1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "ssaupdater"
15 #include "llvm/Constants.h"
16 #include "llvm/Instructions.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Support/AlignOf.h"
22 #include "llvm/Support/Allocator.h"
23 #include "llvm/Support/CFG.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Transforms/Utils/SSAUpdater.h"
29 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
30
31 using namespace llvm;
32
33 typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
getAvailableVals(void * AV)34 static AvailableValsTy &getAvailableVals(void *AV) {
35 return *static_cast<AvailableValsTy*>(AV);
36 }
37
SSAUpdater(SmallVectorImpl<PHINode * > * NewPHI)38 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
39 : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
40
~SSAUpdater()41 SSAUpdater::~SSAUpdater() {
42 delete &getAvailableVals(AV);
43 }
44
45 /// Initialize - Reset this object to get ready for a new set of SSA
46 /// updates with type 'Ty'. PHI nodes get a name based on 'Name'.
Initialize(Type * Ty,StringRef Name)47 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
48 if (AV == 0)
49 AV = new AvailableValsTy();
50 else
51 getAvailableVals(AV).clear();
52 ProtoType = Ty;
53 ProtoName = Name;
54 }
55
56 /// HasValueForBlock - Return true if the SSAUpdater already has a value for
57 /// the specified block.
HasValueForBlock(BasicBlock * BB) const58 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
59 return getAvailableVals(AV).count(BB);
60 }
61
62 /// AddAvailableValue - Indicate that a rewritten value is available in the
63 /// specified block with the specified value.
AddAvailableValue(BasicBlock * BB,Value * V)64 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
65 assert(ProtoType != 0 && "Need to initialize SSAUpdater");
66 assert(ProtoType == V->getType() &&
67 "All rewritten values must have the same type");
68 getAvailableVals(AV)[BB] = V;
69 }
70
71 /// IsEquivalentPHI - Check if PHI has the same incoming value as specified
72 /// in ValueMapping for each predecessor block.
IsEquivalentPHI(PHINode * PHI,DenseMap<BasicBlock *,Value * > & ValueMapping)73 static bool IsEquivalentPHI(PHINode *PHI,
74 DenseMap<BasicBlock*, Value*> &ValueMapping) {
75 unsigned PHINumValues = PHI->getNumIncomingValues();
76 if (PHINumValues != ValueMapping.size())
77 return false;
78
79 // Scan the phi to see if it matches.
80 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
81 if (ValueMapping[PHI->getIncomingBlock(i)] !=
82 PHI->getIncomingValue(i)) {
83 return false;
84 }
85
86 return true;
87 }
88
89 /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
90 /// live at the end of the specified block.
GetValueAtEndOfBlock(BasicBlock * BB)91 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
92 Value *Res = GetValueAtEndOfBlockInternal(BB);
93 return Res;
94 }
95
96 /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
97 /// is live in the middle of the specified block.
98 ///
99 /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
100 /// important case: if there is a definition of the rewritten value after the
101 /// 'use' in BB. Consider code like this:
102 ///
103 /// X1 = ...
104 /// SomeBB:
105 /// use(X)
106 /// X2 = ...
107 /// br Cond, SomeBB, OutBB
108 ///
109 /// In this case, there are two values (X1 and X2) added to the AvailableVals
110 /// set by the client of the rewriter, and those values are both live out of
111 /// their respective blocks. However, the use of X happens in the *middle* of
112 /// a block. Because of this, we need to insert a new PHI node in SomeBB to
113 /// merge the appropriate values, and this value isn't live out of the block.
114 ///
GetValueInMiddleOfBlock(BasicBlock * BB)115 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
116 // If there is no definition of the renamed variable in this block, just use
117 // GetValueAtEndOfBlock to do our work.
118 if (!HasValueForBlock(BB))
119 return GetValueAtEndOfBlock(BB);
120
121 // Otherwise, we have the hard case. Get the live-in values for each
122 // predecessor.
123 SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
124 Value *SingularValue = 0;
125
126 // We can get our predecessor info by walking the pred_iterator list, but it
127 // is relatively slow. If we already have PHI nodes in this block, walk one
128 // of them to get the predecessor list instead.
129 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
130 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
131 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
132 Value *PredVal = GetValueAtEndOfBlock(PredBB);
133 PredValues.push_back(std::make_pair(PredBB, PredVal));
134
135 // Compute SingularValue.
136 if (i == 0)
137 SingularValue = PredVal;
138 else if (PredVal != SingularValue)
139 SingularValue = 0;
140 }
141 } else {
142 bool isFirstPred = true;
143 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
144 BasicBlock *PredBB = *PI;
145 Value *PredVal = GetValueAtEndOfBlock(PredBB);
146 PredValues.push_back(std::make_pair(PredBB, PredVal));
147
148 // Compute SingularValue.
149 if (isFirstPred) {
150 SingularValue = PredVal;
151 isFirstPred = false;
152 } else if (PredVal != SingularValue)
153 SingularValue = 0;
154 }
155 }
156
157 // If there are no predecessors, just return undef.
158 if (PredValues.empty())
159 return UndefValue::get(ProtoType);
160
161 // Otherwise, if all the merged values are the same, just use it.
162 if (SingularValue != 0)
163 return SingularValue;
164
165 // Otherwise, we do need a PHI: check to see if we already have one available
166 // in this block that produces the right value.
167 if (isa<PHINode>(BB->begin())) {
168 DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
169 PredValues.end());
170 PHINode *SomePHI;
171 for (BasicBlock::iterator It = BB->begin();
172 (SomePHI = dyn_cast<PHINode>(It)); ++It) {
173 if (IsEquivalentPHI(SomePHI, ValueMapping))
174 return SomePHI;
175 }
176 }
177
178 // Ok, we have no way out, insert a new one now.
179 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
180 ProtoName, &BB->front());
181
182 // Fill in all the predecessors of the PHI.
183 for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
184 InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
185
186 // See if the PHI node can be merged to a single value. This can happen in
187 // loop cases when we get a PHI of itself and one other value.
188 if (Value *V = SimplifyInstruction(InsertedPHI)) {
189 InsertedPHI->eraseFromParent();
190 return V;
191 }
192
193 // Set DebugLoc.
194 InsertedPHI->setDebugLoc(GetFirstDebugLocInBasicBlock(BB));
195
196 // If the client wants to know about all new instructions, tell it.
197 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
198
199 DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
200 return InsertedPHI;
201 }
202
203 /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes,
204 /// which use their value in the corresponding predecessor.
RewriteUse(Use & U)205 void SSAUpdater::RewriteUse(Use &U) {
206 Instruction *User = cast<Instruction>(U.getUser());
207
208 Value *V;
209 if (PHINode *UserPN = dyn_cast<PHINode>(User))
210 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
211 else
212 V = GetValueInMiddleOfBlock(User->getParent());
213
214 U.set(V);
215 }
216
217 /// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse. However,
218 /// this version of the method can rewrite uses in the same block as a
219 /// definition, because it assumes that all uses of a value are below any
220 /// inserted values.
RewriteUseAfterInsertions(Use & U)221 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
222 Instruction *User = cast<Instruction>(U.getUser());
223
224 Value *V;
225 if (PHINode *UserPN = dyn_cast<PHINode>(User))
226 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
227 else
228 V = GetValueAtEndOfBlock(User->getParent());
229
230 U.set(V);
231 }
232
233 /// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator
234 /// in the SSAUpdaterImpl template.
235 namespace {
236 class PHIiter {
237 private:
238 PHINode *PHI;
239 unsigned idx;
240
241 public:
PHIiter(PHINode * P)242 explicit PHIiter(PHINode *P) // begin iterator
243 : PHI(P), idx(0) {}
PHIiter(PHINode * P,bool)244 PHIiter(PHINode *P, bool) // end iterator
245 : PHI(P), idx(PHI->getNumIncomingValues()) {}
246
operator ++()247 PHIiter &operator++() { ++idx; return *this; }
operator ==(const PHIiter & x) const248 bool operator==(const PHIiter& x) const { return idx == x.idx; }
operator !=(const PHIiter & x) const249 bool operator!=(const PHIiter& x) const { return !operator==(x); }
getIncomingValue()250 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
getIncomingBlock()251 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
252 };
253 }
254
255 /// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
256 /// specialized for SSAUpdater.
257 namespace llvm {
258 template<>
259 class SSAUpdaterTraits<SSAUpdater> {
260 public:
261 typedef BasicBlock BlkT;
262 typedef Value *ValT;
263 typedef PHINode PhiT;
264
265 typedef succ_iterator BlkSucc_iterator;
BlkSucc_begin(BlkT * BB)266 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
BlkSucc_end(BlkT * BB)267 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
268
269 typedef PHIiter PHI_iterator;
PHI_begin(PhiT * PHI)270 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
PHI_end(PhiT * PHI)271 static inline PHI_iterator PHI_end(PhiT *PHI) {
272 return PHI_iterator(PHI, true);
273 }
274
275 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
276 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
FindPredecessorBlocks(BasicBlock * BB,SmallVectorImpl<BasicBlock * > * Preds)277 static void FindPredecessorBlocks(BasicBlock *BB,
278 SmallVectorImpl<BasicBlock*> *Preds) {
279 // We can get our predecessor info by walking the pred_iterator list,
280 // but it is relatively slow. If we already have PHI nodes in this
281 // block, walk one of them to get the predecessor list instead.
282 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
283 for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
284 Preds->push_back(SomePhi->getIncomingBlock(PI));
285 } else {
286 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
287 Preds->push_back(*PI);
288 }
289 }
290
291 /// GetUndefVal - Get an undefined value of the same type as the value
292 /// being handled.
GetUndefVal(BasicBlock * BB,SSAUpdater * Updater)293 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
294 return UndefValue::get(Updater->ProtoType);
295 }
296
297 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
298 /// Reserve space for the operands but do not fill them in yet.
CreateEmptyPHI(BasicBlock * BB,unsigned NumPreds,SSAUpdater * Updater)299 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
300 SSAUpdater *Updater) {
301 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
302 Updater->ProtoName, &BB->front());
303 return PHI;
304 }
305
306 /// AddPHIOperand - Add the specified value as an operand of the PHI for
307 /// the specified predecessor block.
AddPHIOperand(PHINode * PHI,Value * Val,BasicBlock * Pred)308 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
309 PHI->addIncoming(Val, Pred);
310 }
311
312 /// InstrIsPHI - Check if an instruction is a PHI.
313 ///
InstrIsPHI(Instruction * I)314 static PHINode *InstrIsPHI(Instruction *I) {
315 return dyn_cast<PHINode>(I);
316 }
317
318 /// ValueIsPHI - Check if a value is a PHI.
319 ///
ValueIsPHI(Value * Val,SSAUpdater * Updater)320 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
321 return dyn_cast<PHINode>(Val);
322 }
323
324 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
325 /// operands, i.e., it was just added.
ValueIsNewPHI(Value * Val,SSAUpdater * Updater)326 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
327 PHINode *PHI = ValueIsPHI(Val, Updater);
328 if (PHI && PHI->getNumIncomingValues() == 0)
329 return PHI;
330 return 0;
331 }
332
333 /// GetPHIValue - For the specified PHI instruction, return the value
334 /// that it defines.
GetPHIValue(PHINode * PHI)335 static Value *GetPHIValue(PHINode *PHI) {
336 return PHI;
337 }
338 };
339
340 } // End llvm namespace
341
342 /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
343 /// for the specified BB and if so, return it. If not, construct SSA form by
344 /// first calculating the required placement of PHIs and then inserting new
345 /// PHIs where needed.
GetValueAtEndOfBlockInternal(BasicBlock * BB)346 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
347 AvailableValsTy &AvailableVals = getAvailableVals(AV);
348 if (Value *V = AvailableVals[BB])
349 return V;
350
351 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
352 return Impl.GetValue(BB);
353 }
354
355 //===----------------------------------------------------------------------===//
356 // LoadAndStorePromoter Implementation
357 //===----------------------------------------------------------------------===//
358
359 LoadAndStorePromoter::
LoadAndStorePromoter(const SmallVectorImpl<Instruction * > & Insts,SSAUpdater & S,StringRef BaseName)360 LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
361 SSAUpdater &S, StringRef BaseName) : SSA(S) {
362 if (Insts.empty()) return;
363
364 Value *SomeVal;
365 if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
366 SomeVal = LI;
367 else
368 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
369
370 if (BaseName.empty())
371 BaseName = SomeVal->getName();
372 SSA.Initialize(SomeVal->getType(), BaseName);
373 }
374
375
376 void LoadAndStorePromoter::
run(const SmallVectorImpl<Instruction * > & Insts) const377 run(const SmallVectorImpl<Instruction*> &Insts) const {
378
379 // First step: bucket up uses of the alloca by the block they occur in.
380 // This is important because we have to handle multiple defs/uses in a block
381 // ourselves: SSAUpdater is purely for cross-block references.
382 DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
383
384 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
385 Instruction *User = Insts[i];
386 UsesByBlock[User->getParent()].push_back(User);
387 }
388
389 // Okay, now we can iterate over all the blocks in the function with uses,
390 // processing them. Keep track of which loads are loading a live-in value.
391 // Walk the uses in the use-list order to be determinstic.
392 SmallVector<LoadInst*, 32> LiveInLoads;
393 DenseMap<Value*, Value*> ReplacedLoads;
394
395 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
396 Instruction *User = Insts[i];
397 BasicBlock *BB = User->getParent();
398 TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
399
400 // If this block has already been processed, ignore this repeat use.
401 if (BlockUses.empty()) continue;
402
403 // Okay, this is the first use in the block. If this block just has a
404 // single user in it, we can rewrite it trivially.
405 if (BlockUses.size() == 1) {
406 // If it is a store, it is a trivial def of the value in the block.
407 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
408 updateDebugInfo(SI);
409 SSA.AddAvailableValue(BB, SI->getOperand(0));
410 } else
411 // Otherwise it is a load, queue it to rewrite as a live-in load.
412 LiveInLoads.push_back(cast<LoadInst>(User));
413 BlockUses.clear();
414 continue;
415 }
416
417 // Otherwise, check to see if this block is all loads.
418 bool HasStore = false;
419 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
420 if (isa<StoreInst>(BlockUses[i])) {
421 HasStore = true;
422 break;
423 }
424 }
425
426 // If so, we can queue them all as live in loads. We don't have an
427 // efficient way to tell which on is first in the block and don't want to
428 // scan large blocks, so just add all loads as live ins.
429 if (!HasStore) {
430 for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
431 LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
432 BlockUses.clear();
433 continue;
434 }
435
436 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
437 // Since SSAUpdater is purely for cross-block values, we need to determine
438 // the order of these instructions in the block. If the first use in the
439 // block is a load, then it uses the live in value. The last store defines
440 // the live out value. We handle this by doing a linear scan of the block.
441 Value *StoredValue = 0;
442 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
443 if (LoadInst *L = dyn_cast<LoadInst>(II)) {
444 // If this is a load from an unrelated pointer, ignore it.
445 if (!isInstInList(L, Insts)) continue;
446
447 // If we haven't seen a store yet, this is a live in use, otherwise
448 // use the stored value.
449 if (StoredValue) {
450 replaceLoadWithValue(L, StoredValue);
451 L->replaceAllUsesWith(StoredValue);
452 ReplacedLoads[L] = StoredValue;
453 } else {
454 LiveInLoads.push_back(L);
455 }
456 continue;
457 }
458
459 if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
460 // If this is a store to an unrelated pointer, ignore it.
461 if (!isInstInList(SI, Insts)) continue;
462 updateDebugInfo(SI);
463
464 // Remember that this is the active value in the block.
465 StoredValue = SI->getOperand(0);
466 }
467 }
468
469 // The last stored value that happened is the live-out for the block.
470 assert(StoredValue && "Already checked that there is a store in block");
471 SSA.AddAvailableValue(BB, StoredValue);
472 BlockUses.clear();
473 }
474
475 // Okay, now we rewrite all loads that use live-in values in the loop,
476 // inserting PHI nodes as necessary.
477 for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
478 LoadInst *ALoad = LiveInLoads[i];
479 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
480 replaceLoadWithValue(ALoad, NewVal);
481
482 // Avoid assertions in unreachable code.
483 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
484 ALoad->replaceAllUsesWith(NewVal);
485 ReplacedLoads[ALoad] = NewVal;
486 }
487
488 // Allow the client to do stuff before we start nuking things.
489 doExtraRewritesBeforeFinalDeletion();
490
491 // Now that everything is rewritten, delete the old instructions from the
492 // function. They should all be dead now.
493 for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
494 Instruction *User = Insts[i];
495
496 // If this is a load that still has uses, then the load must have been added
497 // as a live value in the SSAUpdate data structure for a block (e.g. because
498 // the loaded value was stored later). In this case, we need to recursively
499 // propagate the updates until we get to the real value.
500 if (!User->use_empty()) {
501 Value *NewVal = ReplacedLoads[User];
502 assert(NewVal && "not a replaced load?");
503
504 // Propagate down to the ultimate replacee. The intermediately loads
505 // could theoretically already have been deleted, so we don't want to
506 // dereference the Value*'s.
507 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
508 while (RLI != ReplacedLoads.end()) {
509 NewVal = RLI->second;
510 RLI = ReplacedLoads.find(NewVal);
511 }
512
513 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
514 User->replaceAllUsesWith(NewVal);
515 }
516
517 instructionDeleted(User);
518 User->eraseFromParent();
519 }
520 }
521