1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "simplifycfg"
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/Constants.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/Type.h"
20 #include "llvm/DerivedTypes.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/Support/CFG.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ConstantRange.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/IRBuilder.h"
36 #include "llvm/Support/NoFolder.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <set>
40 #include <map>
41 using namespace llvm;
42
43 static cl::opt<unsigned>
44 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
45 cl::desc("Control the amount of phi node folding to perform (default = 1)"));
46
47 static cl::opt<bool>
48 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
49 cl::desc("Duplicate return instructions into unconditional branches"));
50
51 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
52
53 namespace {
54 class SimplifyCFGOpt {
55 const TargetData *const TD;
56
57 Value *isValueEqualityComparison(TerminatorInst *TI);
58 BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
59 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
60 bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
61 BasicBlock *Pred,
62 IRBuilder<> &Builder);
63 bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
64 IRBuilder<> &Builder);
65
66 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
67 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
68 bool SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder);
69 bool SimplifyUnreachable(UnreachableInst *UI);
70 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
71 bool SimplifyIndirectBr(IndirectBrInst *IBI);
72 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
73 bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
74
75 public:
SimplifyCFGOpt(const TargetData * td)76 explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
77 bool run(BasicBlock *BB);
78 };
79 }
80
81 /// SafeToMergeTerminators - Return true if it is safe to merge these two
82 /// terminator instructions together.
83 ///
SafeToMergeTerminators(TerminatorInst * SI1,TerminatorInst * SI2)84 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
85 if (SI1 == SI2) return false; // Can't merge with self!
86
87 // It is not safe to merge these two switch instructions if they have a common
88 // successor, and if that successor has a PHI node, and if *that* PHI node has
89 // conflicting incoming values from the two switch blocks.
90 BasicBlock *SI1BB = SI1->getParent();
91 BasicBlock *SI2BB = SI2->getParent();
92 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
93
94 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
95 if (SI1Succs.count(*I))
96 for (BasicBlock::iterator BBI = (*I)->begin();
97 isa<PHINode>(BBI); ++BBI) {
98 PHINode *PN = cast<PHINode>(BBI);
99 if (PN->getIncomingValueForBlock(SI1BB) !=
100 PN->getIncomingValueForBlock(SI2BB))
101 return false;
102 }
103
104 return true;
105 }
106
107 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
108 /// now be entries in it from the 'NewPred' block. The values that will be
109 /// flowing into the PHI nodes will be the same as those coming in from
110 /// ExistPred, an existing predecessor of Succ.
AddPredecessorToBlock(BasicBlock * Succ,BasicBlock * NewPred,BasicBlock * ExistPred)111 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
112 BasicBlock *ExistPred) {
113 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
114
115 PHINode *PN;
116 for (BasicBlock::iterator I = Succ->begin();
117 (PN = dyn_cast<PHINode>(I)); ++I)
118 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
119 }
120
121
122 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
123 /// least one PHI node in it), check to see if the merge at this block is due
124 /// to an "if condition". If so, return the boolean condition that determines
125 /// which entry into BB will be taken. Also, return by references the block
126 /// that will be entered from if the condition is true, and the block that will
127 /// be entered if the condition is false.
128 ///
129 /// This does no checking to see if the true/false blocks have large or unsavory
130 /// instructions in them.
GetIfCondition(BasicBlock * BB,BasicBlock * & IfTrue,BasicBlock * & IfFalse)131 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
132 BasicBlock *&IfFalse) {
133 PHINode *SomePHI = cast<PHINode>(BB->begin());
134 assert(SomePHI->getNumIncomingValues() == 2 &&
135 "Function can only handle blocks with 2 predecessors!");
136 BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
137 BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
138
139 // We can only handle branches. Other control flow will be lowered to
140 // branches if possible anyway.
141 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
142 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
143 if (Pred1Br == 0 || Pred2Br == 0)
144 return 0;
145
146 // Eliminate code duplication by ensuring that Pred1Br is conditional if
147 // either are.
148 if (Pred2Br->isConditional()) {
149 // If both branches are conditional, we don't have an "if statement". In
150 // reality, we could transform this case, but since the condition will be
151 // required anyway, we stand no chance of eliminating it, so the xform is
152 // probably not profitable.
153 if (Pred1Br->isConditional())
154 return 0;
155
156 std::swap(Pred1, Pred2);
157 std::swap(Pred1Br, Pred2Br);
158 }
159
160 if (Pred1Br->isConditional()) {
161 // The only thing we have to watch out for here is to make sure that Pred2
162 // doesn't have incoming edges from other blocks. If it does, the condition
163 // doesn't dominate BB.
164 if (Pred2->getSinglePredecessor() == 0)
165 return 0;
166
167 // If we found a conditional branch predecessor, make sure that it branches
168 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
169 if (Pred1Br->getSuccessor(0) == BB &&
170 Pred1Br->getSuccessor(1) == Pred2) {
171 IfTrue = Pred1;
172 IfFalse = Pred2;
173 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
174 Pred1Br->getSuccessor(1) == BB) {
175 IfTrue = Pred2;
176 IfFalse = Pred1;
177 } else {
178 // We know that one arm of the conditional goes to BB, so the other must
179 // go somewhere unrelated, and this must not be an "if statement".
180 return 0;
181 }
182
183 return Pred1Br->getCondition();
184 }
185
186 // Ok, if we got here, both predecessors end with an unconditional branch to
187 // BB. Don't panic! If both blocks only have a single (identical)
188 // predecessor, and THAT is a conditional branch, then we're all ok!
189 BasicBlock *CommonPred = Pred1->getSinglePredecessor();
190 if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
191 return 0;
192
193 // Otherwise, if this is a conditional branch, then we can use it!
194 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
195 if (BI == 0) return 0;
196
197 assert(BI->isConditional() && "Two successors but not conditional?");
198 if (BI->getSuccessor(0) == Pred1) {
199 IfTrue = Pred1;
200 IfFalse = Pred2;
201 } else {
202 IfTrue = Pred2;
203 IfFalse = Pred1;
204 }
205 return BI->getCondition();
206 }
207
208 /// DominatesMergePoint - If we have a merge point of an "if condition" as
209 /// accepted above, return true if the specified value dominates the block. We
210 /// don't handle the true generality of domination here, just a special case
211 /// which works well enough for us.
212 ///
213 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
214 /// see if V (which must be an instruction) and its recursive operands
215 /// that do not dominate BB have a combined cost lower than CostRemaining and
216 /// are non-trapping. If both are true, the instruction is inserted into the
217 /// set and true is returned.
218 ///
219 /// The cost for most non-trapping instructions is defined as 1 except for
220 /// Select whose cost is 2.
221 ///
222 /// After this function returns, CostRemaining is decreased by the cost of
223 /// V plus its non-dominating operands. If that cost is greater than
224 /// CostRemaining, false is returned and CostRemaining is undefined.
DominatesMergePoint(Value * V,BasicBlock * BB,SmallPtrSet<Instruction *,4> * AggressiveInsts,unsigned & CostRemaining)225 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
226 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
227 unsigned &CostRemaining) {
228 Instruction *I = dyn_cast<Instruction>(V);
229 if (!I) {
230 // Non-instructions all dominate instructions, but not all constantexprs
231 // can be executed unconditionally.
232 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
233 if (C->canTrap())
234 return false;
235 return true;
236 }
237 BasicBlock *PBB = I->getParent();
238
239 // We don't want to allow weird loops that might have the "if condition" in
240 // the bottom of this block.
241 if (PBB == BB) return false;
242
243 // If this instruction is defined in a block that contains an unconditional
244 // branch to BB, then it must be in the 'conditional' part of the "if
245 // statement". If not, it definitely dominates the region.
246 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
247 if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
248 return true;
249
250 // If we aren't allowing aggressive promotion anymore, then don't consider
251 // instructions in the 'if region'.
252 if (AggressiveInsts == 0) return false;
253
254 // If we have seen this instruction before, don't count it again.
255 if (AggressiveInsts->count(I)) return true;
256
257 // Okay, it looks like the instruction IS in the "condition". Check to
258 // see if it's a cheap instruction to unconditionally compute, and if it
259 // only uses stuff defined outside of the condition. If so, hoist it out.
260 if (!I->isSafeToSpeculativelyExecute())
261 return false;
262
263 unsigned Cost = 0;
264
265 switch (I->getOpcode()) {
266 default: return false; // Cannot hoist this out safely.
267 case Instruction::Load:
268 // We have to check to make sure there are no instructions before the
269 // load in its basic block, as we are going to hoist the load out to its
270 // predecessor.
271 if (PBB->getFirstNonPHIOrDbg() != I)
272 return false;
273 Cost = 1;
274 break;
275 case Instruction::GetElementPtr:
276 // GEPs are cheap if all indices are constant.
277 if (!cast<GetElementPtrInst>(I)->hasAllConstantIndices())
278 return false;
279 Cost = 1;
280 break;
281 case Instruction::Add:
282 case Instruction::Sub:
283 case Instruction::And:
284 case Instruction::Or:
285 case Instruction::Xor:
286 case Instruction::Shl:
287 case Instruction::LShr:
288 case Instruction::AShr:
289 case Instruction::ICmp:
290 case Instruction::Trunc:
291 case Instruction::ZExt:
292 case Instruction::SExt:
293 Cost = 1;
294 break; // These are all cheap and non-trapping instructions.
295
296 case Instruction::Select:
297 Cost = 2;
298 break;
299 }
300
301 if (Cost > CostRemaining)
302 return false;
303
304 CostRemaining -= Cost;
305
306 // Okay, we can only really hoist these out if their operands do
307 // not take us over the cost threshold.
308 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
309 if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
310 return false;
311 // Okay, it's safe to do this! Remember this instruction.
312 AggressiveInsts->insert(I);
313 return true;
314 }
315
316 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
317 /// and PointerNullValue. Return NULL if value is not a constant int.
GetConstantInt(Value * V,const TargetData * TD)318 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
319 // Normal constant int.
320 ConstantInt *CI = dyn_cast<ConstantInt>(V);
321 if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
322 return CI;
323
324 // This is some kind of pointer constant. Turn it into a pointer-sized
325 // ConstantInt if possible.
326 IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
327
328 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
329 if (isa<ConstantPointerNull>(V))
330 return ConstantInt::get(PtrTy, 0);
331
332 // IntToPtr const int.
333 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
334 if (CE->getOpcode() == Instruction::IntToPtr)
335 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
336 // The constant is very likely to have the right type already.
337 if (CI->getType() == PtrTy)
338 return CI;
339 else
340 return cast<ConstantInt>
341 (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
342 }
343 return 0;
344 }
345
346 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
347 /// collection of icmp eq/ne instructions that compare a value against a
348 /// constant, return the value being compared, and stick the constant into the
349 /// Values vector.
350 static Value *
GatherConstantCompares(Value * V,std::vector<ConstantInt * > & Vals,Value * & Extra,const TargetData * TD,bool isEQ,unsigned & UsedICmps)351 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
352 const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
353 Instruction *I = dyn_cast<Instruction>(V);
354 if (I == 0) return 0;
355
356 // If this is an icmp against a constant, handle this as one of the cases.
357 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
358 if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
359 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
360 UsedICmps++;
361 Vals.push_back(C);
362 return I->getOperand(0);
363 }
364
365 // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
366 // the set.
367 ConstantRange Span =
368 ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
369
370 // If this is an and/!= check then we want to optimize "x ugt 2" into
371 // x != 0 && x != 1.
372 if (!isEQ)
373 Span = Span.inverse();
374
375 // If there are a ton of values, we don't want to make a ginormous switch.
376 if (Span.getSetSize().ugt(8) || Span.isEmptySet() ||
377 // We don't handle wrapped sets yet.
378 Span.isWrappedSet())
379 return 0;
380
381 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
382 Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
383 UsedICmps++;
384 return I->getOperand(0);
385 }
386 return 0;
387 }
388
389 // Otherwise, we can only handle an | or &, depending on isEQ.
390 if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
391 return 0;
392
393 unsigned NumValsBeforeLHS = Vals.size();
394 unsigned UsedICmpsBeforeLHS = UsedICmps;
395 if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
396 isEQ, UsedICmps)) {
397 unsigned NumVals = Vals.size();
398 unsigned UsedICmpsBeforeRHS = UsedICmps;
399 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
400 isEQ, UsedICmps)) {
401 if (LHS == RHS)
402 return LHS;
403 Vals.resize(NumVals);
404 UsedICmps = UsedICmpsBeforeRHS;
405 }
406
407 // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
408 // set it and return success.
409 if (Extra == 0 || Extra == I->getOperand(1)) {
410 Extra = I->getOperand(1);
411 return LHS;
412 }
413
414 Vals.resize(NumValsBeforeLHS);
415 UsedICmps = UsedICmpsBeforeLHS;
416 return 0;
417 }
418
419 // If the LHS can't be folded in, but Extra is available and RHS can, try to
420 // use LHS as Extra.
421 if (Extra == 0 || Extra == I->getOperand(0)) {
422 Value *OldExtra = Extra;
423 Extra = I->getOperand(0);
424 if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
425 isEQ, UsedICmps))
426 return RHS;
427 assert(Vals.size() == NumValsBeforeLHS);
428 Extra = OldExtra;
429 }
430
431 return 0;
432 }
433
EraseTerminatorInstAndDCECond(TerminatorInst * TI)434 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
435 Instruction* Cond = 0;
436 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
437 Cond = dyn_cast<Instruction>(SI->getCondition());
438 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
439 if (BI->isConditional())
440 Cond = dyn_cast<Instruction>(BI->getCondition());
441 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
442 Cond = dyn_cast<Instruction>(IBI->getAddress());
443 }
444
445 TI->eraseFromParent();
446 if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
447 }
448
449 /// isValueEqualityComparison - Return true if the specified terminator checks
450 /// to see if a value is equal to constant integer value.
isValueEqualityComparison(TerminatorInst * TI)451 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
452 Value *CV = 0;
453 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
454 // Do not permit merging of large switch instructions into their
455 // predecessors unless there is only one predecessor.
456 if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
457 pred_end(SI->getParent())) <= 128)
458 CV = SI->getCondition();
459 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
460 if (BI->isConditional() && BI->getCondition()->hasOneUse())
461 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
462 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
463 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
464 GetConstantInt(ICI->getOperand(1), TD))
465 CV = ICI->getOperand(0);
466
467 // Unwrap any lossless ptrtoint cast.
468 if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
469 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
470 CV = PTII->getOperand(0);
471 return CV;
472 }
473
474 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
475 /// decode all of the 'cases' that it represents and return the 'default' block.
476 BasicBlock *SimplifyCFGOpt::
GetValueEqualityComparisonCases(TerminatorInst * TI,std::vector<std::pair<ConstantInt *,BasicBlock * >> & Cases)477 GetValueEqualityComparisonCases(TerminatorInst *TI,
478 std::vector<std::pair<ConstantInt*,
479 BasicBlock*> > &Cases) {
480 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
481 Cases.reserve(SI->getNumCases());
482 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
483 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
484 return SI->getDefaultDest();
485 }
486
487 BranchInst *BI = cast<BranchInst>(TI);
488 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
489 Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
490 BI->getSuccessor(ICI->getPredicate() ==
491 ICmpInst::ICMP_NE)));
492 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
493 }
494
495
496 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
497 /// in the list that match the specified block.
EliminateBlockCases(BasicBlock * BB,std::vector<std::pair<ConstantInt *,BasicBlock * >> & Cases)498 static void EliminateBlockCases(BasicBlock *BB,
499 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
500 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
501 if (Cases[i].second == BB) {
502 Cases.erase(Cases.begin()+i);
503 --i; --e;
504 }
505 }
506
507 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
508 /// well.
509 static bool
ValuesOverlap(std::vector<std::pair<ConstantInt *,BasicBlock * >> & C1,std::vector<std::pair<ConstantInt *,BasicBlock * >> & C2)510 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
511 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
512 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
513
514 // Make V1 be smaller than V2.
515 if (V1->size() > V2->size())
516 std::swap(V1, V2);
517
518 if (V1->size() == 0) return false;
519 if (V1->size() == 1) {
520 // Just scan V2.
521 ConstantInt *TheVal = (*V1)[0].first;
522 for (unsigned i = 0, e = V2->size(); i != e; ++i)
523 if (TheVal == (*V2)[i].first)
524 return true;
525 }
526
527 // Otherwise, just sort both lists and compare element by element.
528 array_pod_sort(V1->begin(), V1->end());
529 array_pod_sort(V2->begin(), V2->end());
530 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
531 while (i1 != e1 && i2 != e2) {
532 if ((*V1)[i1].first == (*V2)[i2].first)
533 return true;
534 if ((*V1)[i1].first < (*V2)[i2].first)
535 ++i1;
536 else
537 ++i2;
538 }
539 return false;
540 }
541
542 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
543 /// terminator instruction and its block is known to only have a single
544 /// predecessor block, check to see if that predecessor is also a value
545 /// comparison with the same value, and if that comparison determines the
546 /// outcome of this comparison. If so, simplify TI. This does a very limited
547 /// form of jump threading.
548 bool SimplifyCFGOpt::
SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst * TI,BasicBlock * Pred,IRBuilder<> & Builder)549 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
550 BasicBlock *Pred,
551 IRBuilder<> &Builder) {
552 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
553 if (!PredVal) return false; // Not a value comparison in predecessor.
554
555 Value *ThisVal = isValueEqualityComparison(TI);
556 assert(ThisVal && "This isn't a value comparison!!");
557 if (ThisVal != PredVal) return false; // Different predicates.
558
559 // Find out information about when control will move from Pred to TI's block.
560 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
561 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
562 PredCases);
563 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
564
565 // Find information about how control leaves this block.
566 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
567 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
568 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
569
570 // If TI's block is the default block from Pred's comparison, potentially
571 // simplify TI based on this knowledge.
572 if (PredDef == TI->getParent()) {
573 // If we are here, we know that the value is none of those cases listed in
574 // PredCases. If there are any cases in ThisCases that are in PredCases, we
575 // can simplify TI.
576 if (!ValuesOverlap(PredCases, ThisCases))
577 return false;
578
579 if (isa<BranchInst>(TI)) {
580 // Okay, one of the successors of this condbr is dead. Convert it to a
581 // uncond br.
582 assert(ThisCases.size() == 1 && "Branch can only have one case!");
583 // Insert the new branch.
584 Instruction *NI = Builder.CreateBr(ThisDef);
585 (void) NI;
586
587 // Remove PHI node entries for the dead edge.
588 ThisCases[0].second->removePredecessor(TI->getParent());
589
590 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
591 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
592
593 EraseTerminatorInstAndDCECond(TI);
594 return true;
595 }
596
597 SwitchInst *SI = cast<SwitchInst>(TI);
598 // Okay, TI has cases that are statically dead, prune them away.
599 SmallPtrSet<Constant*, 16> DeadCases;
600 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
601 DeadCases.insert(PredCases[i].first);
602
603 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
604 << "Through successor TI: " << *TI);
605
606 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
607 if (DeadCases.count(SI->getCaseValue(i))) {
608 SI->getSuccessor(i)->removePredecessor(TI->getParent());
609 SI->removeCase(i);
610 }
611
612 DEBUG(dbgs() << "Leaving: " << *TI << "\n");
613 return true;
614 }
615
616 // Otherwise, TI's block must correspond to some matched value. Find out
617 // which value (or set of values) this is.
618 ConstantInt *TIV = 0;
619 BasicBlock *TIBB = TI->getParent();
620 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
621 if (PredCases[i].second == TIBB) {
622 if (TIV != 0)
623 return false; // Cannot handle multiple values coming to this block.
624 TIV = PredCases[i].first;
625 }
626 assert(TIV && "No edge from pred to succ?");
627
628 // Okay, we found the one constant that our value can be if we get into TI's
629 // BB. Find out which successor will unconditionally be branched to.
630 BasicBlock *TheRealDest = 0;
631 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
632 if (ThisCases[i].first == TIV) {
633 TheRealDest = ThisCases[i].second;
634 break;
635 }
636
637 // If not handled by any explicit cases, it is handled by the default case.
638 if (TheRealDest == 0) TheRealDest = ThisDef;
639
640 // Remove PHI node entries for dead edges.
641 BasicBlock *CheckEdge = TheRealDest;
642 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
643 if (*SI != CheckEdge)
644 (*SI)->removePredecessor(TIBB);
645 else
646 CheckEdge = 0;
647
648 // Insert the new branch.
649 Instruction *NI = Builder.CreateBr(TheRealDest);
650 (void) NI;
651
652 DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
653 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
654
655 EraseTerminatorInstAndDCECond(TI);
656 return true;
657 }
658
659 namespace {
660 /// ConstantIntOrdering - This class implements a stable ordering of constant
661 /// integers that does not depend on their address. This is important for
662 /// applications that sort ConstantInt's to ensure uniqueness.
663 struct ConstantIntOrdering {
operator ()__anonfd7db5190211::ConstantIntOrdering664 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
665 return LHS->getValue().ult(RHS->getValue());
666 }
667 };
668 }
669
ConstantIntSortPredicate(const void * P1,const void * P2)670 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
671 const ConstantInt *LHS = *(const ConstantInt**)P1;
672 const ConstantInt *RHS = *(const ConstantInt**)P2;
673 if (LHS->getValue().ult(RHS->getValue()))
674 return 1;
675 if (LHS->getValue() == RHS->getValue())
676 return 0;
677 return -1;
678 }
679
680 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
681 /// equality comparison instruction (either a switch or a branch on "X == c").
682 /// See if any of the predecessors of the terminator block are value comparisons
683 /// on the same value. If so, and if safe to do so, fold them together.
FoldValueComparisonIntoPredecessors(TerminatorInst * TI,IRBuilder<> & Builder)684 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
685 IRBuilder<> &Builder) {
686 BasicBlock *BB = TI->getParent();
687 Value *CV = isValueEqualityComparison(TI); // CondVal
688 assert(CV && "Not a comparison?");
689 bool Changed = false;
690
691 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
692 while (!Preds.empty()) {
693 BasicBlock *Pred = Preds.pop_back_val();
694
695 // See if the predecessor is a comparison with the same value.
696 TerminatorInst *PTI = Pred->getTerminator();
697 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
698
699 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
700 // Figure out which 'cases' to copy from SI to PSI.
701 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
702 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
703
704 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
705 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
706
707 // Based on whether the default edge from PTI goes to BB or not, fill in
708 // PredCases and PredDefault with the new switch cases we would like to
709 // build.
710 SmallVector<BasicBlock*, 8> NewSuccessors;
711
712 if (PredDefault == BB) {
713 // If this is the default destination from PTI, only the edges in TI
714 // that don't occur in PTI, or that branch to BB will be activated.
715 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
716 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
717 if (PredCases[i].second != BB)
718 PTIHandled.insert(PredCases[i].first);
719 else {
720 // The default destination is BB, we don't need explicit targets.
721 std::swap(PredCases[i], PredCases.back());
722 PredCases.pop_back();
723 --i; --e;
724 }
725
726 // Reconstruct the new switch statement we will be building.
727 if (PredDefault != BBDefault) {
728 PredDefault->removePredecessor(Pred);
729 PredDefault = BBDefault;
730 NewSuccessors.push_back(BBDefault);
731 }
732 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
733 if (!PTIHandled.count(BBCases[i].first) &&
734 BBCases[i].second != BBDefault) {
735 PredCases.push_back(BBCases[i]);
736 NewSuccessors.push_back(BBCases[i].second);
737 }
738
739 } else {
740 // If this is not the default destination from PSI, only the edges
741 // in SI that occur in PSI with a destination of BB will be
742 // activated.
743 std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
744 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
745 if (PredCases[i].second == BB) {
746 PTIHandled.insert(PredCases[i].first);
747 std::swap(PredCases[i], PredCases.back());
748 PredCases.pop_back();
749 --i; --e;
750 }
751
752 // Okay, now we know which constants were sent to BB from the
753 // predecessor. Figure out where they will all go now.
754 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
755 if (PTIHandled.count(BBCases[i].first)) {
756 // If this is one we are capable of getting...
757 PredCases.push_back(BBCases[i]);
758 NewSuccessors.push_back(BBCases[i].second);
759 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
760 }
761
762 // If there are any constants vectored to BB that TI doesn't handle,
763 // they must go to the default destination of TI.
764 for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
765 PTIHandled.begin(),
766 E = PTIHandled.end(); I != E; ++I) {
767 PredCases.push_back(std::make_pair(*I, BBDefault));
768 NewSuccessors.push_back(BBDefault);
769 }
770 }
771
772 // Okay, at this point, we know which new successor Pred will get. Make
773 // sure we update the number of entries in the PHI nodes for these
774 // successors.
775 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
776 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
777
778 Builder.SetInsertPoint(PTI);
779 // Convert pointer to int before we switch.
780 if (CV->getType()->isPointerTy()) {
781 assert(TD && "Cannot switch on pointer without TargetData");
782 CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
783 "magicptr");
784 }
785
786 // Now that the successors are updated, create the new Switch instruction.
787 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
788 PredCases.size());
789 NewSI->setDebugLoc(PTI->getDebugLoc());
790 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
791 NewSI->addCase(PredCases[i].first, PredCases[i].second);
792
793 EraseTerminatorInstAndDCECond(PTI);
794
795 // Okay, last check. If BB is still a successor of PSI, then we must
796 // have an infinite loop case. If so, add an infinitely looping block
797 // to handle the case to preserve the behavior of the code.
798 BasicBlock *InfLoopBlock = 0;
799 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
800 if (NewSI->getSuccessor(i) == BB) {
801 if (InfLoopBlock == 0) {
802 // Insert it at the end of the function, because it's either code,
803 // or it won't matter if it's hot. :)
804 InfLoopBlock = BasicBlock::Create(BB->getContext(),
805 "infloop", BB->getParent());
806 BranchInst::Create(InfLoopBlock, InfLoopBlock);
807 }
808 NewSI->setSuccessor(i, InfLoopBlock);
809 }
810
811 Changed = true;
812 }
813 }
814 return Changed;
815 }
816
817 // isSafeToHoistInvoke - If we would need to insert a select that uses the
818 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
819 // would need to do this), we can't hoist the invoke, as there is nowhere
820 // to put the select in this case.
isSafeToHoistInvoke(BasicBlock * BB1,BasicBlock * BB2,Instruction * I1,Instruction * I2)821 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
822 Instruction *I1, Instruction *I2) {
823 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
824 PHINode *PN;
825 for (BasicBlock::iterator BBI = SI->begin();
826 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
827 Value *BB1V = PN->getIncomingValueForBlock(BB1);
828 Value *BB2V = PN->getIncomingValueForBlock(BB2);
829 if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
830 return false;
831 }
832 }
833 }
834 return true;
835 }
836
837 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
838 /// BB2, hoist any common code in the two blocks up into the branch block. The
839 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
HoistThenElseCodeToIf(BranchInst * BI)840 static bool HoistThenElseCodeToIf(BranchInst *BI) {
841 // This does very trivial matching, with limited scanning, to find identical
842 // instructions in the two blocks. In particular, we don't want to get into
843 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
844 // such, we currently just scan for obviously identical instructions in an
845 // identical order.
846 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
847 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
848
849 BasicBlock::iterator BB1_Itr = BB1->begin();
850 BasicBlock::iterator BB2_Itr = BB2->begin();
851
852 Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
853 // Skip debug info if it is not identical.
854 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
855 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
856 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
857 while (isa<DbgInfoIntrinsic>(I1))
858 I1 = BB1_Itr++;
859 while (isa<DbgInfoIntrinsic>(I2))
860 I2 = BB2_Itr++;
861 }
862 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
863 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
864 return false;
865
866 // If we get here, we can hoist at least one instruction.
867 BasicBlock *BIParent = BI->getParent();
868
869 do {
870 // If we are hoisting the terminator instruction, don't move one (making a
871 // broken BB), instead clone it, and remove BI.
872 if (isa<TerminatorInst>(I1))
873 goto HoistTerminator;
874
875 // For a normal instruction, we just move one to right before the branch,
876 // then replace all uses of the other with the first. Finally, we remove
877 // the now redundant second instruction.
878 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
879 if (!I2->use_empty())
880 I2->replaceAllUsesWith(I1);
881 I1->intersectOptionalDataWith(I2);
882 I2->eraseFromParent();
883
884 I1 = BB1_Itr++;
885 I2 = BB2_Itr++;
886 // Skip debug info if it is not identical.
887 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
888 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
889 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
890 while (isa<DbgInfoIntrinsic>(I1))
891 I1 = BB1_Itr++;
892 while (isa<DbgInfoIntrinsic>(I2))
893 I2 = BB2_Itr++;
894 }
895 } while (I1->isIdenticalToWhenDefined(I2));
896
897 return true;
898
899 HoistTerminator:
900 // It may not be possible to hoist an invoke.
901 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
902 return true;
903
904 // Okay, it is safe to hoist the terminator.
905 Instruction *NT = I1->clone();
906 BIParent->getInstList().insert(BI, NT);
907 if (!NT->getType()->isVoidTy()) {
908 I1->replaceAllUsesWith(NT);
909 I2->replaceAllUsesWith(NT);
910 NT->takeName(I1);
911 }
912
913 IRBuilder<true, NoFolder> Builder(NT);
914 // Hoisting one of the terminators from our successor is a great thing.
915 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
916 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
917 // nodes, so we insert select instruction to compute the final result.
918 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
919 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
920 PHINode *PN;
921 for (BasicBlock::iterator BBI = SI->begin();
922 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
923 Value *BB1V = PN->getIncomingValueForBlock(BB1);
924 Value *BB2V = PN->getIncomingValueForBlock(BB2);
925 if (BB1V == BB2V) continue;
926
927 // These values do not agree. Insert a select instruction before NT
928 // that determines the right value.
929 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
930 if (SI == 0)
931 SI = cast<SelectInst>
932 (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
933 BB1V->getName()+"."+BB2V->getName()));
934
935 // Make the PHI node use the select for all incoming values for BB1/BB2
936 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
937 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
938 PN->setIncomingValue(i, SI);
939 }
940 }
941
942 // Update any PHI nodes in our new successors.
943 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
944 AddPredecessorToBlock(*SI, BIParent, BB1);
945
946 EraseTerminatorInstAndDCECond(BI);
947 return true;
948 }
949
950 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
951 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
952 /// (for now, restricted to a single instruction that's side effect free) from
953 /// the BB1 into the branch block to speculatively execute it.
SpeculativelyExecuteBB(BranchInst * BI,BasicBlock * BB1)954 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
955 // Only speculatively execution a single instruction (not counting the
956 // terminator) for now.
957 Instruction *HInst = NULL;
958 Instruction *Term = BB1->getTerminator();
959 for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
960 BBI != BBE; ++BBI) {
961 Instruction *I = BBI;
962 // Skip debug info.
963 if (isa<DbgInfoIntrinsic>(I)) continue;
964 if (I == Term) break;
965
966 if (HInst)
967 return false;
968 HInst = I;
969 }
970 if (!HInst)
971 return false;
972
973 // Be conservative for now. FP select instruction can often be expensive.
974 Value *BrCond = BI->getCondition();
975 if (isa<FCmpInst>(BrCond))
976 return false;
977
978 // If BB1 is actually on the false edge of the conditional branch, remember
979 // to swap the select operands later.
980 bool Invert = false;
981 if (BB1 != BI->getSuccessor(0)) {
982 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
983 Invert = true;
984 }
985
986 // Turn
987 // BB:
988 // %t1 = icmp
989 // br i1 %t1, label %BB1, label %BB2
990 // BB1:
991 // %t3 = add %t2, c
992 // br label BB2
993 // BB2:
994 // =>
995 // BB:
996 // %t1 = icmp
997 // %t4 = add %t2, c
998 // %t3 = select i1 %t1, %t2, %t3
999 switch (HInst->getOpcode()) {
1000 default: return false; // Not safe / profitable to hoist.
1001 case Instruction::Add:
1002 case Instruction::Sub:
1003 // Not worth doing for vector ops.
1004 if (HInst->getType()->isVectorTy())
1005 return false;
1006 break;
1007 case Instruction::And:
1008 case Instruction::Or:
1009 case Instruction::Xor:
1010 case Instruction::Shl:
1011 case Instruction::LShr:
1012 case Instruction::AShr:
1013 // Don't mess with vector operations.
1014 if (HInst->getType()->isVectorTy())
1015 return false;
1016 break; // These are all cheap and non-trapping instructions.
1017 }
1018
1019 // If the instruction is obviously dead, don't try to predicate it.
1020 if (HInst->use_empty()) {
1021 HInst->eraseFromParent();
1022 return true;
1023 }
1024
1025 // Can we speculatively execute the instruction? And what is the value
1026 // if the condition is false? Consider the phi uses, if the incoming value
1027 // from the "if" block are all the same V, then V is the value of the
1028 // select if the condition is false.
1029 BasicBlock *BIParent = BI->getParent();
1030 SmallVector<PHINode*, 4> PHIUses;
1031 Value *FalseV = NULL;
1032
1033 BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1034 for (Value::use_iterator UI = HInst->use_begin(), E = HInst->use_end();
1035 UI != E; ++UI) {
1036 // Ignore any user that is not a PHI node in BB2. These can only occur in
1037 // unreachable blocks, because they would not be dominated by the instr.
1038 PHINode *PN = dyn_cast<PHINode>(*UI);
1039 if (!PN || PN->getParent() != BB2)
1040 return false;
1041 PHIUses.push_back(PN);
1042
1043 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1044 if (!FalseV)
1045 FalseV = PHIV;
1046 else if (FalseV != PHIV)
1047 return false; // Inconsistent value when condition is false.
1048 }
1049
1050 assert(FalseV && "Must have at least one user, and it must be a PHI");
1051
1052 // Do not hoist the instruction if any of its operands are defined but not
1053 // used in this BB. The transformation will prevent the operand from
1054 // being sunk into the use block.
1055 for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1056 i != e; ++i) {
1057 Instruction *OpI = dyn_cast<Instruction>(*i);
1058 if (OpI && OpI->getParent() == BIParent &&
1059 !OpI->isUsedInBasicBlock(BIParent))
1060 return false;
1061 }
1062
1063 // If we get here, we can hoist the instruction. Try to place it
1064 // before the icmp instruction preceding the conditional branch.
1065 BasicBlock::iterator InsertPos = BI;
1066 if (InsertPos != BIParent->begin())
1067 --InsertPos;
1068 // Skip debug info between condition and branch.
1069 while (InsertPos != BIParent->begin() && isa<DbgInfoIntrinsic>(InsertPos))
1070 --InsertPos;
1071 if (InsertPos == BrCond && !isa<PHINode>(BrCond)) {
1072 SmallPtrSet<Instruction *, 4> BB1Insns;
1073 for(BasicBlock::iterator BB1I = BB1->begin(), BB1E = BB1->end();
1074 BB1I != BB1E; ++BB1I)
1075 BB1Insns.insert(BB1I);
1076 for(Value::use_iterator UI = BrCond->use_begin(), UE = BrCond->use_end();
1077 UI != UE; ++UI) {
1078 Instruction *Use = cast<Instruction>(*UI);
1079 if (!BB1Insns.count(Use)) continue;
1080
1081 // If BrCond uses the instruction that place it just before
1082 // branch instruction.
1083 InsertPos = BI;
1084 break;
1085 }
1086 } else
1087 InsertPos = BI;
1088 BIParent->getInstList().splice(InsertPos, BB1->getInstList(), HInst);
1089
1090 // Create a select whose true value is the speculatively executed value and
1091 // false value is the previously determined FalseV.
1092 IRBuilder<true, NoFolder> Builder(BI);
1093 SelectInst *SI;
1094 if (Invert)
1095 SI = cast<SelectInst>
1096 (Builder.CreateSelect(BrCond, FalseV, HInst,
1097 FalseV->getName() + "." + HInst->getName()));
1098 else
1099 SI = cast<SelectInst>
1100 (Builder.CreateSelect(BrCond, HInst, FalseV,
1101 HInst->getName() + "." + FalseV->getName()));
1102
1103 // Make the PHI node use the select for all incoming values for "then" and
1104 // "if" blocks.
1105 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1106 PHINode *PN = PHIUses[i];
1107 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1108 if (PN->getIncomingBlock(j) == BB1 || PN->getIncomingBlock(j) == BIParent)
1109 PN->setIncomingValue(j, SI);
1110 }
1111
1112 ++NumSpeculations;
1113 return true;
1114 }
1115
1116 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1117 /// across this block.
BlockIsSimpleEnoughToThreadThrough(BasicBlock * BB)1118 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1119 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1120 unsigned Size = 0;
1121
1122 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1123 if (isa<DbgInfoIntrinsic>(BBI))
1124 continue;
1125 if (Size > 10) return false; // Don't clone large BB's.
1126 ++Size;
1127
1128 // We can only support instructions that do not define values that are
1129 // live outside of the current basic block.
1130 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1131 UI != E; ++UI) {
1132 Instruction *U = cast<Instruction>(*UI);
1133 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1134 }
1135
1136 // Looks ok, continue checking.
1137 }
1138
1139 return true;
1140 }
1141
1142 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1143 /// that is defined in the same block as the branch and if any PHI entries are
1144 /// constants, thread edges corresponding to that entry to be branches to their
1145 /// ultimate destination.
FoldCondBranchOnPHI(BranchInst * BI,const TargetData * TD)1146 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1147 BasicBlock *BB = BI->getParent();
1148 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1149 // NOTE: we currently cannot transform this case if the PHI node is used
1150 // outside of the block.
1151 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1152 return false;
1153
1154 // Degenerate case of a single entry PHI.
1155 if (PN->getNumIncomingValues() == 1) {
1156 FoldSingleEntryPHINodes(PN->getParent());
1157 return true;
1158 }
1159
1160 // Now we know that this block has multiple preds and two succs.
1161 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1162
1163 // Okay, this is a simple enough basic block. See if any phi values are
1164 // constants.
1165 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1166 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1167 if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1168
1169 // Okay, we now know that all edges from PredBB should be revectored to
1170 // branch to RealDest.
1171 BasicBlock *PredBB = PN->getIncomingBlock(i);
1172 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1173
1174 if (RealDest == BB) continue; // Skip self loops.
1175 // Skip if the predecessor's terminator is an indirect branch.
1176 if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1177
1178 // The dest block might have PHI nodes, other predecessors and other
1179 // difficult cases. Instead of being smart about this, just insert a new
1180 // block that jumps to the destination block, effectively splitting
1181 // the edge we are about to create.
1182 BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1183 RealDest->getName()+".critedge",
1184 RealDest->getParent(), RealDest);
1185 BranchInst::Create(RealDest, EdgeBB);
1186
1187 // Update PHI nodes.
1188 AddPredecessorToBlock(RealDest, EdgeBB, BB);
1189
1190 // BB may have instructions that are being threaded over. Clone these
1191 // instructions into EdgeBB. We know that there will be no uses of the
1192 // cloned instructions outside of EdgeBB.
1193 BasicBlock::iterator InsertPt = EdgeBB->begin();
1194 DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1195 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1196 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1197 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1198 continue;
1199 }
1200 // Clone the instruction.
1201 Instruction *N = BBI->clone();
1202 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1203
1204 // Update operands due to translation.
1205 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1206 i != e; ++i) {
1207 DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1208 if (PI != TranslateMap.end())
1209 *i = PI->second;
1210 }
1211
1212 // Check for trivial simplification.
1213 if (Value *V = SimplifyInstruction(N, TD)) {
1214 TranslateMap[BBI] = V;
1215 delete N; // Instruction folded away, don't need actual inst
1216 } else {
1217 // Insert the new instruction into its new home.
1218 EdgeBB->getInstList().insert(InsertPt, N);
1219 if (!BBI->use_empty())
1220 TranslateMap[BBI] = N;
1221 }
1222 }
1223
1224 // Loop over all of the edges from PredBB to BB, changing them to branch
1225 // to EdgeBB instead.
1226 TerminatorInst *PredBBTI = PredBB->getTerminator();
1227 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1228 if (PredBBTI->getSuccessor(i) == BB) {
1229 BB->removePredecessor(PredBB);
1230 PredBBTI->setSuccessor(i, EdgeBB);
1231 }
1232
1233 // Recurse, simplifying any other constants.
1234 return FoldCondBranchOnPHI(BI, TD) | true;
1235 }
1236
1237 return false;
1238 }
1239
1240 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1241 /// PHI node, see if we can eliminate it.
FoldTwoEntryPHINode(PHINode * PN,const TargetData * TD)1242 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1243 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1244 // statement", which has a very simple dominance structure. Basically, we
1245 // are trying to find the condition that is being branched on, which
1246 // subsequently causes this merge to happen. We really want control
1247 // dependence information for this check, but simplifycfg can't keep it up
1248 // to date, and this catches most of the cases we care about anyway.
1249 BasicBlock *BB = PN->getParent();
1250 BasicBlock *IfTrue, *IfFalse;
1251 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1252 if (!IfCond ||
1253 // Don't bother if the branch will be constant folded trivially.
1254 isa<ConstantInt>(IfCond))
1255 return false;
1256
1257 // Okay, we found that we can merge this two-entry phi node into a select.
1258 // Doing so would require us to fold *all* two entry phi nodes in this block.
1259 // At some point this becomes non-profitable (particularly if the target
1260 // doesn't support cmov's). Only do this transformation if there are two or
1261 // fewer PHI nodes in this block.
1262 unsigned NumPhis = 0;
1263 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1264 if (NumPhis > 2)
1265 return false;
1266
1267 // Loop over the PHI's seeing if we can promote them all to select
1268 // instructions. While we are at it, keep track of the instructions
1269 // that need to be moved to the dominating block.
1270 SmallPtrSet<Instruction*, 4> AggressiveInsts;
1271 unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1272 MaxCostVal1 = PHINodeFoldingThreshold;
1273
1274 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1275 PHINode *PN = cast<PHINode>(II++);
1276 if (Value *V = SimplifyInstruction(PN, TD)) {
1277 PN->replaceAllUsesWith(V);
1278 PN->eraseFromParent();
1279 continue;
1280 }
1281
1282 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1283 MaxCostVal0) ||
1284 !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1285 MaxCostVal1))
1286 return false;
1287 }
1288
1289 // If we folded the the first phi, PN dangles at this point. Refresh it. If
1290 // we ran out of PHIs then we simplified them all.
1291 PN = dyn_cast<PHINode>(BB->begin());
1292 if (PN == 0) return true;
1293
1294 // Don't fold i1 branches on PHIs which contain binary operators. These can
1295 // often be turned into switches and other things.
1296 if (PN->getType()->isIntegerTy(1) &&
1297 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1298 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1299 isa<BinaryOperator>(IfCond)))
1300 return false;
1301
1302 // If we all PHI nodes are promotable, check to make sure that all
1303 // instructions in the predecessor blocks can be promoted as well. If
1304 // not, we won't be able to get rid of the control flow, so it's not
1305 // worth promoting to select instructions.
1306 BasicBlock *DomBlock = 0;
1307 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1308 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1309 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1310 IfBlock1 = 0;
1311 } else {
1312 DomBlock = *pred_begin(IfBlock1);
1313 for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1314 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1315 // This is not an aggressive instruction that we can promote.
1316 // Because of this, we won't be able to get rid of the control
1317 // flow, so the xform is not worth it.
1318 return false;
1319 }
1320 }
1321
1322 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1323 IfBlock2 = 0;
1324 } else {
1325 DomBlock = *pred_begin(IfBlock2);
1326 for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1327 if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1328 // This is not an aggressive instruction that we can promote.
1329 // Because of this, we won't be able to get rid of the control
1330 // flow, so the xform is not worth it.
1331 return false;
1332 }
1333 }
1334
1335 DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1336 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1337
1338 // If we can still promote the PHI nodes after this gauntlet of tests,
1339 // do all of the PHI's now.
1340 Instruction *InsertPt = DomBlock->getTerminator();
1341 IRBuilder<true, NoFolder> Builder(InsertPt);
1342
1343 // Move all 'aggressive' instructions, which are defined in the
1344 // conditional parts of the if's up to the dominating block.
1345 if (IfBlock1)
1346 DomBlock->getInstList().splice(InsertPt,
1347 IfBlock1->getInstList(), IfBlock1->begin(),
1348 IfBlock1->getTerminator());
1349 if (IfBlock2)
1350 DomBlock->getInstList().splice(InsertPt,
1351 IfBlock2->getInstList(), IfBlock2->begin(),
1352 IfBlock2->getTerminator());
1353
1354 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1355 // Change the PHI node into a select instruction.
1356 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1357 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1358
1359 SelectInst *NV =
1360 cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1361 PN->replaceAllUsesWith(NV);
1362 NV->takeName(PN);
1363 PN->eraseFromParent();
1364 }
1365
1366 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1367 // has been flattened. Change DomBlock to jump directly to our new block to
1368 // avoid other simplifycfg's kicking in on the diamond.
1369 TerminatorInst *OldTI = DomBlock->getTerminator();
1370 Builder.SetInsertPoint(OldTI);
1371 Builder.CreateBr(BB);
1372 OldTI->eraseFromParent();
1373 return true;
1374 }
1375
1376 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1377 /// to two returning blocks, try to merge them together into one return,
1378 /// introducing a select if the return values disagree.
SimplifyCondBranchToTwoReturns(BranchInst * BI,IRBuilder<> & Builder)1379 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1380 IRBuilder<> &Builder) {
1381 assert(BI->isConditional() && "Must be a conditional branch");
1382 BasicBlock *TrueSucc = BI->getSuccessor(0);
1383 BasicBlock *FalseSucc = BI->getSuccessor(1);
1384 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1385 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1386
1387 // Check to ensure both blocks are empty (just a return) or optionally empty
1388 // with PHI nodes. If there are other instructions, merging would cause extra
1389 // computation on one path or the other.
1390 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1391 return false;
1392 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1393 return false;
1394
1395 Builder.SetInsertPoint(BI);
1396 // Okay, we found a branch that is going to two return nodes. If
1397 // there is no return value for this function, just change the
1398 // branch into a return.
1399 if (FalseRet->getNumOperands() == 0) {
1400 TrueSucc->removePredecessor(BI->getParent());
1401 FalseSucc->removePredecessor(BI->getParent());
1402 Builder.CreateRetVoid();
1403 EraseTerminatorInstAndDCECond(BI);
1404 return true;
1405 }
1406
1407 // Otherwise, figure out what the true and false return values are
1408 // so we can insert a new select instruction.
1409 Value *TrueValue = TrueRet->getReturnValue();
1410 Value *FalseValue = FalseRet->getReturnValue();
1411
1412 // Unwrap any PHI nodes in the return blocks.
1413 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1414 if (TVPN->getParent() == TrueSucc)
1415 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1416 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1417 if (FVPN->getParent() == FalseSucc)
1418 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1419
1420 // In order for this transformation to be safe, we must be able to
1421 // unconditionally execute both operands to the return. This is
1422 // normally the case, but we could have a potentially-trapping
1423 // constant expression that prevents this transformation from being
1424 // safe.
1425 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1426 if (TCV->canTrap())
1427 return false;
1428 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1429 if (FCV->canTrap())
1430 return false;
1431
1432 // Okay, we collected all the mapped values and checked them for sanity, and
1433 // defined to really do this transformation. First, update the CFG.
1434 TrueSucc->removePredecessor(BI->getParent());
1435 FalseSucc->removePredecessor(BI->getParent());
1436
1437 // Insert select instructions where needed.
1438 Value *BrCond = BI->getCondition();
1439 if (TrueValue) {
1440 // Insert a select if the results differ.
1441 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1442 } else if (isa<UndefValue>(TrueValue)) {
1443 TrueValue = FalseValue;
1444 } else {
1445 TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1446 FalseValue, "retval");
1447 }
1448 }
1449
1450 Value *RI = !TrueValue ?
1451 Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1452
1453 (void) RI;
1454
1455 DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1456 << "\n " << *BI << "NewRet = " << *RI
1457 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1458
1459 EraseTerminatorInstAndDCECond(BI);
1460
1461 return true;
1462 }
1463
1464 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1465 /// predecessor branches to us and one of our successors, fold the block into
1466 /// the predecessor and use logical operations to pick the right destination.
FoldBranchToCommonDest(BranchInst * BI)1467 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1468 BasicBlock *BB = BI->getParent();
1469
1470 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1471 if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1472 Cond->getParent() != BB || !Cond->hasOneUse())
1473 return false;
1474
1475 // Only allow this if the condition is a simple instruction that can be
1476 // executed unconditionally. It must be in the same block as the branch, and
1477 // must be at the front of the block.
1478 BasicBlock::iterator FrontIt = BB->front();
1479
1480 // Ignore dbg intrinsics.
1481 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1482
1483 // Allow a single instruction to be hoisted in addition to the compare
1484 // that feeds the branch. We later ensure that any values that _it_ uses
1485 // were also live in the predecessor, so that we don't unnecessarily create
1486 // register pressure or inhibit out-of-order execution.
1487 Instruction *BonusInst = 0;
1488 if (&*FrontIt != Cond &&
1489 FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1490 FrontIt->isSafeToSpeculativelyExecute()) {
1491 BonusInst = &*FrontIt;
1492 ++FrontIt;
1493
1494 // Ignore dbg intrinsics.
1495 while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1496 }
1497
1498 // Only a single bonus inst is allowed.
1499 if (&*FrontIt != Cond)
1500 return false;
1501
1502 // Make sure the instruction after the condition is the cond branch.
1503 BasicBlock::iterator CondIt = Cond; ++CondIt;
1504
1505 // Ingore dbg intrinsics.
1506 while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1507
1508 if (&*CondIt != BI)
1509 return false;
1510
1511 // Cond is known to be a compare or binary operator. Check to make sure that
1512 // neither operand is a potentially-trapping constant expression.
1513 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1514 if (CE->canTrap())
1515 return false;
1516 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1517 if (CE->canTrap())
1518 return false;
1519
1520 // Finally, don't infinitely unroll conditional loops.
1521 BasicBlock *TrueDest = BI->getSuccessor(0);
1522 BasicBlock *FalseDest = BI->getSuccessor(1);
1523 if (TrueDest == BB || FalseDest == BB)
1524 return false;
1525
1526 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1527 BasicBlock *PredBlock = *PI;
1528 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1529
1530 // Check that we have two conditional branches. If there is a PHI node in
1531 // the common successor, verify that the same value flows in from both
1532 // blocks.
1533 if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
1534 continue;
1535
1536 // Determine if the two branches share a common destination.
1537 Instruction::BinaryOps Opc;
1538 bool InvertPredCond = false;
1539
1540 if (PBI->getSuccessor(0) == TrueDest)
1541 Opc = Instruction::Or;
1542 else if (PBI->getSuccessor(1) == FalseDest)
1543 Opc = Instruction::And;
1544 else if (PBI->getSuccessor(0) == FalseDest)
1545 Opc = Instruction::And, InvertPredCond = true;
1546 else if (PBI->getSuccessor(1) == TrueDest)
1547 Opc = Instruction::Or, InvertPredCond = true;
1548 else
1549 continue;
1550
1551 // Ensure that any values used in the bonus instruction are also used
1552 // by the terminator of the predecessor. This means that those values
1553 // must already have been resolved, so we won't be inhibiting the
1554 // out-of-order core by speculating them earlier.
1555 if (BonusInst) {
1556 // Collect the values used by the bonus inst
1557 SmallPtrSet<Value*, 4> UsedValues;
1558 for (Instruction::op_iterator OI = BonusInst->op_begin(),
1559 OE = BonusInst->op_end(); OI != OE; ++OI) {
1560 Value* V = *OI;
1561 if (!isa<Constant>(V))
1562 UsedValues.insert(V);
1563 }
1564
1565 SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
1566 Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
1567
1568 // Walk up to four levels back up the use-def chain of the predecessor's
1569 // terminator to see if all those values were used. The choice of four
1570 // levels is arbitrary, to provide a compile-time-cost bound.
1571 while (!Worklist.empty()) {
1572 std::pair<Value*, unsigned> Pair = Worklist.back();
1573 Worklist.pop_back();
1574
1575 if (Pair.second >= 4) continue;
1576 UsedValues.erase(Pair.first);
1577 if (UsedValues.empty()) break;
1578
1579 if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
1580 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
1581 OI != OE; ++OI)
1582 Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
1583 }
1584 }
1585
1586 if (!UsedValues.empty()) return false;
1587 }
1588
1589 DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
1590 IRBuilder<> Builder(PBI);
1591
1592 // If we need to invert the condition in the pred block to match, do so now.
1593 if (InvertPredCond) {
1594 Value *NewCond = PBI->getCondition();
1595
1596 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
1597 CmpInst *CI = cast<CmpInst>(NewCond);
1598 CI->setPredicate(CI->getInversePredicate());
1599 } else {
1600 NewCond = Builder.CreateNot(NewCond,
1601 PBI->getCondition()->getName()+".not");
1602 }
1603
1604 PBI->setCondition(NewCond);
1605 BasicBlock *OldTrue = PBI->getSuccessor(0);
1606 BasicBlock *OldFalse = PBI->getSuccessor(1);
1607 PBI->setSuccessor(0, OldFalse);
1608 PBI->setSuccessor(1, OldTrue);
1609 }
1610
1611 // If we have a bonus inst, clone it into the predecessor block.
1612 Instruction *NewBonus = 0;
1613 if (BonusInst) {
1614 NewBonus = BonusInst->clone();
1615 PredBlock->getInstList().insert(PBI, NewBonus);
1616 NewBonus->takeName(BonusInst);
1617 BonusInst->setName(BonusInst->getName()+".old");
1618 }
1619
1620 // Clone Cond into the predecessor basic block, and or/and the
1621 // two conditions together.
1622 Instruction *New = Cond->clone();
1623 if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
1624 PredBlock->getInstList().insert(PBI, New);
1625 New->takeName(Cond);
1626 Cond->setName(New->getName()+".old");
1627
1628 Instruction *NewCond =
1629 cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
1630 New, "or.cond"));
1631 PBI->setCondition(NewCond);
1632 if (PBI->getSuccessor(0) == BB) {
1633 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1634 PBI->setSuccessor(0, TrueDest);
1635 }
1636 if (PBI->getSuccessor(1) == BB) {
1637 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1638 PBI->setSuccessor(1, FalseDest);
1639 }
1640
1641 // Copy any debug value intrinsics into the end of PredBlock.
1642 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1643 if (isa<DbgInfoIntrinsic>(*I))
1644 I->clone()->insertBefore(PBI);
1645
1646 return true;
1647 }
1648 return false;
1649 }
1650
1651 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1652 /// predecessor of another block, this function tries to simplify it. We know
1653 /// that PBI and BI are both conditional branches, and BI is in one of the
1654 /// successor blocks of PBI - PBI branches to BI.
SimplifyCondBranchToCondBranch(BranchInst * PBI,BranchInst * BI)1655 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1656 assert(PBI->isConditional() && BI->isConditional());
1657 BasicBlock *BB = BI->getParent();
1658
1659 // If this block ends with a branch instruction, and if there is a
1660 // predecessor that ends on a branch of the same condition, make
1661 // this conditional branch redundant.
1662 if (PBI->getCondition() == BI->getCondition() &&
1663 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1664 // Okay, the outcome of this conditional branch is statically
1665 // knowable. If this block had a single pred, handle specially.
1666 if (BB->getSinglePredecessor()) {
1667 // Turn this into a branch on constant.
1668 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1669 BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1670 CondIsTrue));
1671 return true; // Nuke the branch on constant.
1672 }
1673
1674 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1675 // in the constant and simplify the block result. Subsequent passes of
1676 // simplifycfg will thread the block.
1677 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1678 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
1679 PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
1680 std::distance(PB, PE),
1681 BI->getCondition()->getName() + ".pr",
1682 BB->begin());
1683 // Okay, we're going to insert the PHI node. Since PBI is not the only
1684 // predecessor, compute the PHI'd conditional value for all of the preds.
1685 // Any predecessor where the condition is not computable we keep symbolic.
1686 for (pred_iterator PI = PB; PI != PE; ++PI) {
1687 BasicBlock *P = *PI;
1688 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
1689 PBI != BI && PBI->isConditional() &&
1690 PBI->getCondition() == BI->getCondition() &&
1691 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1692 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1693 NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
1694 CondIsTrue), P);
1695 } else {
1696 NewPN->addIncoming(BI->getCondition(), P);
1697 }
1698 }
1699
1700 BI->setCondition(NewPN);
1701 return true;
1702 }
1703 }
1704
1705 // If this is a conditional branch in an empty block, and if any
1706 // predecessors is a conditional branch to one of our destinations,
1707 // fold the conditions into logical ops and one cond br.
1708 BasicBlock::iterator BBI = BB->begin();
1709 // Ignore dbg intrinsics.
1710 while (isa<DbgInfoIntrinsic>(BBI))
1711 ++BBI;
1712 if (&*BBI != BI)
1713 return false;
1714
1715
1716 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
1717 if (CE->canTrap())
1718 return false;
1719
1720 int PBIOp, BIOp;
1721 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1722 PBIOp = BIOp = 0;
1723 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1724 PBIOp = 0, BIOp = 1;
1725 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1726 PBIOp = 1, BIOp = 0;
1727 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1728 PBIOp = BIOp = 1;
1729 else
1730 return false;
1731
1732 // Check to make sure that the other destination of this branch
1733 // isn't BB itself. If so, this is an infinite loop that will
1734 // keep getting unwound.
1735 if (PBI->getSuccessor(PBIOp) == BB)
1736 return false;
1737
1738 // Do not perform this transformation if it would require
1739 // insertion of a large number of select instructions. For targets
1740 // without predication/cmovs, this is a big pessimization.
1741 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
1742
1743 unsigned NumPhis = 0;
1744 for (BasicBlock::iterator II = CommonDest->begin();
1745 isa<PHINode>(II); ++II, ++NumPhis)
1746 if (NumPhis > 2) // Disable this xform.
1747 return false;
1748
1749 // Finally, if everything is ok, fold the branches to logical ops.
1750 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1751
1752 DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
1753 << "AND: " << *BI->getParent());
1754
1755
1756 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1757 // branch in it, where one edge (OtherDest) goes back to itself but the other
1758 // exits. We don't *know* that the program avoids the infinite loop
1759 // (even though that seems likely). If we do this xform naively, we'll end up
1760 // recursively unpeeling the loop. Since we know that (after the xform is
1761 // done) that the block *is* infinite if reached, we just make it an obviously
1762 // infinite loop with no cond branch.
1763 if (OtherDest == BB) {
1764 // Insert it at the end of the function, because it's either code,
1765 // or it won't matter if it's hot. :)
1766 BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
1767 "infloop", BB->getParent());
1768 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1769 OtherDest = InfLoopBlock;
1770 }
1771
1772 DEBUG(dbgs() << *PBI->getParent()->getParent());
1773
1774 // BI may have other predecessors. Because of this, we leave
1775 // it alone, but modify PBI.
1776
1777 // Make sure we get to CommonDest on True&True directions.
1778 Value *PBICond = PBI->getCondition();
1779 IRBuilder<true, NoFolder> Builder(PBI);
1780 if (PBIOp)
1781 PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
1782
1783 Value *BICond = BI->getCondition();
1784 if (BIOp)
1785 BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
1786
1787 // Merge the conditions.
1788 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
1789
1790 // Modify PBI to branch on the new condition to the new dests.
1791 PBI->setCondition(Cond);
1792 PBI->setSuccessor(0, CommonDest);
1793 PBI->setSuccessor(1, OtherDest);
1794
1795 // OtherDest may have phi nodes. If so, add an entry from PBI's
1796 // block that are identical to the entries for BI's block.
1797 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
1798
1799 // We know that the CommonDest already had an edge from PBI to
1800 // it. If it has PHIs though, the PHIs may have different
1801 // entries for BB and PBI's BB. If so, insert a select to make
1802 // them agree.
1803 PHINode *PN;
1804 for (BasicBlock::iterator II = CommonDest->begin();
1805 (PN = dyn_cast<PHINode>(II)); ++II) {
1806 Value *BIV = PN->getIncomingValueForBlock(BB);
1807 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1808 Value *PBIV = PN->getIncomingValue(PBBIdx);
1809 if (BIV != PBIV) {
1810 // Insert a select in PBI to pick the right value.
1811 Value *NV = cast<SelectInst>
1812 (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
1813 PN->setIncomingValue(PBBIdx, NV);
1814 }
1815 }
1816
1817 DEBUG(dbgs() << "INTO: " << *PBI->getParent());
1818 DEBUG(dbgs() << *PBI->getParent()->getParent());
1819
1820 // This basic block is probably dead. We know it has at least
1821 // one fewer predecessor.
1822 return true;
1823 }
1824
1825 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
1826 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
1827 // Takes care of updating the successors and removing the old terminator.
1828 // Also makes sure not to introduce new successors by assuming that edges to
1829 // non-successor TrueBBs and FalseBBs aren't reachable.
SimplifyTerminatorOnSelect(TerminatorInst * OldTerm,Value * Cond,BasicBlock * TrueBB,BasicBlock * FalseBB)1830 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
1831 BasicBlock *TrueBB, BasicBlock *FalseBB){
1832 // Remove any superfluous successor edges from the CFG.
1833 // First, figure out which successors to preserve.
1834 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
1835 // successor.
1836 BasicBlock *KeepEdge1 = TrueBB;
1837 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
1838
1839 // Then remove the rest.
1840 for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
1841 BasicBlock *Succ = OldTerm->getSuccessor(I);
1842 // Make sure only to keep exactly one copy of each edge.
1843 if (Succ == KeepEdge1)
1844 KeepEdge1 = 0;
1845 else if (Succ == KeepEdge2)
1846 KeepEdge2 = 0;
1847 else
1848 Succ->removePredecessor(OldTerm->getParent());
1849 }
1850
1851 IRBuilder<> Builder(OldTerm);
1852 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
1853
1854 // Insert an appropriate new terminator.
1855 if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
1856 if (TrueBB == FalseBB)
1857 // We were only looking for one successor, and it was present.
1858 // Create an unconditional branch to it.
1859 Builder.CreateBr(TrueBB);
1860 else
1861 // We found both of the successors we were looking for.
1862 // Create a conditional branch sharing the condition of the select.
1863 Builder.CreateCondBr(Cond, TrueBB, FalseBB);
1864 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
1865 // Neither of the selected blocks were successors, so this
1866 // terminator must be unreachable.
1867 new UnreachableInst(OldTerm->getContext(), OldTerm);
1868 } else {
1869 // One of the selected values was a successor, but the other wasn't.
1870 // Insert an unconditional branch to the one that was found;
1871 // the edge to the one that wasn't must be unreachable.
1872 if (KeepEdge1 == 0)
1873 // Only TrueBB was found.
1874 Builder.CreateBr(TrueBB);
1875 else
1876 // Only FalseBB was found.
1877 Builder.CreateBr(FalseBB);
1878 }
1879
1880 EraseTerminatorInstAndDCECond(OldTerm);
1881 return true;
1882 }
1883
1884 // SimplifySwitchOnSelect - Replaces
1885 // (switch (select cond, X, Y)) on constant X, Y
1886 // with a branch - conditional if X and Y lead to distinct BBs,
1887 // unconditional otherwise.
SimplifySwitchOnSelect(SwitchInst * SI,SelectInst * Select)1888 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
1889 // Check for constant integer values in the select.
1890 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
1891 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
1892 if (!TrueVal || !FalseVal)
1893 return false;
1894
1895 // Find the relevant condition and destinations.
1896 Value *Condition = Select->getCondition();
1897 BasicBlock *TrueBB = SI->getSuccessor(SI->findCaseValue(TrueVal));
1898 BasicBlock *FalseBB = SI->getSuccessor(SI->findCaseValue(FalseVal));
1899
1900 // Perform the actual simplification.
1901 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
1902 }
1903
1904 // SimplifyIndirectBrOnSelect - Replaces
1905 // (indirectbr (select cond, blockaddress(@fn, BlockA),
1906 // blockaddress(@fn, BlockB)))
1907 // with
1908 // (br cond, BlockA, BlockB).
SimplifyIndirectBrOnSelect(IndirectBrInst * IBI,SelectInst * SI)1909 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
1910 // Check that both operands of the select are block addresses.
1911 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
1912 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
1913 if (!TBA || !FBA)
1914 return false;
1915
1916 // Extract the actual blocks.
1917 BasicBlock *TrueBB = TBA->getBasicBlock();
1918 BasicBlock *FalseBB = FBA->getBasicBlock();
1919
1920 // Perform the actual simplification.
1921 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
1922 }
1923
1924 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
1925 /// instruction (a seteq/setne with a constant) as the only instruction in a
1926 /// block that ends with an uncond branch. We are looking for a very specific
1927 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
1928 /// this case, we merge the first two "or's of icmp" into a switch, but then the
1929 /// default value goes to an uncond block with a seteq in it, we get something
1930 /// like:
1931 ///
1932 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
1933 /// DEFAULT:
1934 /// %tmp = icmp eq i8 %A, 92
1935 /// br label %end
1936 /// end:
1937 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
1938 ///
1939 /// We prefer to split the edge to 'end' so that there is a true/false entry to
1940 /// the PHI, merging the third icmp into the switch.
TryToSimplifyUncondBranchWithICmpInIt(ICmpInst * ICI,const TargetData * TD,IRBuilder<> & Builder)1941 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
1942 const TargetData *TD,
1943 IRBuilder<> &Builder) {
1944 BasicBlock *BB = ICI->getParent();
1945
1946 // If the block has any PHIs in it or the icmp has multiple uses, it is too
1947 // complex.
1948 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
1949
1950 Value *V = ICI->getOperand(0);
1951 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
1952
1953 // The pattern we're looking for is where our only predecessor is a switch on
1954 // 'V' and this block is the default case for the switch. In this case we can
1955 // fold the compared value into the switch to simplify things.
1956 BasicBlock *Pred = BB->getSinglePredecessor();
1957 if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
1958
1959 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
1960 if (SI->getCondition() != V)
1961 return false;
1962
1963 // If BB is reachable on a non-default case, then we simply know the value of
1964 // V in this block. Substitute it and constant fold the icmp instruction
1965 // away.
1966 if (SI->getDefaultDest() != BB) {
1967 ConstantInt *VVal = SI->findCaseDest(BB);
1968 assert(VVal && "Should have a unique destination value");
1969 ICI->setOperand(0, VVal);
1970
1971 if (Value *V = SimplifyInstruction(ICI, TD)) {
1972 ICI->replaceAllUsesWith(V);
1973 ICI->eraseFromParent();
1974 }
1975 // BB is now empty, so it is likely to simplify away.
1976 return SimplifyCFG(BB) | true;
1977 }
1978
1979 // Ok, the block is reachable from the default dest. If the constant we're
1980 // comparing exists in one of the other edges, then we can constant fold ICI
1981 // and zap it.
1982 if (SI->findCaseValue(Cst) != 0) {
1983 Value *V;
1984 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1985 V = ConstantInt::getFalse(BB->getContext());
1986 else
1987 V = ConstantInt::getTrue(BB->getContext());
1988
1989 ICI->replaceAllUsesWith(V);
1990 ICI->eraseFromParent();
1991 // BB is now empty, so it is likely to simplify away.
1992 return SimplifyCFG(BB) | true;
1993 }
1994
1995 // The use of the icmp has to be in the 'end' block, by the only PHI node in
1996 // the block.
1997 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
1998 PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
1999 if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2000 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2001 return false;
2002
2003 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2004 // true in the PHI.
2005 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2006 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2007
2008 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2009 std::swap(DefaultCst, NewCst);
2010
2011 // Replace ICI (which is used by the PHI for the default value) with true or
2012 // false depending on if it is EQ or NE.
2013 ICI->replaceAllUsesWith(DefaultCst);
2014 ICI->eraseFromParent();
2015
2016 // Okay, the switch goes to this block on a default value. Add an edge from
2017 // the switch to the merge point on the compared value.
2018 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2019 BB->getParent(), BB);
2020 SI->addCase(Cst, NewBB);
2021
2022 // NewBB branches to the phi block, add the uncond branch and the phi entry.
2023 Builder.SetInsertPoint(NewBB);
2024 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2025 Builder.CreateBr(SuccBlock);
2026 PHIUse->addIncoming(NewCst, NewBB);
2027 return true;
2028 }
2029
2030 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2031 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2032 /// fold it into a switch instruction if so.
SimplifyBranchOnICmpChain(BranchInst * BI,const TargetData * TD,IRBuilder<> & Builder)2033 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2034 IRBuilder<> &Builder) {
2035 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2036 if (Cond == 0) return false;
2037
2038
2039 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2040 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2041 // 'setne's and'ed together, collect them.
2042 Value *CompVal = 0;
2043 std::vector<ConstantInt*> Values;
2044 bool TrueWhenEqual = true;
2045 Value *ExtraCase = 0;
2046 unsigned UsedICmps = 0;
2047
2048 if (Cond->getOpcode() == Instruction::Or) {
2049 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2050 UsedICmps);
2051 } else if (Cond->getOpcode() == Instruction::And) {
2052 CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2053 UsedICmps);
2054 TrueWhenEqual = false;
2055 }
2056
2057 // If we didn't have a multiply compared value, fail.
2058 if (CompVal == 0) return false;
2059
2060 // Avoid turning single icmps into a switch.
2061 if (UsedICmps <= 1)
2062 return false;
2063
2064 // There might be duplicate constants in the list, which the switch
2065 // instruction can't handle, remove them now.
2066 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2067 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2068
2069 // If Extra was used, we require at least two switch values to do the
2070 // transformation. A switch with one value is just an cond branch.
2071 if (ExtraCase && Values.size() < 2) return false;
2072
2073 // Figure out which block is which destination.
2074 BasicBlock *DefaultBB = BI->getSuccessor(1);
2075 BasicBlock *EdgeBB = BI->getSuccessor(0);
2076 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2077
2078 BasicBlock *BB = BI->getParent();
2079
2080 DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2081 << " cases into SWITCH. BB is:\n" << *BB);
2082
2083 // If there are any extra values that couldn't be folded into the switch
2084 // then we evaluate them with an explicit branch first. Split the block
2085 // right before the condbr to handle it.
2086 if (ExtraCase) {
2087 BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2088 // Remove the uncond branch added to the old block.
2089 TerminatorInst *OldTI = BB->getTerminator();
2090 Builder.SetInsertPoint(OldTI);
2091
2092 if (TrueWhenEqual)
2093 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2094 else
2095 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2096
2097 OldTI->eraseFromParent();
2098
2099 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2100 // for the edge we just added.
2101 AddPredecessorToBlock(EdgeBB, BB, NewBB);
2102
2103 DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2104 << "\nEXTRABB = " << *BB);
2105 BB = NewBB;
2106 }
2107
2108 Builder.SetInsertPoint(BI);
2109 // Convert pointer to int before we switch.
2110 if (CompVal->getType()->isPointerTy()) {
2111 assert(TD && "Cannot switch on pointer without TargetData");
2112 CompVal = Builder.CreatePtrToInt(CompVal,
2113 TD->getIntPtrType(CompVal->getContext()),
2114 "magicptr");
2115 }
2116
2117 // Create the new switch instruction now.
2118 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2119
2120 // Add all of the 'cases' to the switch instruction.
2121 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2122 New->addCase(Values[i], EdgeBB);
2123
2124 // We added edges from PI to the EdgeBB. As such, if there were any
2125 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2126 // the number of edges added.
2127 for (BasicBlock::iterator BBI = EdgeBB->begin();
2128 isa<PHINode>(BBI); ++BBI) {
2129 PHINode *PN = cast<PHINode>(BBI);
2130 Value *InVal = PN->getIncomingValueForBlock(BB);
2131 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2132 PN->addIncoming(InVal, BB);
2133 }
2134
2135 // Erase the old branch instruction.
2136 EraseTerminatorInstAndDCECond(BI);
2137
2138 DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2139 return true;
2140 }
2141
SimplifyResume(ResumeInst * RI,IRBuilder<> & Builder)2142 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2143 // If this is a trivial landing pad that just continues unwinding the caught
2144 // exception then zap the landing pad, turning its invokes into calls.
2145 BasicBlock *BB = RI->getParent();
2146 LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2147 if (RI->getValue() != LPInst)
2148 // Not a landing pad, or the resume is not unwinding the exception that
2149 // caused control to branch here.
2150 return false;
2151
2152 // Check that there are no other instructions except for debug intrinsics.
2153 BasicBlock::iterator I = LPInst, E = RI;
2154 while (++I != E)
2155 if (!isa<DbgInfoIntrinsic>(I))
2156 return false;
2157
2158 // Turn all invokes that unwind here into calls and delete the basic block.
2159 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2160 InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2161 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2162 // Insert a call instruction before the invoke.
2163 CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2164 Call->takeName(II);
2165 Call->setCallingConv(II->getCallingConv());
2166 Call->setAttributes(II->getAttributes());
2167 Call->setDebugLoc(II->getDebugLoc());
2168
2169 // Anything that used the value produced by the invoke instruction now uses
2170 // the value produced by the call instruction. Note that we do this even
2171 // for void functions and calls with no uses so that the callgraph edge is
2172 // updated.
2173 II->replaceAllUsesWith(Call);
2174 BB->removePredecessor(II->getParent());
2175
2176 // Insert a branch to the normal destination right before the invoke.
2177 BranchInst::Create(II->getNormalDest(), II);
2178
2179 // Finally, delete the invoke instruction!
2180 II->eraseFromParent();
2181 }
2182
2183 // The landingpad is now unreachable. Zap it.
2184 BB->eraseFromParent();
2185 return true;
2186 }
2187
SimplifyReturn(ReturnInst * RI,IRBuilder<> & Builder)2188 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2189 BasicBlock *BB = RI->getParent();
2190 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2191
2192 // Find predecessors that end with branches.
2193 SmallVector<BasicBlock*, 8> UncondBranchPreds;
2194 SmallVector<BranchInst*, 8> CondBranchPreds;
2195 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2196 BasicBlock *P = *PI;
2197 TerminatorInst *PTI = P->getTerminator();
2198 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2199 if (BI->isUnconditional())
2200 UncondBranchPreds.push_back(P);
2201 else
2202 CondBranchPreds.push_back(BI);
2203 }
2204 }
2205
2206 // If we found some, do the transformation!
2207 if (!UncondBranchPreds.empty() && DupRet) {
2208 while (!UncondBranchPreds.empty()) {
2209 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2210 DEBUG(dbgs() << "FOLDING: " << *BB
2211 << "INTO UNCOND BRANCH PRED: " << *Pred);
2212 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2213 }
2214
2215 // If we eliminated all predecessors of the block, delete the block now.
2216 if (pred_begin(BB) == pred_end(BB))
2217 // We know there are no successors, so just nuke the block.
2218 BB->eraseFromParent();
2219
2220 return true;
2221 }
2222
2223 // Check out all of the conditional branches going to this return
2224 // instruction. If any of them just select between returns, change the
2225 // branch itself into a select/return pair.
2226 while (!CondBranchPreds.empty()) {
2227 BranchInst *BI = CondBranchPreds.pop_back_val();
2228
2229 // Check to see if the non-BB successor is also a return block.
2230 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2231 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2232 SimplifyCondBranchToTwoReturns(BI, Builder))
2233 return true;
2234 }
2235 return false;
2236 }
2237
SimplifyUnwind(UnwindInst * UI,IRBuilder<> & Builder)2238 bool SimplifyCFGOpt::SimplifyUnwind(UnwindInst *UI, IRBuilder<> &Builder) {
2239 // Check to see if the first instruction in this block is just an unwind.
2240 // If so, replace any invoke instructions which use this as an exception
2241 // destination with call instructions.
2242 BasicBlock *BB = UI->getParent();
2243 if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2244
2245 bool Changed = false;
2246 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2247 while (!Preds.empty()) {
2248 BasicBlock *Pred = Preds.back();
2249 InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator());
2250 if (II && II->getUnwindDest() == BB) {
2251 // Insert a new branch instruction before the invoke, because this
2252 // is now a fall through.
2253 Builder.SetInsertPoint(II);
2254 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2255 Pred->getInstList().remove(II); // Take out of symbol table
2256
2257 // Insert the call now.
2258 SmallVector<Value*,8> Args(II->op_begin(), II->op_end()-3);
2259 Builder.SetInsertPoint(BI);
2260 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2261 Args, II->getName());
2262 CI->setCallingConv(II->getCallingConv());
2263 CI->setAttributes(II->getAttributes());
2264 // If the invoke produced a value, the Call now does instead.
2265 II->replaceAllUsesWith(CI);
2266 delete II;
2267 Changed = true;
2268 }
2269
2270 Preds.pop_back();
2271 }
2272
2273 // If this block is now dead (and isn't the entry block), remove it.
2274 if (pred_begin(BB) == pred_end(BB) &&
2275 BB != &BB->getParent()->getEntryBlock()) {
2276 // We know there are no successors, so just nuke the block.
2277 BB->eraseFromParent();
2278 return true;
2279 }
2280
2281 return Changed;
2282 }
2283
SimplifyUnreachable(UnreachableInst * UI)2284 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2285 BasicBlock *BB = UI->getParent();
2286
2287 bool Changed = false;
2288
2289 // If there are any instructions immediately before the unreachable that can
2290 // be removed, do so.
2291 while (UI != BB->begin()) {
2292 BasicBlock::iterator BBI = UI;
2293 --BBI;
2294 // Do not delete instructions that can have side effects which might cause
2295 // the unreachable to not be reachable; specifically, calls and volatile
2296 // operations may have this effect.
2297 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2298
2299 if (BBI->mayHaveSideEffects()) {
2300 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2301 if (SI->isVolatile())
2302 break;
2303 } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2304 if (LI->isVolatile())
2305 break;
2306 } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2307 if (RMWI->isVolatile())
2308 break;
2309 } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2310 if (CXI->isVolatile())
2311 break;
2312 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2313 !isa<LandingPadInst>(BBI)) {
2314 break;
2315 }
2316 // Note that deleting LandingPad's here is in fact okay, although it
2317 // involves a bit of subtle reasoning. If this inst is a LandingPad,
2318 // all the predecessors of this block will be the unwind edges of Invokes,
2319 // and we can therefore guarantee this block will be erased.
2320 }
2321
2322 // Delete this instruction (any uses are guaranteed to be dead)
2323 if (!BBI->use_empty())
2324 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2325 BBI->eraseFromParent();
2326 Changed = true;
2327 }
2328
2329 // If the unreachable instruction is the first in the block, take a gander
2330 // at all of the predecessors of this instruction, and simplify them.
2331 if (&BB->front() != UI) return Changed;
2332
2333 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2334 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2335 TerminatorInst *TI = Preds[i]->getTerminator();
2336 IRBuilder<> Builder(TI);
2337 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2338 if (BI->isUnconditional()) {
2339 if (BI->getSuccessor(0) == BB) {
2340 new UnreachableInst(TI->getContext(), TI);
2341 TI->eraseFromParent();
2342 Changed = true;
2343 }
2344 } else {
2345 if (BI->getSuccessor(0) == BB) {
2346 Builder.CreateBr(BI->getSuccessor(1));
2347 EraseTerminatorInstAndDCECond(BI);
2348 } else if (BI->getSuccessor(1) == BB) {
2349 Builder.CreateBr(BI->getSuccessor(0));
2350 EraseTerminatorInstAndDCECond(BI);
2351 Changed = true;
2352 }
2353 }
2354 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2355 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2356 if (SI->getSuccessor(i) == BB) {
2357 BB->removePredecessor(SI->getParent());
2358 SI->removeCase(i);
2359 --i; --e;
2360 Changed = true;
2361 }
2362 // If the default value is unreachable, figure out the most popular
2363 // destination and make it the default.
2364 if (SI->getSuccessor(0) == BB) {
2365 std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2366 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i) {
2367 std::pair<unsigned, unsigned>& entry =
2368 Popularity[SI->getSuccessor(i)];
2369 if (entry.first == 0) {
2370 entry.first = 1;
2371 entry.second = i;
2372 } else {
2373 entry.first++;
2374 }
2375 }
2376
2377 // Find the most popular block.
2378 unsigned MaxPop = 0;
2379 unsigned MaxIndex = 0;
2380 BasicBlock *MaxBlock = 0;
2381 for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2382 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2383 if (I->second.first > MaxPop ||
2384 (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2385 MaxPop = I->second.first;
2386 MaxIndex = I->second.second;
2387 MaxBlock = I->first;
2388 }
2389 }
2390 if (MaxBlock) {
2391 // Make this the new default, allowing us to delete any explicit
2392 // edges to it.
2393 SI->setSuccessor(0, MaxBlock);
2394 Changed = true;
2395
2396 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2397 // it.
2398 if (isa<PHINode>(MaxBlock->begin()))
2399 for (unsigned i = 0; i != MaxPop-1; ++i)
2400 MaxBlock->removePredecessor(SI->getParent());
2401
2402 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
2403 if (SI->getSuccessor(i) == MaxBlock) {
2404 SI->removeCase(i);
2405 --i; --e;
2406 }
2407 }
2408 }
2409 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2410 if (II->getUnwindDest() == BB) {
2411 // Convert the invoke to a call instruction. This would be a good
2412 // place to note that the call does not throw though.
2413 BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2414 II->removeFromParent(); // Take out of symbol table
2415
2416 // Insert the call now...
2417 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2418 Builder.SetInsertPoint(BI);
2419 CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2420 Args, II->getName());
2421 CI->setCallingConv(II->getCallingConv());
2422 CI->setAttributes(II->getAttributes());
2423 // If the invoke produced a value, the call does now instead.
2424 II->replaceAllUsesWith(CI);
2425 delete II;
2426 Changed = true;
2427 }
2428 }
2429 }
2430
2431 // If this block is now dead, remove it.
2432 if (pred_begin(BB) == pred_end(BB) &&
2433 BB != &BB->getParent()->getEntryBlock()) {
2434 // We know there are no successors, so just nuke the block.
2435 BB->eraseFromParent();
2436 return true;
2437 }
2438
2439 return Changed;
2440 }
2441
2442 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
2443 /// integer range comparison into a sub, an icmp and a branch.
TurnSwitchRangeIntoICmp(SwitchInst * SI,IRBuilder<> & Builder)2444 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
2445 assert(SI->getNumCases() > 2 && "Degenerate switch?");
2446
2447 // Make sure all cases point to the same destination and gather the values.
2448 SmallVector<ConstantInt *, 16> Cases;
2449 Cases.push_back(SI->getCaseValue(1));
2450 for (unsigned I = 2, E = SI->getNumCases(); I != E; ++I) {
2451 if (SI->getSuccessor(I-1) != SI->getSuccessor(I))
2452 return false;
2453 Cases.push_back(SI->getCaseValue(I));
2454 }
2455 assert(Cases.size() == SI->getNumCases()-1 && "Not all cases gathered");
2456
2457 // Sort the case values, then check if they form a range we can transform.
2458 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
2459 for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
2460 if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
2461 return false;
2462 }
2463
2464 Constant *Offset = ConstantExpr::getNeg(Cases.back());
2465 Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases()-1);
2466
2467 Value *Sub = SI->getCondition();
2468 if (!Offset->isNullValue())
2469 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
2470 Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
2471 Builder.CreateCondBr(Cmp, SI->getSuccessor(1), SI->getDefaultDest());
2472
2473 // Prune obsolete incoming values off the successor's PHI nodes.
2474 for (BasicBlock::iterator BBI = SI->getSuccessor(1)->begin();
2475 isa<PHINode>(BBI); ++BBI) {
2476 for (unsigned I = 0, E = SI->getNumCases()-2; I != E; ++I)
2477 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
2478 }
2479 SI->eraseFromParent();
2480
2481 return true;
2482 }
2483
2484 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
2485 /// and use it to remove dead cases.
EliminateDeadSwitchCases(SwitchInst * SI)2486 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
2487 Value *Cond = SI->getCondition();
2488 unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
2489 APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
2490 ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
2491
2492 // Gather dead cases.
2493 SmallVector<ConstantInt*, 8> DeadCases;
2494 for (unsigned I = 1, E = SI->getNumCases(); I != E; ++I) {
2495 if ((SI->getCaseValue(I)->getValue() & KnownZero) != 0 ||
2496 (SI->getCaseValue(I)->getValue() & KnownOne) != KnownOne) {
2497 DeadCases.push_back(SI->getCaseValue(I));
2498 DEBUG(dbgs() << "SimplifyCFG: switch case '"
2499 << SI->getCaseValue(I)->getValue() << "' is dead.\n");
2500 }
2501 }
2502
2503 // Remove dead cases from the switch.
2504 for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
2505 unsigned Case = SI->findCaseValue(DeadCases[I]);
2506 // Prune unused values from PHI nodes.
2507 SI->getSuccessor(Case)->removePredecessor(SI->getParent());
2508 SI->removeCase(Case);
2509 }
2510
2511 return !DeadCases.empty();
2512 }
2513
2514 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
2515 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
2516 /// by an unconditional branch), look at the phi node for BB in the successor
2517 /// block and see if the incoming value is equal to CaseValue. If so, return
2518 /// the phi node, and set PhiIndex to BB's index in the phi node.
FindPHIForConditionForwarding(ConstantInt * CaseValue,BasicBlock * BB,int * PhiIndex)2519 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
2520 BasicBlock *BB,
2521 int *PhiIndex) {
2522 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
2523 return NULL; // BB must be empty to be a candidate for simplification.
2524 if (!BB->getSinglePredecessor())
2525 return NULL; // BB must be dominated by the switch.
2526
2527 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
2528 if (!Branch || !Branch->isUnconditional())
2529 return NULL; // Terminator must be unconditional branch.
2530
2531 BasicBlock *Succ = Branch->getSuccessor(0);
2532
2533 BasicBlock::iterator I = Succ->begin();
2534 while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
2535 int Idx = PHI->getBasicBlockIndex(BB);
2536 assert(Idx >= 0 && "PHI has no entry for predecessor?");
2537
2538 Value *InValue = PHI->getIncomingValue(Idx);
2539 if (InValue != CaseValue) continue;
2540
2541 *PhiIndex = Idx;
2542 return PHI;
2543 }
2544
2545 return NULL;
2546 }
2547
2548 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
2549 /// instruction to a phi node dominated by the switch, if that would mean that
2550 /// some of the destination blocks of the switch can be folded away.
2551 /// Returns true if a change is made.
ForwardSwitchConditionToPHI(SwitchInst * SI)2552 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
2553 typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
2554 ForwardingNodesMap ForwardingNodes;
2555
2556 for (unsigned I = 1; I < SI->getNumCases(); ++I) { // 0 is the default case.
2557 ConstantInt *CaseValue = SI->getCaseValue(I);
2558 BasicBlock *CaseDest = SI->getSuccessor(I);
2559
2560 int PhiIndex;
2561 PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
2562 &PhiIndex);
2563 if (!PHI) continue;
2564
2565 ForwardingNodes[PHI].push_back(PhiIndex);
2566 }
2567
2568 bool Changed = false;
2569
2570 for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
2571 E = ForwardingNodes.end(); I != E; ++I) {
2572 PHINode *Phi = I->first;
2573 SmallVector<int,4> &Indexes = I->second;
2574
2575 if (Indexes.size() < 2) continue;
2576
2577 for (size_t I = 0, E = Indexes.size(); I != E; ++I)
2578 Phi->setIncomingValue(Indexes[I], SI->getCondition());
2579 Changed = true;
2580 }
2581
2582 return Changed;
2583 }
2584
SimplifySwitch(SwitchInst * SI,IRBuilder<> & Builder)2585 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
2586 // If this switch is too complex to want to look at, ignore it.
2587 if (!isValueEqualityComparison(SI))
2588 return false;
2589
2590 BasicBlock *BB = SI->getParent();
2591
2592 // If we only have one predecessor, and if it is a branch on this value,
2593 // see if that predecessor totally determines the outcome of this switch.
2594 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2595 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
2596 return SimplifyCFG(BB) | true;
2597
2598 Value *Cond = SI->getCondition();
2599 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
2600 if (SimplifySwitchOnSelect(SI, Select))
2601 return SimplifyCFG(BB) | true;
2602
2603 // If the block only contains the switch, see if we can fold the block
2604 // away into any preds.
2605 BasicBlock::iterator BBI = BB->begin();
2606 // Ignore dbg intrinsics.
2607 while (isa<DbgInfoIntrinsic>(BBI))
2608 ++BBI;
2609 if (SI == &*BBI)
2610 if (FoldValueComparisonIntoPredecessors(SI, Builder))
2611 return SimplifyCFG(BB) | true;
2612
2613 // Try to transform the switch into an icmp and a branch.
2614 if (TurnSwitchRangeIntoICmp(SI, Builder))
2615 return SimplifyCFG(BB) | true;
2616
2617 // Remove unreachable cases.
2618 if (EliminateDeadSwitchCases(SI))
2619 return SimplifyCFG(BB) | true;
2620
2621 if (ForwardSwitchConditionToPHI(SI))
2622 return SimplifyCFG(BB) | true;
2623
2624 return false;
2625 }
2626
SimplifyIndirectBr(IndirectBrInst * IBI)2627 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
2628 BasicBlock *BB = IBI->getParent();
2629 bool Changed = false;
2630
2631 // Eliminate redundant destinations.
2632 SmallPtrSet<Value *, 8> Succs;
2633 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
2634 BasicBlock *Dest = IBI->getDestination(i);
2635 if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
2636 Dest->removePredecessor(BB);
2637 IBI->removeDestination(i);
2638 --i; --e;
2639 Changed = true;
2640 }
2641 }
2642
2643 if (IBI->getNumDestinations() == 0) {
2644 // If the indirectbr has no successors, change it to unreachable.
2645 new UnreachableInst(IBI->getContext(), IBI);
2646 EraseTerminatorInstAndDCECond(IBI);
2647 return true;
2648 }
2649
2650 if (IBI->getNumDestinations() == 1) {
2651 // If the indirectbr has one successor, change it to a direct branch.
2652 BranchInst::Create(IBI->getDestination(0), IBI);
2653 EraseTerminatorInstAndDCECond(IBI);
2654 return true;
2655 }
2656
2657 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
2658 if (SimplifyIndirectBrOnSelect(IBI, SI))
2659 return SimplifyCFG(BB) | true;
2660 }
2661 return Changed;
2662 }
2663
SimplifyUncondBranch(BranchInst * BI,IRBuilder<> & Builder)2664 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
2665 BasicBlock *BB = BI->getParent();
2666
2667 // If the Terminator is the only non-phi instruction, simplify the block.
2668 BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
2669 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
2670 TryToSimplifyUncondBranchFromEmptyBlock(BB))
2671 return true;
2672
2673 // If the only instruction in the block is a seteq/setne comparison
2674 // against a constant, try to simplify the block.
2675 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
2676 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
2677 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
2678 ;
2679 if (I->isTerminator()
2680 && TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
2681 return true;
2682 }
2683
2684 return false;
2685 }
2686
2687
SimplifyCondBranch(BranchInst * BI,IRBuilder<> & Builder)2688 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
2689 BasicBlock *BB = BI->getParent();
2690
2691 // Conditional branch
2692 if (isValueEqualityComparison(BI)) {
2693 // If we only have one predecessor, and if it is a branch on this value,
2694 // see if that predecessor totally determines the outcome of this
2695 // switch.
2696 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
2697 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
2698 return SimplifyCFG(BB) | true;
2699
2700 // This block must be empty, except for the setcond inst, if it exists.
2701 // Ignore dbg intrinsics.
2702 BasicBlock::iterator I = BB->begin();
2703 // Ignore dbg intrinsics.
2704 while (isa<DbgInfoIntrinsic>(I))
2705 ++I;
2706 if (&*I == BI) {
2707 if (FoldValueComparisonIntoPredecessors(BI, Builder))
2708 return SimplifyCFG(BB) | true;
2709 } else if (&*I == cast<Instruction>(BI->getCondition())){
2710 ++I;
2711 // Ignore dbg intrinsics.
2712 while (isa<DbgInfoIntrinsic>(I))
2713 ++I;
2714 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
2715 return SimplifyCFG(BB) | true;
2716 }
2717 }
2718
2719 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
2720 if (SimplifyBranchOnICmpChain(BI, TD, Builder))
2721 return true;
2722
2723 // We have a conditional branch to two blocks that are only reachable
2724 // from BI. We know that the condbr dominates the two blocks, so see if
2725 // there is any identical code in the "then" and "else" blocks. If so, we
2726 // can hoist it up to the branching block.
2727 if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
2728 if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2729 if (HoistThenElseCodeToIf(BI))
2730 return SimplifyCFG(BB) | true;
2731 } else {
2732 // If Successor #1 has multiple preds, we may be able to conditionally
2733 // execute Successor #0 if it branches to successor #1.
2734 TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
2735 if (Succ0TI->getNumSuccessors() == 1 &&
2736 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
2737 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
2738 return SimplifyCFG(BB) | true;
2739 }
2740 } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
2741 // If Successor #0 has multiple preds, we may be able to conditionally
2742 // execute Successor #1 if it branches to successor #0.
2743 TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
2744 if (Succ1TI->getNumSuccessors() == 1 &&
2745 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
2746 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
2747 return SimplifyCFG(BB) | true;
2748 }
2749
2750 // If this is a branch on a phi node in the current block, thread control
2751 // through this block if any PHI node entries are constants.
2752 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
2753 if (PN->getParent() == BI->getParent())
2754 if (FoldCondBranchOnPHI(BI, TD))
2755 return SimplifyCFG(BB) | true;
2756
2757 // If this basic block is ONLY a setcc and a branch, and if a predecessor
2758 // branches to us and one of our successors, fold the setcc into the
2759 // predecessor and use logical operations to pick the right destination.
2760 if (FoldBranchToCommonDest(BI))
2761 return SimplifyCFG(BB) | true;
2762
2763 // Scan predecessor blocks for conditional branches.
2764 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2765 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2766 if (PBI != BI && PBI->isConditional())
2767 if (SimplifyCondBranchToCondBranch(PBI, BI))
2768 return SimplifyCFG(BB) | true;
2769
2770 return false;
2771 }
2772
2773 /// Check if passing a value to an instruction will cause undefined behavior.
passingValueIsAlwaysUndefined(Value * V,Instruction * I)2774 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
2775 Constant *C = dyn_cast<Constant>(V);
2776 if (!C)
2777 return false;
2778
2779 if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
2780 return false;
2781
2782 if (C->isNullValue()) {
2783 Instruction *Use = I->use_back();
2784
2785 // Now make sure that there are no instructions in between that can alter
2786 // control flow (eg. calls)
2787 for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
2788 if (i == I->getParent()->end() || i->mayHaveSideEffects())
2789 return false;
2790
2791 // Look through GEPs. A load from a GEP derived from NULL is still undefined
2792 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
2793 if (GEP->getPointerOperand() == I)
2794 return passingValueIsAlwaysUndefined(V, GEP);
2795
2796 // Look through bitcasts.
2797 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
2798 return passingValueIsAlwaysUndefined(V, BC);
2799
2800 // Load from null is undefined.
2801 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
2802 return LI->getPointerAddressSpace() == 0;
2803
2804 // Store to null is undefined.
2805 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
2806 return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
2807 }
2808 return false;
2809 }
2810
2811 /// If BB has an incoming value that will always trigger undefined behavior
2812 /// (eg. null pointer derefence), remove the branch leading here.
removeUndefIntroducingPredecessor(BasicBlock * BB)2813 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
2814 for (BasicBlock::iterator i = BB->begin();
2815 PHINode *PHI = dyn_cast<PHINode>(i); ++i)
2816 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
2817 if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
2818 TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
2819 IRBuilder<> Builder(T);
2820 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
2821 BB->removePredecessor(PHI->getIncomingBlock(i));
2822 // Turn uncoditional branches into unreachables and remove the dead
2823 // destination from conditional branches.
2824 if (BI->isUnconditional())
2825 Builder.CreateUnreachable();
2826 else
2827 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
2828 BI->getSuccessor(0));
2829 BI->eraseFromParent();
2830 return true;
2831 }
2832 // TODO: SwitchInst.
2833 }
2834
2835 return false;
2836 }
2837
run(BasicBlock * BB)2838 bool SimplifyCFGOpt::run(BasicBlock *BB) {
2839 bool Changed = false;
2840
2841 assert(BB && BB->getParent() && "Block not embedded in function!");
2842 assert(BB->getTerminator() && "Degenerate basic block encountered!");
2843
2844 // Remove basic blocks that have no predecessors (except the entry block)...
2845 // or that just have themself as a predecessor. These are unreachable.
2846 if ((pred_begin(BB) == pred_end(BB) &&
2847 BB != &BB->getParent()->getEntryBlock()) ||
2848 BB->getSinglePredecessor() == BB) {
2849 DEBUG(dbgs() << "Removing BB: \n" << *BB);
2850 DeleteDeadBlock(BB);
2851 return true;
2852 }
2853
2854 // Check to see if we can constant propagate this terminator instruction
2855 // away...
2856 Changed |= ConstantFoldTerminator(BB, true);
2857
2858 // Check for and eliminate duplicate PHI nodes in this block.
2859 Changed |= EliminateDuplicatePHINodes(BB);
2860
2861 // Check for and remove branches that will always cause undefined behavior.
2862 Changed |= removeUndefIntroducingPredecessor(BB);
2863
2864 // Merge basic blocks into their predecessor if there is only one distinct
2865 // pred, and if there is only one distinct successor of the predecessor, and
2866 // if there are no PHI nodes.
2867 //
2868 if (MergeBlockIntoPredecessor(BB))
2869 return true;
2870
2871 IRBuilder<> Builder(BB);
2872
2873 // If there is a trivial two-entry PHI node in this basic block, and we can
2874 // eliminate it, do so now.
2875 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
2876 if (PN->getNumIncomingValues() == 2)
2877 Changed |= FoldTwoEntryPHINode(PN, TD);
2878
2879 Builder.SetInsertPoint(BB->getTerminator());
2880 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2881 if (BI->isUnconditional()) {
2882 if (SimplifyUncondBranch(BI, Builder)) return true;
2883 } else {
2884 if (SimplifyCondBranch(BI, Builder)) return true;
2885 }
2886 } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
2887 if (SimplifyResume(RI, Builder)) return true;
2888 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
2889 if (SimplifyReturn(RI, Builder)) return true;
2890 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2891 if (SimplifySwitch(SI, Builder)) return true;
2892 } else if (UnreachableInst *UI =
2893 dyn_cast<UnreachableInst>(BB->getTerminator())) {
2894 if (SimplifyUnreachable(UI)) return true;
2895 } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
2896 if (SimplifyUnwind(UI, Builder)) return true;
2897 } else if (IndirectBrInst *IBI =
2898 dyn_cast<IndirectBrInst>(BB->getTerminator())) {
2899 if (SimplifyIndirectBr(IBI)) return true;
2900 }
2901
2902 return Changed;
2903 }
2904
2905 /// SimplifyCFG - This function is used to do simplification of a CFG. For
2906 /// example, it adjusts branches to branches to eliminate the extra hop, it
2907 /// eliminates unreachable basic blocks, and does other "peephole" optimization
2908 /// of the CFG. It returns true if a modification was made.
2909 ///
SimplifyCFG(BasicBlock * BB,const TargetData * TD)2910 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
2911 return SimplifyCFGOpt(TD).run(BB);
2912 }
2913