1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities. It does not define any
11 // actual pass or policy, but provides a single function to perform loop
12 // unrolling.
13 //
14 // The process of unrolling can produce extraneous basic blocks linked with
15 // unconditional branches. This will be corrected in the future.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #define DEBUG_TYPE "loop-unroll"
20 #include "llvm/Transforms/Utils/UnrollLoop.h"
21 #include "llvm/BasicBlock.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/InstructionSimplify.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
33 using namespace llvm;
34
35 // TODO: Should these be here or in LoopUnroll?
36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
38
39 /// RemapInstruction - Convert the instruction operands from referencing the
40 /// current values into those specified by VMap.
RemapInstruction(Instruction * I,ValueToValueMapTy & VMap)41 static inline void RemapInstruction(Instruction *I,
42 ValueToValueMapTy &VMap) {
43 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
44 Value *Op = I->getOperand(op);
45 ValueToValueMapTy::iterator It = VMap.find(Op);
46 if (It != VMap.end())
47 I->setOperand(op, It->second);
48 }
49
50 if (PHINode *PN = dyn_cast<PHINode>(I)) {
51 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
52 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
53 if (It != VMap.end())
54 PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
55 }
56 }
57 }
58
59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
60 /// only has one predecessor, and that predecessor only has one successor.
61 /// The LoopInfo Analysis that is passed will be kept consistent.
62 /// Returns the new combined block.
FoldBlockIntoPredecessor(BasicBlock * BB,LoopInfo * LI,LPPassManager * LPM)63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
64 LPPassManager *LPM) {
65 // Merge basic blocks into their predecessor if there is only one distinct
66 // pred, and if there is only one distinct successor of the predecessor, and
67 // if there are no PHI nodes.
68 BasicBlock *OnlyPred = BB->getSinglePredecessor();
69 if (!OnlyPred) return 0;
70
71 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
72 return 0;
73
74 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
75
76 // Resolve any PHI nodes at the start of the block. They are all
77 // guaranteed to have exactly one entry if they exist, unless there are
78 // multiple duplicate (but guaranteed to be equal) entries for the
79 // incoming edges. This occurs when there are multiple edges from
80 // OnlyPred to OnlySucc.
81 FoldSingleEntryPHINodes(BB);
82
83 // Delete the unconditional branch from the predecessor...
84 OnlyPred->getInstList().pop_back();
85
86 // Make all PHI nodes that referred to BB now refer to Pred as their
87 // source...
88 BB->replaceAllUsesWith(OnlyPred);
89
90 // Move all definitions in the successor to the predecessor...
91 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
92
93 std::string OldName = BB->getName();
94
95 // Erase basic block from the function...
96
97 // ScalarEvolution holds references to loop exit blocks.
98 if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
99 if (Loop *L = LI->getLoopFor(BB))
100 SE->forgetLoop(L);
101 }
102 LI->removeBlock(BB);
103 BB->eraseFromParent();
104
105 // Inherit predecessor's name if it exists...
106 if (!OldName.empty() && !OnlyPred->hasName())
107 OnlyPred->setName(OldName);
108
109 return OnlyPred;
110 }
111
112 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
113 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
114 /// can only fail when the loop's latch block is not terminated by a conditional
115 /// branch instruction. However, if the trip count (and multiple) are not known,
116 /// loop unrolling will mostly produce more code that is no faster.
117 ///
118 /// TripCount is generally defined as the number of times the loop header
119 /// executes. UnrollLoop relaxes the definition to permit early exits: here
120 /// TripCount is the iteration on which control exits LatchBlock if no early
121 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
122 /// terminates LatchBlock in order to remove unnecesssary instances of the
123 /// test. In other words, control may exit the loop prior to TripCount
124 /// iterations via an early branch, but control may not exit the loop from the
125 /// LatchBlock's terminator prior to TripCount iterations.
126 ///
127 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
128 /// execute without exiting the loop.
129 ///
130 /// The LoopInfo Analysis that is passed will be kept consistent.
131 ///
132 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
133 /// removed from the LoopPassManager as well. LPM can also be NULL.
134 ///
135 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
136 /// available it must also preserve those analyses.
UnrollLoop(Loop * L,unsigned Count,unsigned TripCount,unsigned TripMultiple,LoopInfo * LI,LPPassManager * LPM)137 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
138 unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
139 BasicBlock *Preheader = L->getLoopPreheader();
140 if (!Preheader) {
141 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
142 return false;
143 }
144
145 BasicBlock *LatchBlock = L->getLoopLatch();
146 if (!LatchBlock) {
147 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
148 return false;
149 }
150
151 BasicBlock *Header = L->getHeader();
152 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
153
154 if (!BI || BI->isUnconditional()) {
155 // The loop-rotate pass can be helpful to avoid this in many cases.
156 DEBUG(dbgs() <<
157 " Can't unroll; loop not terminated by a conditional branch.\n");
158 return false;
159 }
160
161 if (Header->hasAddressTaken()) {
162 // The loop-rotate pass can be helpful to avoid this in many cases.
163 DEBUG(dbgs() <<
164 " Won't unroll loop: address of header block is taken.\n");
165 return false;
166 }
167
168 // Notify ScalarEvolution that the loop will be substantially changed,
169 // if not outright eliminated.
170 ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
171 if (SE)
172 SE->forgetLoop(L);
173
174 if (TripCount != 0)
175 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n");
176 if (TripMultiple != 1)
177 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n");
178
179 // Effectively "DCE" unrolled iterations that are beyond the tripcount
180 // and will never be executed.
181 if (TripCount != 0 && Count > TripCount)
182 Count = TripCount;
183
184 assert(Count > 0);
185 assert(TripMultiple > 0);
186 assert(TripCount == 0 || TripCount % TripMultiple == 0);
187
188 // Are we eliminating the loop control altogether?
189 bool CompletelyUnroll = Count == TripCount;
190
191 // If we know the trip count, we know the multiple...
192 unsigned BreakoutTrip = 0;
193 if (TripCount != 0) {
194 BreakoutTrip = TripCount % Count;
195 TripMultiple = 0;
196 } else {
197 // Figure out what multiple to use.
198 BreakoutTrip = TripMultiple =
199 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
200 }
201
202 if (CompletelyUnroll) {
203 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
204 << " with trip count " << TripCount << "!\n");
205 } else {
206 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
207 << " by " << Count);
208 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
209 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
210 } else if (TripMultiple != 1) {
211 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
212 }
213 DEBUG(dbgs() << "!\n");
214 }
215
216 std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
217
218 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
219 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
220
221 // For the first iteration of the loop, we should use the precloned values for
222 // PHI nodes. Insert associations now.
223 ValueToValueMapTy LastValueMap;
224 std::vector<PHINode*> OrigPHINode;
225 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
226 OrigPHINode.push_back(cast<PHINode>(I));
227 }
228
229 std::vector<BasicBlock*> Headers;
230 std::vector<BasicBlock*> Latches;
231 Headers.push_back(Header);
232 Latches.push_back(LatchBlock);
233
234 // The current on-the-fly SSA update requires blocks to be processed in
235 // reverse postorder so that LastValueMap contains the correct value at each
236 // exit.
237 LoopBlocksDFS DFS(L);
238 DFS.perform(LI);
239
240 // Stash the DFS iterators before adding blocks to the loop.
241 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
242 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
243
244 for (unsigned It = 1; It != Count; ++It) {
245 std::vector<BasicBlock*> NewBlocks;
246
247 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
248 ValueToValueMapTy VMap;
249 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
250 Header->getParent()->getBasicBlockList().push_back(New);
251
252 // Loop over all of the PHI nodes in the block, changing them to use the
253 // incoming values from the previous block.
254 if (*BB == Header)
255 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
256 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
257 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
258 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
259 if (It > 1 && L->contains(InValI))
260 InVal = LastValueMap[InValI];
261 VMap[OrigPHINode[i]] = InVal;
262 New->getInstList().erase(NewPHI);
263 }
264
265 // Update our running map of newest clones
266 LastValueMap[*BB] = New;
267 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
268 VI != VE; ++VI)
269 LastValueMap[VI->first] = VI->second;
270
271 L->addBasicBlockToLoop(New, LI->getBase());
272
273 // Add phi entries for newly created values to all exit blocks.
274 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
275 SI != SE; ++SI) {
276 if (L->contains(*SI))
277 continue;
278 for (BasicBlock::iterator BBI = (*SI)->begin();
279 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
280 Value *Incoming = phi->getIncomingValueForBlock(*BB);
281 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
282 if (It != LastValueMap.end())
283 Incoming = It->second;
284 phi->addIncoming(Incoming, New);
285 }
286 }
287 // Keep track of new headers and latches as we create them, so that
288 // we can insert the proper branches later.
289 if (*BB == Header)
290 Headers.push_back(New);
291 if (*BB == LatchBlock)
292 Latches.push_back(New);
293
294 NewBlocks.push_back(New);
295 }
296
297 // Remap all instructions in the most recent iteration
298 for (unsigned i = 0; i < NewBlocks.size(); ++i)
299 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
300 E = NewBlocks[i]->end(); I != E; ++I)
301 ::RemapInstruction(I, LastValueMap);
302 }
303
304 // Loop over the PHI nodes in the original block, setting incoming values.
305 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
306 PHINode *PN = OrigPHINode[i];
307 if (CompletelyUnroll) {
308 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
309 Header->getInstList().erase(PN);
310 }
311 else if (Count > 1) {
312 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
313 // If this value was defined in the loop, take the value defined by the
314 // last iteration of the loop.
315 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
316 if (L->contains(InValI))
317 InVal = LastValueMap[InVal];
318 }
319 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
320 PN->addIncoming(InVal, Latches.back());
321 }
322 }
323
324 // Now that all the basic blocks for the unrolled iterations are in place,
325 // set up the branches to connect them.
326 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
327 // The original branch was replicated in each unrolled iteration.
328 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
329
330 // The branch destination.
331 unsigned j = (i + 1) % e;
332 BasicBlock *Dest = Headers[j];
333 bool NeedConditional = true;
334
335 // For a complete unroll, make the last iteration end with a branch
336 // to the exit block.
337 if (CompletelyUnroll && j == 0) {
338 Dest = LoopExit;
339 NeedConditional = false;
340 }
341
342 // If we know the trip count or a multiple of it, we can safely use an
343 // unconditional branch for some iterations.
344 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
345 NeedConditional = false;
346 }
347
348 if (NeedConditional) {
349 // Update the conditional branch's successor for the following
350 // iteration.
351 Term->setSuccessor(!ContinueOnTrue, Dest);
352 } else {
353 // Remove phi operands at this loop exit
354 if (Dest != LoopExit) {
355 BasicBlock *BB = Latches[i];
356 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
357 SI != SE; ++SI) {
358 if (*SI == Headers[i])
359 continue;
360 for (BasicBlock::iterator BBI = (*SI)->begin();
361 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
362 Phi->removeIncomingValue(BB, false);
363 }
364 }
365 }
366 // Replace the conditional branch with an unconditional one.
367 BranchInst::Create(Dest, Term);
368 Term->eraseFromParent();
369 }
370 }
371
372 // Merge adjacent basic blocks, if possible.
373 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
374 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
375 if (Term->isUnconditional()) {
376 BasicBlock *Dest = Term->getSuccessor(0);
377 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
378 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
379 }
380 }
381
382 // FIXME: Reconstruct dom info, because it is not preserved properly.
383 // Incrementally updating domtree after loop unrolling would be easy.
384 if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
385 DT->runOnFunction(*L->getHeader()->getParent());
386
387 // Simplify any new induction variables in the partially unrolled loop.
388 if (SE && !CompletelyUnroll) {
389 SmallVector<WeakVH, 16> DeadInsts;
390 simplifyLoopIVs(L, SE, LPM, DeadInsts);
391
392 // Aggressively clean up dead instructions that simplifyLoopIVs already
393 // identified. Any remaining should be cleaned up below.
394 while (!DeadInsts.empty())
395 if (Instruction *Inst =
396 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
397 RecursivelyDeleteTriviallyDeadInstructions(Inst);
398 }
399
400 // At this point, the code is well formed. We now do a quick sweep over the
401 // inserted code, doing constant propagation and dead code elimination as we
402 // go.
403 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
404 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
405 BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
406 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
407 Instruction *Inst = I++;
408
409 if (isInstructionTriviallyDead(Inst))
410 (*BB)->getInstList().erase(Inst);
411 else if (Value *V = SimplifyInstruction(Inst))
412 if (LI->replacementPreservesLCSSAForm(Inst, V)) {
413 Inst->replaceAllUsesWith(V);
414 (*BB)->getInstList().erase(Inst);
415 }
416 }
417
418 NumCompletelyUnrolled += CompletelyUnroll;
419 ++NumUnrolled;
420 // Remove the loop from the LoopPassManager if it's completely removed.
421 if (CompletelyUnroll && LPM != NULL)
422 LPM->deleteLoopFromQueue(L);
423
424 return true;
425 }
426