1 //===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the InlineAsm class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/InlineAsm.h"
15 #include "ConstantsContext.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/DerivedTypes.h"
18 #include <algorithm>
19 #include <cctype>
20 using namespace llvm;
21 
22 // Implement the first virtual method in this class in this file so the
23 // InlineAsm vtable is emitted here.
~InlineAsm()24 InlineAsm::~InlineAsm() {
25 }
26 
27 
get(FunctionType * Ty,StringRef AsmString,StringRef Constraints,bool hasSideEffects,bool isAlignStack)28 InlineAsm *InlineAsm::get(FunctionType *Ty, StringRef AsmString,
29                           StringRef Constraints, bool hasSideEffects,
30                           bool isAlignStack) {
31   InlineAsmKeyType Key(AsmString, Constraints, hasSideEffects, isAlignStack);
32   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
33   return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(Ty), Key);
34 }
35 
InlineAsm(PointerType * Ty,const std::string & asmString,const std::string & constraints,bool hasSideEffects,bool isAlignStack)36 InlineAsm::InlineAsm(PointerType *Ty, const std::string &asmString,
37                      const std::string &constraints, bool hasSideEffects,
38                      bool isAlignStack)
39   : Value(Ty, Value::InlineAsmVal),
40     AsmString(asmString),
41     Constraints(constraints), HasSideEffects(hasSideEffects),
42     IsAlignStack(isAlignStack) {
43 
44   // Do various checks on the constraint string and type.
45   assert(Verify(getFunctionType(), constraints) &&
46          "Function type not legal for constraints!");
47 }
48 
destroyConstant()49 void InlineAsm::destroyConstant() {
50   getType()->getContext().pImpl->InlineAsms.remove(this);
51   delete this;
52 }
53 
getFunctionType() const54 FunctionType *InlineAsm::getFunctionType() const {
55   return cast<FunctionType>(getType()->getElementType());
56 }
57 
58 ///Default constructor.
ConstraintInfo()59 InlineAsm::ConstraintInfo::ConstraintInfo() :
60   Type(isInput), isEarlyClobber(false),
61   MatchingInput(-1), isCommutative(false),
62   isIndirect(false), isMultipleAlternative(false),
63   currentAlternativeIndex(0) {
64 }
65 
66 /// Copy constructor.
ConstraintInfo(const ConstraintInfo & other)67 InlineAsm::ConstraintInfo::ConstraintInfo(const ConstraintInfo &other) :
68   Type(other.Type), isEarlyClobber(other.isEarlyClobber),
69   MatchingInput(other.MatchingInput), isCommutative(other.isCommutative),
70   isIndirect(other.isIndirect), Codes(other.Codes),
71   isMultipleAlternative(other.isMultipleAlternative),
72   multipleAlternatives(other.multipleAlternatives),
73   currentAlternativeIndex(other.currentAlternativeIndex) {
74 }
75 
76 /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
77 /// fields in this structure.  If the constraint string is not understood,
78 /// return true, otherwise return false.
Parse(StringRef Str,InlineAsm::ConstraintInfoVector & ConstraintsSoFar)79 bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
80                      InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
81   StringRef::iterator I = Str.begin(), E = Str.end();
82   unsigned multipleAlternativeCount = Str.count('|') + 1;
83   unsigned multipleAlternativeIndex = 0;
84   ConstraintCodeVector *pCodes = &Codes;
85 
86   // Initialize
87   isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false);
88   if (isMultipleAlternative) {
89     multipleAlternatives.resize(multipleAlternativeCount);
90     pCodes = &multipleAlternatives[0].Codes;
91   }
92   Type = isInput;
93   isEarlyClobber = false;
94   MatchingInput = -1;
95   isCommutative = false;
96   isIndirect = false;
97   currentAlternativeIndex = 0;
98 
99   // Parse prefixes.
100   if (*I == '~') {
101     Type = isClobber;
102     ++I;
103   } else if (*I == '=') {
104     ++I;
105     Type = isOutput;
106   }
107 
108   if (*I == '*') {
109     isIndirect = true;
110     ++I;
111   }
112 
113   if (I == E) return true;  // Just a prefix, like "==" or "~".
114 
115   // Parse the modifiers.
116   bool DoneWithModifiers = false;
117   while (!DoneWithModifiers) {
118     switch (*I) {
119     default:
120       DoneWithModifiers = true;
121       break;
122     case '&':     // Early clobber.
123       if (Type != isOutput ||      // Cannot early clobber anything but output.
124           isEarlyClobber)          // Reject &&&&&&
125         return true;
126       isEarlyClobber = true;
127       break;
128     case '%':     // Commutative.
129       if (Type == isClobber ||     // Cannot commute clobbers.
130           isCommutative)           // Reject %%%%%
131         return true;
132       isCommutative = true;
133       break;
134     case '#':     // Comment.
135     case '*':     // Register preferencing.
136       return true;     // Not supported.
137     }
138 
139     if (!DoneWithModifiers) {
140       ++I;
141       if (I == E) return true;   // Just prefixes and modifiers!
142     }
143   }
144 
145   // Parse the various constraints.
146   while (I != E) {
147     if (*I == '{') {   // Physical register reference.
148       // Find the end of the register name.
149       StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
150       if (ConstraintEnd == E) return true;  // "{foo"
151       pCodes->push_back(std::string(I, ConstraintEnd+1));
152       I = ConstraintEnd+1;
153     } else if (isdigit(*I)) {     // Matching Constraint
154       // Maximal munch numbers.
155       StringRef::iterator NumStart = I;
156       while (I != E && isdigit(*I))
157         ++I;
158       pCodes->push_back(std::string(NumStart, I));
159       unsigned N = atoi(pCodes->back().c_str());
160       // Check that this is a valid matching constraint!
161       if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
162           Type != isInput)
163         return true;  // Invalid constraint number.
164 
165       // If Operand N already has a matching input, reject this.  An output
166       // can't be constrained to the same value as multiple inputs.
167       if (isMultipleAlternative) {
168         InlineAsm::SubConstraintInfo &scInfo =
169           ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
170         if (scInfo.MatchingInput != -1)
171           return true;
172         // Note that operand #n has a matching input.
173         scInfo.MatchingInput = ConstraintsSoFar.size();
174       } else {
175         if (ConstraintsSoFar[N].hasMatchingInput())
176           return true;
177         // Note that operand #n has a matching input.
178         ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
179         }
180     } else if (*I == '|') {
181       multipleAlternativeIndex++;
182       pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
183       ++I;
184     } else if (*I == '^') {
185       // Multi-letter constraint
186       // FIXME: For now assuming these are 2-character constraints.
187       pCodes->push_back(std::string(I+1, I+3));
188       I += 3;
189     } else {
190       // Single letter constraint.
191       pCodes->push_back(std::string(I, I+1));
192       ++I;
193     }
194   }
195 
196   return false;
197 }
198 
199 /// selectAlternative - Point this constraint to the alternative constraint
200 /// indicated by the index.
selectAlternative(unsigned index)201 void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
202   if (index < multipleAlternatives.size()) {
203     currentAlternativeIndex = index;
204     InlineAsm::SubConstraintInfo &scInfo =
205       multipleAlternatives[currentAlternativeIndex];
206     MatchingInput = scInfo.MatchingInput;
207     Codes = scInfo.Codes;
208   }
209 }
210 
211 InlineAsm::ConstraintInfoVector
ParseConstraints(StringRef Constraints)212 InlineAsm::ParseConstraints(StringRef Constraints) {
213   ConstraintInfoVector Result;
214 
215   // Scan the constraints string.
216   for (StringRef::iterator I = Constraints.begin(),
217          E = Constraints.end(); I != E; ) {
218     ConstraintInfo Info;
219 
220     // Find the end of this constraint.
221     StringRef::iterator ConstraintEnd = std::find(I, E, ',');
222 
223     if (ConstraintEnd == I ||  // Empty constraint like ",,"
224         Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
225       Result.clear();          // Erroneous constraint?
226       break;
227     }
228 
229     Result.push_back(Info);
230 
231     // ConstraintEnd may be either the next comma or the end of the string.  In
232     // the former case, we skip the comma.
233     I = ConstraintEnd;
234     if (I != E) {
235       ++I;
236       if (I == E) { Result.clear(); break; }    // don't allow "xyz,"
237     }
238   }
239 
240   return Result;
241 }
242 
243 /// Verify - Verify that the specified constraint string is reasonable for the
244 /// specified function type, and otherwise validate the constraint string.
Verify(FunctionType * Ty,StringRef ConstStr)245 bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
246   if (Ty->isVarArg()) return false;
247 
248   ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
249 
250   // Error parsing constraints.
251   if (Constraints.empty() && !ConstStr.empty()) return false;
252 
253   unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
254   unsigned NumIndirect = 0;
255 
256   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
257     switch (Constraints[i].Type) {
258     case InlineAsm::isOutput:
259       if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
260         return false;  // outputs before inputs and clobbers.
261       if (!Constraints[i].isIndirect) {
262         ++NumOutputs;
263         break;
264       }
265       ++NumIndirect;
266       // FALLTHROUGH for Indirect Outputs.
267     case InlineAsm::isInput:
268       if (NumClobbers) return false;               // inputs before clobbers.
269       ++NumInputs;
270       break;
271     case InlineAsm::isClobber:
272       ++NumClobbers;
273       break;
274     }
275   }
276 
277   switch (NumOutputs) {
278   case 0:
279     if (!Ty->getReturnType()->isVoidTy()) return false;
280     break;
281   case 1:
282     if (Ty->getReturnType()->isStructTy()) return false;
283     break;
284   default:
285     StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
286     if (STy == 0 || STy->getNumElements() != NumOutputs)
287       return false;
288     break;
289   }
290 
291   if (Ty->getNumParams() != NumInputs) return false;
292   return true;
293 }
294 
295