop over the PHI nodes in the original block, setting incoming values.
305   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
306     PHINode *PN = OrigPHINode[i];
307     if (CompletelyUnroll) {
308       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
309       Header->getInstList().erase(PN);
310     }
311     else if (Count > 1) {
312       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
313       // If this value was defined in the loop, take the value defined by the
314       // last iteration of the loop.
315       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
316         if (L->contains(InValI))
317           InVal = LastValueMap[InVal];
318       }
319       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
320       PN->addIncoming(InVal, Latches.back());
321     }
322   }
323 
324   // Now that all the basic blocks for the unrolled iterations are in place,
325   // set up the branches to connect them.
326   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
327     // The original branch was replicated in each unrolled iteration.
328     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
329 
330     // The branch destination.
331     unsigned j = (i + 1) % e;
332     BasicBlock *Dest = Headers[j];
333     bool NeedConditional = true;
334 
335     // For a complete unroll, make the last iteration end with a branch
336     // to the exit block.
337     if (CompletelyUnroll && j == 0) {
338       Dest = LoopExit;
339       NeedConditional = false;
340     }
341 
342     // If we know the trip count or a multiple of it, we can safely use an
343     // unconditional branch for some iterations.
344     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
345       NeedConditional = false;
346     }
347 
348     if (NeedConditional) {
349       // Update the conditional branch's successor for the following
350       // iteration.
351       Term->setSuccessor(!ContinueOnTrue, Dest);
352     } else {
353       // Remove phi operands at this loop exit
354       if (Dest != LoopExit) {
355         BasicBlock *BB = Latches[i];
356         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
357              SI != SE; ++SI) {
358           if (*SI == Headers[i])
359             continue;
360           for (BasicBlock::iterator BBI = (*SI)->begin();
361                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
362             Phi->removeIncomingValue(BB, false);
363           }
364         }
365       }
366       // Replace the conditional branch with an unconditional one.
367       BranchInst::Create(Dest, Term);
368       Term->eraseFromParent();
369     }
370   }
371 
372   // Merge adjacent basic blocks, if possible.
373   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
374     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
375     if (Term->isUnconditional()) {
376       BasicBlock *Dest = Term->getSuccessor(0);
377       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
378         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
379     }
380   }
381 
382   // FIXME: Reconstruct dom info, because it is not preserved properly.
383   // Incrementally updating domtree after loop unrolling would be easy.
384   if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
385     DT->runOnFunction(*L->getHeader()->getParent());
386 
387   // Simplify any new induction variables in the partially unrolled loop.
388   if (SE && !CompletelyUnroll) {
389     SmallVector<WeakVH, 16> DeadInsts;
390     simplifyLoopIVs(L, SE, LPM, DeadInsts);
391 
392     // Aggressively clean up dead instructions that simplifyLoopIVs already
393     // identified. Any remaining should be cleaned up below.
394     while (!DeadInsts.empty())
395       if (Instruction *Inst =
396           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
397         RecursivelyDeleteTriviallyDeadInstructions(Inst);
398   }
399 
400   // At this point, the code is well formed.  We now do a quick sweep over the
401   // inserted code, doing constant propagation and dead code elimination as we
402   // go.
403   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
404   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
405        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
406     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
407       Instruction *Inst = I++;
408 
409       if (isInstructionTriviallyDead(Inst))
410         (*BB)->getInstList().erase(Inst);
411       else if (Value *V = SimplifyInstruction(Inst))
412         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
413           Inst->replaceAllUsesWith(V);
414           (*BB)->getInstList().erase(Inst);
415         }
416     }
417 
418   NumCompletelyUnrolled += CompletelyUnroll;
419   ++NumUnrolled;
420   // Remove the loop from the LoopPassManager if it's completely removed.
421   if (CompletelyUnroll && LPM != NULL)
422     LPM->deleteLoopFromQueue(L);
423 
424   return true;
425 }
426