1 //===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the InlineAsm class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/InlineAsm.h"
15 #include "ConstantsContext.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/DerivedTypes.h"
18 #include <algorithm>
19 #include <cctype>
20 using namespace llvm;
21
22 // Implement the first virtual method in this class in this file so the
23 // InlineAsm vtable is emitted here.
~InlineAsm()24 InlineAsm::~InlineAsm() {
25 }
26
27
get(FunctionType * Ty,StringRef AsmString,StringRef Constraints,bool hasSideEffects,bool isAlignStack)28 InlineAsm *InlineAsm::get(FunctionType *Ty, StringRef AsmString,
29 StringRef Constraints, bool hasSideEffects,
30 bool isAlignStack) {
31 InlineAsmKeyType Key(AsmString, Constraints, hasSideEffects, isAlignStack);
32 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
33 return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(Ty), Key);
34 }
35
InlineAsm(PointerType * Ty,const std::string & asmString,const std::string & constraints,bool hasSideEffects,bool isAlignStack)36 InlineAsm::InlineAsm(PointerType *Ty, const std::string &asmString,
37 const std::string &constraints, bool hasSideEffects,
38 bool isAlignStack)
39 : Value(Ty, Value::InlineAsmVal),
40 AsmString(asmString),
41 Constraints(constraints), HasSideEffects(hasSideEffects),
42 IsAlignStack(isAlignStack) {
43
44 // Do various checks on the constraint string and type.
45 assert(Verify(getFunctionType(), constraints) &&
46 "Function type not legal for constraints!");
47 }
48
destroyConstant()49 void InlineAsm::destroyConstant() {
50 getType()->getContext().pImpl->InlineAsms.remove(this);
51 delete this;
52 }
53
getFunctionType() const54 FunctionType *InlineAsm::getFunctionType() const {
55 return cast<FunctionType>(getType()->getElementType());
56 }
57
58 ///Default constructor.
ConstraintInfo()59 InlineAsm::ConstraintInfo::ConstraintInfo() :
60 Type(isInput), isEarlyClobber(false),
61 MatchingInput(-1), isCommutative(false),
62 isIndirect(false), isMultipleAlternative(false),
63 currentAlternativeIndex(0) {
64 }
65
66 /// Copy constructor.
ConstraintInfo(const ConstraintInfo & other)67 InlineAsm::ConstraintInfo::ConstraintInfo(const ConstraintInfo &other) :
68 Type(other.Type), isEarlyClobber(other.isEarlyClobber),
69 MatchingInput(other.MatchingInput), isCommutative(other.isCommutative),
70 isIndirect(other.isIndirect), Codes(other.Codes),
71 isMultipleAlternative(other.isMultipleAlternative),
72 multipleAlternatives(other.multipleAlternatives),
73 currentAlternativeIndex(other.currentAlternativeIndex) {
74 }
75
76 /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
77 /// fields in this structure. If the constraint string is not understood,
78 /// return true, otherwise return false.
Parse(StringRef Str,InlineAsm::ConstraintInfoVector & ConstraintsSoFar)79 bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
80 InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
81 StringRef::iterator I = Str.begin(), E = Str.end();
82 unsigned multipleAlternativeCount = Str.count('|') + 1;
83 unsigned multipleAlternativeIndex = 0;
84 ConstraintCodeVector *pCodes = &Codes;
85
86 // Initialize
87 isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false);
88 if (isMultipleAlternative) {
89 multipleAlternatives.resize(multipleAlternativeCount);
90 pCodes = &multipleAlternatives[0].Codes;
91 }
92 Type = isInput;
93 isEarlyClobber = false;
94 MatchingInput = -1;
95 isCommutative = false;
96 isIndirect = false;
97 currentAlternativeIndex = 0;
98
99 // Parse prefixes.
100 if (*I == '~') {
101 Type = isClobber;
102 ++I;
103 } else if (*I == '=') {
104 ++I;
105 Type = isOutput;
106 }
107
108 if (*I == '*') {
109 isIndirect = true;
110 ++I;
111 }
112
113 if (I == E) return true; // Just a prefix, like "==" or "~".
114
115 // Parse the modifiers.
116 bool DoneWithModifiers = false;
117 while (!DoneWithModifiers) {
118 switch (*I) {
119 default:
120 DoneWithModifiers = true;
121 break;
122 case '&': // Early clobber.
123 if (Type != isOutput || // Cannot early clobber anything but output.
124 isEarlyClobber) // Reject &&&&&&
125 return true;
126 isEarlyClobber = true;
127 break;
128 case '%': // Commutative.
129 if (Type == isClobber || // Cannot commute clobbers.
130 isCommutative) // Reject %%%%%
131 return true;
132 isCommutative = true;
133 break;
134 case '#': // Comment.
135 case '*': // Register preferencing.
136 return true; // Not supported.
137 }
138
139 if (!DoneWithModifiers) {
140 ++I;
141 if (I == E) return true; // Just prefixes and modifiers!
142 }
143 }
144
145 // Parse the various constraints.
146 while (I != E) {
147 if (*I == '{') { // Physical register reference.
148 // Find the end of the register name.
149 StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
150 if (ConstraintEnd == E) return true; // "{foo"
151 pCodes->push_back(std::string(I, ConstraintEnd+1));
152 I = ConstraintEnd+1;
153 } else if (isdigit(*I)) { // Matching Constraint
154 // Maximal munch numbers.
155 StringRef::iterator NumStart = I;
156 while (I != E && isdigit(*I))
157 ++I;
158 pCodes->push_back(std::string(NumStart, I));
159 unsigned N = atoi(pCodes->back().c_str());
160 // Check that this is a valid matching constraint!
161 if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
162 Type != isInput)
163 return true; // Invalid constraint number.
164
165 // If Operand N already has a matching input, reject this. An output
166 // can't be constrained to the same value as multiple inputs.
167 if (isMultipleAlternative) {
168 InlineAsm::SubConstraintInfo &scInfo =
169 ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
170 if (scInfo.MatchingInput != -1)
171 return true;
172 // Note that operand #n has a matching input.
173 scInfo.MatchingInput = ConstraintsSoFar.size();
174 } else {
175 if (ConstraintsSoFar[N].hasMatchingInput())
176 return true;
177 // Note that operand #n has a matching input.
178 ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
179 }
180 } else if (*I == '|') {
181 multipleAlternativeIndex++;
182 pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
183 ++I;
184 } else if (*I == '^') {
185 // Multi-letter constraint
186 // FIXME: For now assuming these are 2-character constraints.
187 pCodes->push_back(std::string(I+1, I+3));
188 I += 3;
189 } else {
190 // Single letter constraint.
191 pCodes->push_back(std::string(I, I+1));
192 ++I;
193 }
194 }
195
196 return false;
197 }
198
199 /// selectAlternative - Point this constraint to the alternative constraint
200 /// indicated by the index.
selectAlternative(unsigned index)201 void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
202 if (index < multipleAlternatives.size()) {
203 currentAlternativeIndex = index;
204 InlineAsm::SubConstraintInfo &scInfo =
205 multipleAlternatives[currentAlternativeIndex];
206 MatchingInput = scInfo.MatchingInput;
207 Codes = scInfo.Codes;
208 }
209 }
210
211 InlineAsm::ConstraintInfoVector
ParseConstraints(StringRef Constraints)212 InlineAsm::ParseConstraints(StringRef Constraints) {
213 ConstraintInfoVector Result;
214
215 // Scan the constraints string.
216 for (StringRef::iterator I = Constraints.begin(),
217 E = Constraints.end(); I != E; ) {
218 ConstraintInfo Info;
219
220 // Find the end of this constraint.
221 StringRef::iterator ConstraintEnd = std::find(I, E, ',');
222
223 if (ConstraintEnd == I || // Empty constraint like ",,"
224 Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
225 Result.clear(); // Erroneous constraint?
226 break;
227 }
228
229 Result.push_back(Info);
230
231 // ConstraintEnd may be either the next comma or the end of the string. In
232 // the former case, we skip the comma.
233 I = ConstraintEnd;
234 if (I != E) {
235 ++I;
236 if (I == E) { Result.clear(); break; } // don't allow "xyz,"
237 }
238 }
239
240 return Result;
241 }
242
243 /// Verify - Verify that the specified constraint string is reasonable for the
244 /// specified function type, and otherwise validate the constraint string.
Verify(FunctionType * Ty,StringRef ConstStr)245 bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
246 if (Ty->isVarArg()) return false;
247
248 ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
249
250 // Error parsing constraints.
251 if (Constraints.empty() && !ConstStr.empty()) return false;
252
253 unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
254 unsigned NumIndirect = 0;
255
256 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
257 switch (Constraints[i].Type) {
258 case InlineAsm::isOutput:
259 if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
260 return false; // outputs before inputs and clobbers.
261 if (!Constraints[i].isIndirect) {
262 ++NumOutputs;
263 break;
264 }
265 ++NumIndirect;
266 // FALLTHROUGH for Indirect Outputs.
267 case InlineAsm::isInput:
268 if (NumClobbers) return false; // inputs before clobbers.
269 ++NumInputs;
270 break;
271 case InlineAsm::isClobber:
272 ++NumClobbers;
273 break;
274 }
275 }
276
277 switch (NumOutputs) {
278 case 0:
279 if (!Ty->getReturnType()->isVoidTy()) return false;
280 break;
281 case 1:
282 if (Ty->getReturnType()->isStructTy()) return false;
283 break;
284 default:
285 StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
286 if (STy == 0 || STy->getNumElements() != NumOutputs)
287 return false;
288 break;
289 }
290
291 if (Ty->getNumParams() != NumInputs) return false;
292 return true;
293 }
294
295