1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 //   Programming Languages
21 //   POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/Constants.h"
31 #include "llvm/DerivedTypes.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/IntrinsicInst.h"
35 #include "llvm/Metadata.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/DebugInfo.h"
38 #include "llvm/Analysis/DIBuilder.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/InstructionSimplify.h"
41 #include "llvm/Analysis/ValueTracking.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/Support/CFG.h"
49 #include <algorithm>
50 #include <queue>
51 using namespace llvm;
52 
53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
54 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
55 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
56 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
57 
58 namespace llvm {
59 template<>
60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
61   typedef std::pair<BasicBlock*, unsigned> EltTy;
getEmptyKeyllvm::DenseMapInfo62   static inline EltTy getEmptyKey() {
63     return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
64   }
getTombstoneKeyllvm::DenseMapInfo65   static inline EltTy getTombstoneKey() {
66     return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
67   }
getHashValuellvm::DenseMapInfo68   static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
69     return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
70   }
isEqualllvm::DenseMapInfo71   static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
72     return LHS == RHS;
73   }
74 };
75 }
76 
77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
78 /// This is true if there are only loads and stores to the alloca.
79 ///
isAllocaPromotable(const AllocaInst * AI)80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
81   // FIXME: If the memory unit is of pointer or integer type, we can permit
82   // assignments to subsections of the memory unit.
83 
84   // Only allow direct and non-volatile loads and stores...
85   for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
86        UI != UE; ++UI) {   // Loop over all of the uses of the alloca
87     const User *U = *UI;
88     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
89       // Note that atomic loads can be transformed; atomic semantics do
90       // not have any meaning for a local alloca.
91       if (LI->isVolatile())
92         return false;
93     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
94       if (SI->getOperand(0) == AI)
95         return false;   // Don't allow a store OF the AI, only INTO the AI.
96       // Note that atomic stores can be transformed; atomic semantics do
97       // not have any meaning for a local alloca.
98       if (SI->isVolatile())
99         return false;
100     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
101       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
102           II->getIntrinsicID() != Intrinsic::lifetime_end)
103         return false;
104     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
105       if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
106         return false;
107       if (!onlyUsedByLifetimeMarkers(BCI))
108         return false;
109     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
110       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
111         return false;
112       if (!GEPI->hasAllZeroIndices())
113         return false;
114       if (!onlyUsedByLifetimeMarkers(GEPI))
115         return false;
116     } else {
117       return false;
118     }
119   }
120 
121   return true;
122 }
123 
124 namespace {
125   struct AllocaInfo;
126 
127   // Data package used by RenamePass()
128   class RenamePassData {
129   public:
130     typedef std::vector<Value *> ValVector;
131 
RenamePassData()132     RenamePassData() : BB(NULL), Pred(NULL), Values() {}
RenamePassData(BasicBlock * B,BasicBlock * P,const ValVector & V)133     RenamePassData(BasicBlock *B, BasicBlock *P,
134                    const ValVector &V) : BB(B), Pred(P), Values(V) {}
135     BasicBlock *BB;
136     BasicBlock *Pred;
137     ValVector Values;
138 
swap(RenamePassData & RHS)139     void swap(RenamePassData &RHS) {
140       std::swap(BB, RHS.BB);
141       std::swap(Pred, RHS.Pred);
142       Values.swap(RHS.Values);
143     }
144   };
145 
146   /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
147   /// load/store instructions in the block that directly load or store an alloca.
148   ///
149   /// This functionality is important because it avoids scanning large basic
150   /// blocks multiple times when promoting many allocas in the same block.
151   class LargeBlockInfo {
152     /// InstNumbers - For each instruction that we track, keep the index of the
153     /// instruction.  The index starts out as the number of the instruction from
154     /// the start of the block.
155     DenseMap<const Instruction *, unsigned> InstNumbers;
156   public:
157 
158     /// isInterestingInstruction - This code only looks at accesses to allocas.
isInterestingInstruction(const Instruction * I)159     static bool isInterestingInstruction(const Instruction *I) {
160       return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
161              (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
162     }
163 
164     /// getInstructionIndex - Get or calculate the index of the specified
165     /// instruction.
getInstructionIndex(const Instruction * I)166     unsigned getInstructionIndex(const Instruction *I) {
167       assert(isInterestingInstruction(I) &&
168              "Not a load/store to/from an alloca?");
169 
170       // If we already have this instruction number, return it.
171       DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
172       if (It != InstNumbers.end()) return It->second;
173 
174       // Scan the whole block to get the instruction.  This accumulates
175       // information for every interesting instruction in the block, in order to
176       // avoid gratuitus rescans.
177       const BasicBlock *BB = I->getParent();
178       unsigned InstNo = 0;
179       for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
180            BBI != E; ++BBI)
181         if (isInterestingInstruction(BBI))
182           InstNumbers[BBI] = InstNo++;
183       It = InstNumbers.find(I);
184 
185       assert(It != InstNumbers.end() && "Didn't insert instruction?");
186       return It->second;
187     }
188 
deleteValue(const Instruction * I)189     void deleteValue(const Instruction *I) {
190       InstNumbers.erase(I);
191     }
192 
clear()193     void clear() {
194       InstNumbers.clear();
195     }
196   };
197 
198   struct PromoteMem2Reg {
199     /// Allocas - The alloca instructions being promoted.
200     ///
201     std::vector<AllocaInst*> Allocas;
202     DominatorTree &DT;
203     DIBuilder *DIB;
204 
205     /// AST - An AliasSetTracker object to update.  If null, don't update it.
206     ///
207     AliasSetTracker *AST;
208 
209     /// AllocaLookup - Reverse mapping of Allocas.
210     ///
211     DenseMap<AllocaInst*, unsigned>  AllocaLookup;
212 
213     /// NewPhiNodes - The PhiNodes we're adding.
214     ///
215     DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
216 
217     /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
218     /// it corresponds to.
219     DenseMap<PHINode*, unsigned> PhiToAllocaMap;
220 
221     /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
222     /// each alloca that is of pointer type, we keep track of what to copyValue
223     /// to the inserted PHI nodes here.
224     ///
225     std::vector<Value*> PointerAllocaValues;
226 
227     /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
228     /// intrinsic that describes it, if any, so that we can convert it to a
229     /// dbg.value intrinsic if the alloca gets promoted.
230     SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
231 
232     /// Visited - The set of basic blocks the renamer has already visited.
233     ///
234     SmallPtrSet<BasicBlock*, 16> Visited;
235 
236     /// BBNumbers - Contains a stable numbering of basic blocks to avoid
237     /// non-determinstic behavior.
238     DenseMap<BasicBlock*, unsigned> BBNumbers;
239 
240     /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
241     DenseMap<DomTreeNode*, unsigned> DomLevels;
242 
243     /// BBNumPreds - Lazily compute the number of predecessors a block has.
244     DenseMap<const BasicBlock*, unsigned> BBNumPreds;
245   public:
PromoteMem2Reg__anon2450f7c30111::PromoteMem2Reg246     PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
247                    AliasSetTracker *ast)
248       : Allocas(A), DT(dt), DIB(0), AST(ast) {}
~PromoteMem2Reg__anon2450f7c30111::PromoteMem2Reg249     ~PromoteMem2Reg() {
250       delete DIB;
251     }
252 
253     void run();
254 
255     /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
256     ///
dominates__anon2450f7c30111::PromoteMem2Reg257     bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
258       return DT.dominates(BB1, BB2);
259     }
260 
261   private:
RemoveFromAllocasList__anon2450f7c30111::PromoteMem2Reg262     void RemoveFromAllocasList(unsigned &AllocaIdx) {
263       Allocas[AllocaIdx] = Allocas.back();
264       Allocas.pop_back();
265       --AllocaIdx;
266     }
267 
getNumPreds__anon2450f7c30111::PromoteMem2Reg268     unsigned getNumPreds(const BasicBlock *BB) {
269       unsigned &NP = BBNumPreds[BB];
270       if (NP == 0)
271         NP = std::distance(pred_begin(BB), pred_end(BB))+1;
272       return NP-1;
273     }
274 
275     void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
276                                  AllocaInfo &Info);
277     void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
278                              const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
279                              SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
280 
281     void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
282                                   LargeBlockInfo &LBI);
283     void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
284                                   LargeBlockInfo &LBI);
285 
286     void RenamePass(BasicBlock *BB, BasicBlock *Pred,
287                     RenamePassData::ValVector &IncVals,
288                     std::vector<RenamePassData> &Worklist);
289     bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
290   };
291 
292   struct AllocaInfo {
293     SmallVector<BasicBlock*, 32> DefiningBlocks;
294     SmallVector<BasicBlock*, 32> UsingBlocks;
295 
296     StoreInst  *OnlyStore;
297     BasicBlock *OnlyBlock;
298     bool OnlyUsedInOneBlock;
299 
300     Value *AllocaPointerVal;
301     DbgDeclareInst *DbgDeclare;
302 
clear__anon2450f7c30111::AllocaInfo303     void clear() {
304       DefiningBlocks.clear();
305       UsingBlocks.clear();
306       OnlyStore = 0;
307       OnlyBlock = 0;
308       OnlyUsedInOneBlock = true;
309       AllocaPointerVal = 0;
310       DbgDeclare = 0;
311     }
312 
313     /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
314     /// ivars.
AnalyzeAlloca__anon2450f7c30111::AllocaInfo315     void AnalyzeAlloca(AllocaInst *AI) {
316       clear();
317 
318       // As we scan the uses of the alloca instruction, keep track of stores,
319       // and decide whether all of the loads and stores to the alloca are within
320       // the same basic block.
321       for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
322            UI != E;)  {
323         Instruction *User = cast<Instruction>(*UI++);
324 
325         if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
326           // Remember the basic blocks which define new values for the alloca
327           DefiningBlocks.push_back(SI->getParent());
328           AllocaPointerVal = SI->getOperand(0);
329           OnlyStore = SI;
330         } else {
331           LoadInst *LI = cast<LoadInst>(User);
332           // Otherwise it must be a load instruction, keep track of variable
333           // reads.
334           UsingBlocks.push_back(LI->getParent());
335           AllocaPointerVal = LI;
336         }
337 
338         if (OnlyUsedInOneBlock) {
339           if (OnlyBlock == 0)
340             OnlyBlock = User->getParent();
341           else if (OnlyBlock != User->getParent())
342             OnlyUsedInOneBlock = false;
343         }
344       }
345 
346       DbgDeclare = FindAllocaDbgDeclare(AI);
347     }
348   };
349 
350   typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
351 
352   struct DomTreeNodeCompare {
operator ()__anon2450f7c30111::DomTreeNodeCompare353     bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
354       return LHS.second < RHS.second;
355     }
356   };
357 }  // end of anonymous namespace
358 
removeLifetimeIntrinsicUsers(AllocaInst * AI)359 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
360   // Knowing that this alloca is promotable, we know that it's safe to kill all
361   // instructions except for load and store.
362 
363   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
364        UI != UE;) {
365     Instruction *I = cast<Instruction>(*UI);
366     ++UI;
367     if (isa<LoadInst>(I) || isa<StoreInst>(I))
368       continue;
369 
370     if (!I->getType()->isVoidTy()) {
371       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
372       // Follow the use/def chain to erase them now instead of leaving it for
373       // dead code elimination later.
374       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
375            UI != UE;) {
376         Instruction *Inst = cast<Instruction>(*UI);
377         ++UI;
378         Inst->eraseFromParent();
379       }
380     }
381     I->eraseFromParent();
382   }
383 }
384 
run()385 void PromoteMem2Reg::run() {
386   Function &F = *DT.getRoot()->getParent();
387 
388   if (AST) PointerAllocaValues.resize(Allocas.size());
389   AllocaDbgDeclares.resize(Allocas.size());
390 
391   AllocaInfo Info;
392   LargeBlockInfo LBI;
393 
394   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
395     AllocaInst *AI = Allocas[AllocaNum];
396 
397     assert(isAllocaPromotable(AI) &&
398            "Cannot promote non-promotable alloca!");
399     assert(AI->getParent()->getParent() == &F &&
400            "All allocas should be in the same function, which is same as DF!");
401 
402     removeLifetimeIntrinsicUsers(AI);
403 
404     if (AI->use_empty()) {
405       // If there are no uses of the alloca, just delete it now.
406       if (AST) AST->deleteValue(AI);
407       AI->eraseFromParent();
408 
409       // Remove the alloca from the Allocas list, since it has been processed
410       RemoveFromAllocasList(AllocaNum);
411       ++NumDeadAlloca;
412       continue;
413     }
414 
415     // Calculate the set of read and write-locations for each alloca.  This is
416     // analogous to finding the 'uses' and 'definitions' of each variable.
417     Info.AnalyzeAlloca(AI);
418 
419     // If there is only a single store to this value, replace any loads of
420     // it that are directly dominated by the definition with the value stored.
421     if (Info.DefiningBlocks.size() == 1) {
422       RewriteSingleStoreAlloca(AI, Info, LBI);
423 
424       // Finally, after the scan, check to see if the store is all that is left.
425       if (Info.UsingBlocks.empty()) {
426         // Record debuginfo for the store and remove the declaration's debuginfo.
427         if (DbgDeclareInst *DDI = Info.DbgDeclare) {
428           if (!DIB)
429             DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
430           ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
431           DDI->eraseFromParent();
432         }
433         // Remove the (now dead) store and alloca.
434         Info.OnlyStore->eraseFromParent();
435         LBI.deleteValue(Info.OnlyStore);
436 
437         if (AST) AST->deleteValue(AI);
438         AI->eraseFromParent();
439         LBI.deleteValue(AI);
440 
441         // The alloca has been processed, move on.
442         RemoveFromAllocasList(AllocaNum);
443 
444         ++NumSingleStore;
445         continue;
446       }
447     }
448 
449     // If the alloca is only read and written in one basic block, just perform a
450     // linear sweep over the block to eliminate it.
451     if (Info.OnlyUsedInOneBlock) {
452       PromoteSingleBlockAlloca(AI, Info, LBI);
453 
454       // Finally, after the scan, check to see if the stores are all that is
455       // left.
456       if (Info.UsingBlocks.empty()) {
457 
458         // Remove the (now dead) stores and alloca.
459         while (!AI->use_empty()) {
460           StoreInst *SI = cast<StoreInst>(AI->use_back());
461           // Record debuginfo for the store before removing it.
462           if (DbgDeclareInst *DDI = Info.DbgDeclare) {
463             if (!DIB)
464               DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
465             ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
466           }
467           SI->eraseFromParent();
468           LBI.deleteValue(SI);
469         }
470 
471         if (AST) AST->deleteValue(AI);
472         AI->eraseFromParent();
473         LBI.deleteValue(AI);
474 
475         // The alloca has been processed, move on.
476         RemoveFromAllocasList(AllocaNum);
477 
478         // The alloca's debuginfo can be removed as well.
479         if (DbgDeclareInst *DDI = Info.DbgDeclare)
480           DDI->eraseFromParent();
481 
482         ++NumLocalPromoted;
483         continue;
484       }
485     }
486 
487     // If we haven't computed dominator tree levels, do so now.
488     if (DomLevels.empty()) {
489       SmallVector<DomTreeNode*, 32> Worklist;
490 
491       DomTreeNode *Root = DT.getRootNode();
492       DomLevels[Root] = 0;
493       Worklist.push_back(Root);
494 
495       while (!Worklist.empty()) {
496         DomTreeNode *Node = Worklist.pop_back_val();
497         unsigned ChildLevel = DomLevels[Node] + 1;
498         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
499              CI != CE; ++CI) {
500           DomLevels[*CI] = ChildLevel;
501           Worklist.push_back(*CI);
502         }
503       }
504     }
505 
506     // If we haven't computed a numbering for the BB's in the function, do so
507     // now.
508     if (BBNumbers.empty()) {
509       unsigned ID = 0;
510       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
511         BBNumbers[I] = ID++;
512     }
513 
514     // If we have an AST to keep updated, remember some pointer value that is
515     // stored into the alloca.
516     if (AST)
517       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
518 
519     // Remember the dbg.declare intrinsic describing this alloca, if any.
520     if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
521 
522     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
523     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
524 
525     // At this point, we're committed to promoting the alloca using IDF's, and
526     // the standard SSA construction algorithm.  Determine which blocks need PHI
527     // nodes and see if we can optimize out some work by avoiding insertion of
528     // dead phi nodes.
529     DetermineInsertionPoint(AI, AllocaNum, Info);
530   }
531 
532   if (Allocas.empty())
533     return; // All of the allocas must have been trivial!
534 
535   LBI.clear();
536 
537 
538   // Set the incoming values for the basic block to be null values for all of
539   // the alloca's.  We do this in case there is a load of a value that has not
540   // been stored yet.  In this case, it will get this null value.
541   //
542   RenamePassData::ValVector Values(Allocas.size());
543   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
544     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
545 
546   // Walks all basic blocks in the function performing the SSA rename algorithm
547   // and inserting the phi nodes we marked as necessary
548   //
549   std::vector<RenamePassData> RenamePassWorkList;
550   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
551   do {
552     RenamePassData RPD;
553     RPD.swap(RenamePassWorkList.back());
554     RenamePassWorkList.pop_back();
555     // RenamePass may add new worklist entries.
556     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
557   } while (!RenamePassWorkList.empty());
558 
559   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
560   Visited.clear();
561 
562   // Remove the allocas themselves from the function.
563   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
564     Instruction *A = Allocas[i];
565 
566     // If there are any uses of the alloca instructions left, they must be in
567     // unreachable basic blocks that were not processed by walking the dominator
568     // tree. Just delete the users now.
569     if (!A->use_empty())
570       A->replaceAllUsesWith(UndefValue::get(A->getType()));
571     if (AST) AST->deleteValue(A);
572     A->eraseFromParent();
573   }
574 
575   // Remove alloca's dbg.declare instrinsics from the function.
576   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
577     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
578       DDI->eraseFromParent();
579 
580   // Loop over all of the PHI nodes and see if there are any that we can get
581   // rid of because they merge all of the same incoming values.  This can
582   // happen due to undef values coming into the PHI nodes.  This process is
583   // iterative, because eliminating one PHI node can cause others to be removed.
584   bool EliminatedAPHI = true;
585   while (EliminatedAPHI) {
586     EliminatedAPHI = false;
587 
588     for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
589            NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
590       PHINode *PN = I->second;
591 
592       // If this PHI node merges one value and/or undefs, get the value.
593       if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
594         if (AST && PN->getType()->isPointerTy())
595           AST->deleteValue(PN);
596         PN->replaceAllUsesWith(V);
597         PN->eraseFromParent();
598         NewPhiNodes.erase(I++);
599         EliminatedAPHI = true;
600         continue;
601       }
602       ++I;
603     }
604   }
605 
606   // At this point, the renamer has added entries to PHI nodes for all reachable
607   // code.  Unfortunately, there may be unreachable blocks which the renamer
608   // hasn't traversed.  If this is the case, the PHI nodes may not
609   // have incoming values for all predecessors.  Loop over all PHI nodes we have
610   // created, inserting undef values if they are missing any incoming values.
611   //
612   for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
613          NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
614     // We want to do this once per basic block.  As such, only process a block
615     // when we find the PHI that is the first entry in the block.
616     PHINode *SomePHI = I->second;
617     BasicBlock *BB = SomePHI->getParent();
618     if (&BB->front() != SomePHI)
619       continue;
620 
621     // Only do work here if there the PHI nodes are missing incoming values.  We
622     // know that all PHI nodes that were inserted in a block will have the same
623     // number of incoming values, so we can just check any of them.
624     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
625       continue;
626 
627     // Get the preds for BB.
628     SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
629 
630     // Ok, now we know that all of the PHI nodes are missing entries for some
631     // basic blocks.  Start by sorting the incoming predecessors for efficient
632     // access.
633     std::sort(Preds.begin(), Preds.end());
634 
635     // Now we loop through all BB's which have entries in SomePHI and remove
636     // them from the Preds list.
637     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
638       // Do a log(n) search of the Preds list for the entry we want.
639       SmallVector<BasicBlock*, 16>::iterator EntIt =
640         std::lower_bound(Preds.begin(), Preds.end(),
641                          SomePHI->getIncomingBlock(i));
642       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
643              "PHI node has entry for a block which is not a predecessor!");
644 
645       // Remove the entry
646       Preds.erase(EntIt);
647     }
648 
649     // At this point, the blocks left in the preds list must have dummy
650     // entries inserted into every PHI nodes for the block.  Update all the phi
651     // nodes in this block that we are inserting (there could be phis before
652     // mem2reg runs).
653     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
654     BasicBlock::iterator BBI = BB->begin();
655     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
656            SomePHI->getNumIncomingValues() == NumBadPreds) {
657       Value *UndefVal = UndefValue::get(SomePHI->getType());
658       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
659         SomePHI->addIncoming(UndefVal, Preds[pred]);
660     }
661   }
662 
663   NewPhiNodes.clear();
664 }
665 
666 
667 /// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
668 /// are blocks which lead to uses.  Knowing this allows us to avoid inserting
669 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
670 /// would be dead).
671 void PromoteMem2Reg::
ComputeLiveInBlocks(AllocaInst * AI,AllocaInfo & Info,const SmallPtrSet<BasicBlock *,32> & DefBlocks,SmallPtrSet<BasicBlock *,32> & LiveInBlocks)672 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
673                     const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
674                     SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
675 
676   // To determine liveness, we must iterate through the predecessors of blocks
677   // where the def is live.  Blocks are added to the worklist if we need to
678   // check their predecessors.  Start with all the using blocks.
679   SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
680                                                    Info.UsingBlocks.end());
681 
682   // If any of the using blocks is also a definition block, check to see if the
683   // definition occurs before or after the use.  If it happens before the use,
684   // the value isn't really live-in.
685   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
686     BasicBlock *BB = LiveInBlockWorklist[i];
687     if (!DefBlocks.count(BB)) continue;
688 
689     // Okay, this is a block that both uses and defines the value.  If the first
690     // reference to the alloca is a def (store), then we know it isn't live-in.
691     for (BasicBlock::iterator I = BB->begin(); ; ++I) {
692       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
693         if (SI->getOperand(1) != AI) continue;
694 
695         // We found a store to the alloca before a load.  The alloca is not
696         // actually live-in here.
697         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
698         LiveInBlockWorklist.pop_back();
699         --i, --e;
700         break;
701       }
702 
703       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
704         if (LI->getOperand(0) != AI) continue;
705 
706         // Okay, we found a load before a store to the alloca.  It is actually
707         // live into this block.
708         break;
709       }
710     }
711   }
712 
713   // Now that we have a set of blocks where the phi is live-in, recursively add
714   // their predecessors until we find the full region the value is live.
715   while (!LiveInBlockWorklist.empty()) {
716     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
717 
718     // The block really is live in here, insert it into the set.  If already in
719     // the set, then it has already been processed.
720     if (!LiveInBlocks.insert(BB))
721       continue;
722 
723     // Since the value is live into BB, it is either defined in a predecessor or
724     // live into it to.  Add the preds to the worklist unless they are a
725     // defining block.
726     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
727       BasicBlock *P = *PI;
728 
729       // The value is not live into a predecessor if it defines the value.
730       if (DefBlocks.count(P))
731         continue;
732 
733       // Otherwise it is, add to the worklist.
734       LiveInBlockWorklist.push_back(P);
735     }
736   }
737 }
738 
739 /// DetermineInsertionPoint - At this point, we're committed to promoting the
740 /// alloca using IDF's, and the standard SSA construction algorithm.  Determine
741 /// which blocks need phi nodes and see if we can optimize out some work by
742 /// avoiding insertion of dead phi nodes.
DetermineInsertionPoint(AllocaInst * AI,unsigned AllocaNum,AllocaInfo & Info)743 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
744                                              AllocaInfo &Info) {
745   // Unique the set of defining blocks for efficient lookup.
746   SmallPtrSet<BasicBlock*, 32> DefBlocks;
747   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
748 
749   // Determine which blocks the value is live in.  These are blocks which lead
750   // to uses.
751   SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
752   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
753 
754   // Use a priority queue keyed on dominator tree level so that inserted nodes
755   // are handled from the bottom of the dominator tree upwards.
756   typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
757                               DomTreeNodeCompare> IDFPriorityQueue;
758   IDFPriorityQueue PQ;
759 
760   for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
761        E = DefBlocks.end(); I != E; ++I) {
762     if (DomTreeNode *Node = DT.getNode(*I))
763       PQ.push(std::make_pair(Node, DomLevels[Node]));
764   }
765 
766   SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
767   SmallPtrSet<DomTreeNode*, 32> Visited;
768   SmallVector<DomTreeNode*, 32> Worklist;
769   while (!PQ.empty()) {
770     DomTreeNodePair RootPair = PQ.top();
771     PQ.pop();
772     DomTreeNode *Root = RootPair.first;
773     unsigned RootLevel = RootPair.second;
774 
775     // Walk all dominator tree children of Root, inspecting their CFG edges with
776     // targets elsewhere on the dominator tree. Only targets whose level is at
777     // most Root's level are added to the iterated dominance frontier of the
778     // definition set.
779 
780     Worklist.clear();
781     Worklist.push_back(Root);
782 
783     while (!Worklist.empty()) {
784       DomTreeNode *Node = Worklist.pop_back_val();
785       BasicBlock *BB = Node->getBlock();
786 
787       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
788            ++SI) {
789         DomTreeNode *SuccNode = DT.getNode(*SI);
790 
791         // Quickly skip all CFG edges that are also dominator tree edges instead
792         // of catching them below.
793         if (SuccNode->getIDom() == Node)
794           continue;
795 
796         unsigned SuccLevel = DomLevels[SuccNode];
797         if (SuccLevel > RootLevel)
798           continue;
799 
800         if (!Visited.insert(SuccNode))
801           continue;
802 
803         BasicBlock *SuccBB = SuccNode->getBlock();
804         if (!LiveInBlocks.count(SuccBB))
805           continue;
806 
807         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
808         if (!DefBlocks.count(SuccBB))
809           PQ.push(std::make_pair(SuccNode, SuccLevel));
810       }
811 
812       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
813            ++CI) {
814         if (!Visited.count(*CI))
815           Worklist.push_back(*CI);
816       }
817     }
818   }
819 
820   if (DFBlocks.size() > 1)
821     std::sort(DFBlocks.begin(), DFBlocks.end());
822 
823   unsigned CurrentVersion = 0;
824   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
825     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
826 }
827 
828 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
829 /// replace any loads of it that are directly dominated by the definition with
830 /// the value stored.
RewriteSingleStoreAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)831 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
832                                               AllocaInfo &Info,
833                                               LargeBlockInfo &LBI) {
834   StoreInst *OnlyStore = Info.OnlyStore;
835   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
836   BasicBlock *StoreBB = OnlyStore->getParent();
837   int StoreIndex = -1;
838 
839   // Clear out UsingBlocks.  We will reconstruct it here if needed.
840   Info.UsingBlocks.clear();
841 
842   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
843     Instruction *UserInst = cast<Instruction>(*UI++);
844     if (!isa<LoadInst>(UserInst)) {
845       assert(UserInst == OnlyStore && "Should only have load/stores");
846       continue;
847     }
848     LoadInst *LI = cast<LoadInst>(UserInst);
849 
850     // Okay, if we have a load from the alloca, we want to replace it with the
851     // only value stored to the alloca.  We can do this if the value is
852     // dominated by the store.  If not, we use the rest of the mem2reg machinery
853     // to insert the phi nodes as needed.
854     if (!StoringGlobalVal) {  // Non-instructions are always dominated.
855       if (LI->getParent() == StoreBB) {
856         // If we have a use that is in the same block as the store, compare the
857         // indices of the two instructions to see which one came first.  If the
858         // load came before the store, we can't handle it.
859         if (StoreIndex == -1)
860           StoreIndex = LBI.getInstructionIndex(OnlyStore);
861 
862         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
863           // Can't handle this load, bail out.
864           Info.UsingBlocks.push_back(StoreBB);
865           continue;
866         }
867 
868       } else if (LI->getParent() != StoreBB &&
869                  !dominates(StoreBB, LI->getParent())) {
870         // If the load and store are in different blocks, use BB dominance to
871         // check their relationships.  If the store doesn't dom the use, bail
872         // out.
873         Info.UsingBlocks.push_back(LI->getParent());
874         continue;
875       }
876     }
877 
878     // Otherwise, we *can* safely rewrite this load.
879     Value *ReplVal = OnlyStore->getOperand(0);
880     // If the replacement value is the load, this must occur in unreachable
881     // code.
882     if (ReplVal == LI)
883       ReplVal = UndefValue::get(LI->getType());
884     LI->replaceAllUsesWith(ReplVal);
885     if (AST && LI->getType()->isPointerTy())
886       AST->deleteValue(LI);
887     LI->eraseFromParent();
888     LBI.deleteValue(LI);
889   }
890 }
891 
892 namespace {
893 
894 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
895 /// first element of a pair.
896 struct StoreIndexSearchPredicate {
operator ()__anon2450f7c30211::StoreIndexSearchPredicate897   bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
898                   const std::pair<unsigned, StoreInst*> &RHS) {
899     return LHS.first < RHS.first;
900   }
901 };
902 
903 }
904 
905 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
906 /// block.  If this is the case, avoid traversing the CFG and inserting a lot of
907 /// potentially useless PHI nodes by just performing a single linear pass over
908 /// the basic block using the Alloca.
909 ///
910 /// If we cannot promote this alloca (because it is read before it is written),
911 /// return true.  This is necessary in cases where, due to control flow, the
912 /// alloca is potentially undefined on some control flow paths.  e.g. code like
913 /// this is potentially correct:
914 ///
915 ///   for (...) { if (c) { A = undef; undef = B; } }
916 ///
917 /// ... so long as A is not used before undef is set.
918 ///
PromoteSingleBlockAlloca(AllocaInst * AI,AllocaInfo & Info,LargeBlockInfo & LBI)919 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
920                                               LargeBlockInfo &LBI) {
921   // The trickiest case to handle is when we have large blocks. Because of this,
922   // this code is optimized assuming that large blocks happen.  This does not
923   // significantly pessimize the small block case.  This uses LargeBlockInfo to
924   // make it efficient to get the index of various operations in the block.
925 
926   // Clear out UsingBlocks.  We will reconstruct it here if needed.
927   Info.UsingBlocks.clear();
928 
929   // Walk the use-def list of the alloca, getting the locations of all stores.
930   typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
931   StoresByIndexTy StoresByIndex;
932 
933   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
934        UI != E; ++UI)
935     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
936       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
937 
938   // If there are no stores to the alloca, just replace any loads with undef.
939   if (StoresByIndex.empty()) {
940     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
941       if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
942         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
943         if (AST && LI->getType()->isPointerTy())
944           AST->deleteValue(LI);
945         LBI.deleteValue(LI);
946         LI->eraseFromParent();
947       }
948     return;
949   }
950 
951   // Sort the stores by their index, making it efficient to do a lookup with a
952   // binary search.
953   std::sort(StoresByIndex.begin(), StoresByIndex.end());
954 
955   // Walk all of the loads from this alloca, replacing them with the nearest
956   // store above them, if any.
957   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
958     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
959     if (!LI) continue;
960 
961     unsigned LoadIdx = LBI.getInstructionIndex(LI);
962 
963     // Find the nearest store that has a lower than this load.
964     StoresByIndexTy::iterator I =
965       std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
966                        std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
967                        StoreIndexSearchPredicate());
968 
969     // If there is no store before this load, then we can't promote this load.
970     if (I == StoresByIndex.begin()) {
971       // Can't handle this load, bail out.
972       Info.UsingBlocks.push_back(LI->getParent());
973       continue;
974     }
975 
976     // Otherwise, there was a store before this load, the load takes its value.
977     --I;
978     LI->replaceAllUsesWith(I->second->getOperand(0));
979     if (AST && LI->getType()->isPointerTy())
980       AST->deleteValue(LI);
981     LI->eraseFromParent();
982     LBI.deleteValue(LI);
983   }
984 }
985 
986 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
987 // Alloca returns true if there wasn't already a phi-node for that variable
988 //
QueuePhiNode(BasicBlock * BB,unsigned AllocaNo,unsigned & Version)989 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
990                                   unsigned &Version) {
991   // Look up the basic-block in question.
992   PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
993 
994   // If the BB already has a phi node added for the i'th alloca then we're done!
995   if (PN) return false;
996 
997   // Create a PhiNode using the dereferenced type... and add the phi-node to the
998   // BasicBlock.
999   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1000                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
1001                        BB->begin());
1002   ++NumPHIInsert;
1003   PhiToAllocaMap[PN] = AllocaNo;
1004 
1005   if (AST && PN->getType()->isPointerTy())
1006     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1007 
1008   return true;
1009 }
1010 
1011 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
1012 // stores to the allocas which we are promoting.  IncomingVals indicates what
1013 // value each Alloca contains on exit from the predecessor block Pred.
1014 //
RenamePass(BasicBlock * BB,BasicBlock * Pred,RenamePassData::ValVector & IncomingVals,std::vector<RenamePassData> & Worklist)1015 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1016                                 RenamePassData::ValVector &IncomingVals,
1017                                 std::vector<RenamePassData> &Worklist) {
1018 NextIteration:
1019   // If we are inserting any phi nodes into this BB, they will already be in the
1020   // block.
1021   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1022     // If we have PHI nodes to update, compute the number of edges from Pred to
1023     // BB.
1024     if (PhiToAllocaMap.count(APN)) {
1025       // We want to be able to distinguish between PHI nodes being inserted by
1026       // this invocation of mem2reg from those phi nodes that already existed in
1027       // the IR before mem2reg was run.  We determine that APN is being inserted
1028       // because it is missing incoming edges.  All other PHI nodes being
1029       // inserted by this pass of mem2reg will have the same number of incoming
1030       // operands so far.  Remember this count.
1031       unsigned NewPHINumOperands = APN->getNumOperands();
1032 
1033       unsigned NumEdges = 0;
1034       for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1035         if (*I == BB)
1036           ++NumEdges;
1037       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1038 
1039       // Add entries for all the phis.
1040       BasicBlock::iterator PNI = BB->begin();
1041       do {
1042         unsigned AllocaNo = PhiToAllocaMap[APN];
1043 
1044         // Add N incoming values to the PHI node.
1045         for (unsigned i = 0; i != NumEdges; ++i)
1046           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1047 
1048         // The currently active variable for this block is now the PHI.
1049         IncomingVals[AllocaNo] = APN;
1050 
1051         // Get the next phi node.
1052         ++PNI;
1053         APN = dyn_cast<PHINode>(PNI);
1054         if (APN == 0) break;
1055 
1056         // Verify that it is missing entries.  If not, it is not being inserted
1057         // by this mem2reg invocation so we want to ignore it.
1058       } while (APN->getNumOperands() == NewPHINumOperands);
1059     }
1060   }
1061 
1062   // Don't revisit blocks.
1063   if (!Visited.insert(BB)) return;
1064 
1065   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1066     Instruction *I = II++; // get the instruction, increment iterator
1067 
1068     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1069       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1070       if (!Src) continue;
1071 
1072       DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1073       if (AI == AllocaLookup.end()) continue;
1074 
1075       Value *V = IncomingVals[AI->second];
1076 
1077       // Anything using the load now uses the current value.
1078       LI->replaceAllUsesWith(V);
1079       if (AST && LI->getType()->isPointerTy())
1080         AST->deleteValue(LI);
1081       BB->getInstList().erase(LI);
1082     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1083       // Delete this instruction and mark the name as the current holder of the
1084       // value
1085       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1086       if (!Dest) continue;
1087 
1088       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1089       if (ai == AllocaLookup.end())
1090         continue;
1091 
1092       // what value were we writing?
1093       IncomingVals[ai->second] = SI->getOperand(0);
1094       // Record debuginfo for the store before removing it.
1095       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1096         if (!DIB)
1097           DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1098         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1099       }
1100       BB->getInstList().erase(SI);
1101     }
1102   }
1103 
1104   // 'Recurse' to our successors.
1105   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1106   if (I == E) return;
1107 
1108   // Keep track of the successors so we don't visit the same successor twice
1109   SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1110 
1111   // Handle the first successor without using the worklist.
1112   VisitedSuccs.insert(*I);
1113   Pred = BB;
1114   BB = *I;
1115   ++I;
1116 
1117   for (; I != E; ++I)
1118     if (VisitedSuccs.insert(*I))
1119       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1120 
1121   goto NextIteration;
1122 }
1123 
1124 /// PromoteMemToReg - Promote the specified list of alloca instructions into
1125 /// scalar registers, inserting PHI nodes as appropriate.  This function does
1126 /// not modify the CFG of the function at all.  All allocas must be from the
1127 /// same function.
1128 ///
1129 /// If AST is specified, the specified tracker is updated to reflect changes
1130 /// made to the IR.
1131 ///
PromoteMemToReg(const std::vector<AllocaInst * > & Allocas,DominatorTree & DT,AliasSetTracker * AST)1132 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1133                            DominatorTree &DT, AliasSetTracker *AST) {
1134   // If there is nothing to do, bail out...
1135   if (Allocas.empty()) return;
1136 
1137   PromoteMem2Reg(Allocas, DT, AST).run();
1138 }
1139