1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 //===----------------------------------------------------------------------===//
35 //                                Value Class
36 //===----------------------------------------------------------------------===//
37 
checkType(Type * Ty)38 static inline Type *checkType(Type *Ty) {
39   assert(Ty && "Value defined with a null type: Error!");
40   return const_cast<Type*>(Ty);
41 }
42 
Value(Type * ty,unsigned scid)43 Value::Value(Type *ty, unsigned scid)
44   : SubclassID(scid), HasValueHandle(0),
45     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
46     UseList(0), Name(0) {
47   // FIXME: Why isn't this in the subclass gunk??
48   if (isa<CallInst>(this) || isa<InvokeInst>(this))
49     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
50            "invalid CallInst type!");
51   else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
52     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
53            "Cannot create non-first-class values except for constants!");
54 }
55 
~Value()56 Value::~Value() {
57   // Notify all ValueHandles (if present) that this value is going away.
58   if (HasValueHandle)
59     ValueHandleBase::ValueIsDeleted(this);
60 
61 #ifndef NDEBUG      // Only in -g mode...
62   // Check to make sure that there are no uses of this value that are still
63   // around when the value is destroyed.  If there are, then we have a dangling
64   // reference and something is wrong.  This code is here to print out what is
65   // still being referenced.  The value in question should be printed as
66   // a <badref>
67   //
68   if (!use_empty()) {
69     dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
70     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
71       dbgs() << "Use still stuck around after Def is destroyed:"
72            << **I << "\n";
73   }
74 #endif
75   assert(use_empty() && "Uses remain when a value is destroyed!");
76 
77   // If this value is named, destroy the name.  This should not be in a symtab
78   // at this point.
79   if (Name)
80     Name->Destroy();
81 
82   // There should be no uses of this object anymore, remove it.
83   LeakDetector::removeGarbageObject(this);
84 }
85 
86 /// hasNUses - Return true if this Value has exactly N users.
87 ///
hasNUses(unsigned N) const88 bool Value::hasNUses(unsigned N) const {
89   const_use_iterator UI = use_begin(), E = use_end();
90 
91   for (; N; --N, ++UI)
92     if (UI == E) return false;  // Too few.
93   return UI == E;
94 }
95 
96 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
97 /// logically equivalent to getNumUses() >= N.
98 ///
hasNUsesOrMore(unsigned N) const99 bool Value::hasNUsesOrMore(unsigned N) const {
100   const_use_iterator UI = use_begin(), E = use_end();
101 
102   for (; N; --N, ++UI)
103     if (UI == E) return false;  // Too few.
104 
105   return true;
106 }
107 
108 /// isUsedInBasicBlock - Return true if this value is used in the specified
109 /// basic block.
isUsedInBasicBlock(const BasicBlock * BB) const110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
111   for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
112     const Instruction *User = dyn_cast<Instruction>(*I);
113     if (User && User->getParent() == BB)
114       return true;
115   }
116   return false;
117 }
118 
119 
120 /// getNumUses - This method computes the number of uses of this Value.  This
121 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
122 /// values.
getNumUses() const123 unsigned Value::getNumUses() const {
124   return (unsigned)std::distance(use_begin(), use_end());
125 }
126 
getSymTab(Value * V,ValueSymbolTable * & ST)127 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
128   ST = 0;
129   if (Instruction *I = dyn_cast<Instruction>(V)) {
130     if (BasicBlock *P = I->getParent())
131       if (Function *PP = P->getParent())
132         ST = &PP->getValueSymbolTable();
133   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
134     if (Function *P = BB->getParent())
135       ST = &P->getValueSymbolTable();
136   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
137     if (Module *P = GV->getParent())
138       ST = &P->getValueSymbolTable();
139   } else if (Argument *A = dyn_cast<Argument>(V)) {
140     if (Function *P = A->getParent())
141       ST = &P->getValueSymbolTable();
142   } else if (isa<MDString>(V))
143     return true;
144   else {
145     assert(isa<Constant>(V) && "Unknown value type!");
146     return true;  // no name is setable for this.
147   }
148   return false;
149 }
150 
getName() const151 StringRef Value::getName() const {
152   // Make sure the empty string is still a C string. For historical reasons,
153   // some clients want to call .data() on the result and expect it to be null
154   // terminated.
155   if (!Name) return StringRef("", 0);
156   return Name->getKey();
157 }
158 
getNameStr() const159 std::string Value::getNameStr() const {
160   return getName().str();
161 }
162 
setName(const Twine & NewName)163 void Value::setName(const Twine &NewName) {
164   // Fast path for common IRBuilder case of setName("") when there is no name.
165   if (NewName.isTriviallyEmpty() && !hasName())
166     return;
167 
168   SmallString<256> NameData;
169   StringRef NameRef = NewName.toStringRef(NameData);
170 
171   // Name isn't changing?
172   if (getName() == NameRef)
173     return;
174 
175   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
176 
177   // Get the symbol table to update for this object.
178   ValueSymbolTable *ST;
179   if (getSymTab(this, ST))
180     return;  // Cannot set a name on this value (e.g. constant).
181 
182   if (!ST) { // No symbol table to update?  Just do the change.
183     if (NameRef.empty()) {
184       // Free the name for this value.
185       Name->Destroy();
186       Name = 0;
187       return;
188     }
189 
190     if (Name)
191       Name->Destroy();
192 
193     // NOTE: Could optimize for the case the name is shrinking to not deallocate
194     // then reallocated.
195 
196     // Create the new name.
197     Name = ValueName::Create(NameRef.begin(), NameRef.end());
198     Name->setValue(this);
199     return;
200   }
201 
202   // NOTE: Could optimize for the case the name is shrinking to not deallocate
203   // then reallocated.
204   if (hasName()) {
205     // Remove old name.
206     ST->removeValueName(Name);
207     Name->Destroy();
208     Name = 0;
209 
210     if (NameRef.empty())
211       return;
212   }
213 
214   // Name is changing to something new.
215   Name = ST->createValueName(NameRef, this);
216 }
217 
218 
219 /// takeName - transfer the name from V to this value, setting V's name to
220 /// empty.  It is an error to call V->takeName(V).
takeName(Value * V)221 void Value::takeName(Value *V) {
222   ValueSymbolTable *ST = 0;
223   // If this value has a name, drop it.
224   if (hasName()) {
225     // Get the symtab this is in.
226     if (getSymTab(this, ST)) {
227       // We can't set a name on this value, but we need to clear V's name if
228       // it has one.
229       if (V->hasName()) V->setName("");
230       return;  // Cannot set a name on this value (e.g. constant).
231     }
232 
233     // Remove old name.
234     if (ST)
235       ST->removeValueName(Name);
236     Name->Destroy();
237     Name = 0;
238   }
239 
240   // Now we know that this has no name.
241 
242   // If V has no name either, we're done.
243   if (!V->hasName()) return;
244 
245   // Get this's symtab if we didn't before.
246   if (!ST) {
247     if (getSymTab(this, ST)) {
248       // Clear V's name.
249       V->setName("");
250       return;  // Cannot set a name on this value (e.g. constant).
251     }
252   }
253 
254   // Get V's ST, this should always succed, because V has a name.
255   ValueSymbolTable *VST;
256   bool Failure = getSymTab(V, VST);
257   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
258 
259   // If these values are both in the same symtab, we can do this very fast.
260   // This works even if both values have no symtab yet.
261   if (ST == VST) {
262     // Take the name!
263     Name = V->Name;
264     V->Name = 0;
265     Name->setValue(this);
266     return;
267   }
268 
269   // Otherwise, things are slightly more complex.  Remove V's name from VST and
270   // then reinsert it into ST.
271 
272   if (VST)
273     VST->removeValueName(V->Name);
274   Name = V->Name;
275   V->Name = 0;
276   Name->setValue(this);
277 
278   if (ST)
279     ST->reinsertValue(this);
280 }
281 
282 
replaceAllUsesWith(Value * New)283 void Value::replaceAllUsesWith(Value *New) {
284   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
285   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
286   assert(New->getType() == getType() &&
287          "replaceAllUses of value with new value of different type!");
288 
289   // Notify all ValueHandles (if present) that this value is going away.
290   if (HasValueHandle)
291     ValueHandleBase::ValueIsRAUWd(this, New);
292 
293   while (!use_empty()) {
294     Use &U = *UseList;
295     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
296     // constant because they are uniqued.
297     if (Constant *C = dyn_cast<Constant>(U.getUser())) {
298       if (!isa<GlobalValue>(C)) {
299         C->replaceUsesOfWithOnConstant(this, New, &U);
300         continue;
301       }
302     }
303 
304     U.set(New);
305   }
306 
307   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
308     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
309 }
310 
stripPointerCasts()311 Value *Value::stripPointerCasts() {
312   if (!getType()->isPointerTy())
313     return this;
314 
315   // Even though we don't look through PHI nodes, we could be called on an
316   // instruction in an unreachable block, which may be on a cycle.
317   SmallPtrSet<Value *, 4> Visited;
318 
319   Value *V = this;
320   Visited.insert(V);
321   do {
322     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
323       if (!GEP->hasAllZeroIndices())
324         return V;
325       V = GEP->getPointerOperand();
326     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
327       V = cast<Operator>(V)->getOperand(0);
328     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
329       if (GA->mayBeOverridden())
330         return V;
331       V = GA->getAliasee();
332     } else {
333       return V;
334     }
335     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
336   } while (Visited.insert(V));
337 
338   return V;
339 }
340 
341 /// isDereferenceablePointer - Test if this value is always a pointer to
342 /// allocated and suitably aligned memory for a simple load or store.
isDereferenceablePointer() const343 bool Value::isDereferenceablePointer() const {
344   // Note that it is not safe to speculate into a malloc'd region because
345   // malloc may return null.
346   // It's also not always safe to follow a bitcast, for example:
347   //   bitcast i8* (alloca i8) to i32*
348   // would result in a 4-byte load from a 1-byte alloca. Some cases could
349   // be handled using TargetData to check sizes and alignments though.
350 
351   // These are obviously ok.
352   if (isa<AllocaInst>(this)) return true;
353 
354   // Global variables which can't collapse to null are ok.
355   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
356     return !GV->hasExternalWeakLinkage();
357 
358   // byval arguments are ok.
359   if (const Argument *A = dyn_cast<Argument>(this))
360     return A->hasByValAttr();
361 
362   // For GEPs, determine if the indexing lands within the allocated object.
363   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) {
364     // Conservatively require that the base pointer be fully dereferenceable.
365     if (!GEP->getOperand(0)->isDereferenceablePointer())
366       return false;
367     // Check the indices.
368     gep_type_iterator GTI = gep_type_begin(GEP);
369     for (User::const_op_iterator I = GEP->op_begin()+1,
370          E = GEP->op_end(); I != E; ++I) {
371       Value *Index = *I;
372       Type *Ty = *GTI++;
373       // Struct indices can't be out of bounds.
374       if (isa<StructType>(Ty))
375         continue;
376       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
377       if (!CI)
378         return false;
379       // Zero is always ok.
380       if (CI->isZero())
381         continue;
382       // Check to see that it's within the bounds of an array.
383       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
384       if (!ATy)
385         return false;
386       if (CI->getValue().getActiveBits() > 64)
387         return false;
388       if (CI->getZExtValue() >= ATy->getNumElements())
389         return false;
390     }
391     // Indices check out; this is dereferenceable.
392     return true;
393   }
394 
395   // If we don't know, assume the worst.
396   return false;
397 }
398 
399 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
400 /// return the value in the PHI node corresponding to PredBB.  If not, return
401 /// ourself.  This is useful if you want to know the value something has in a
402 /// predecessor block.
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)403 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
404                                const BasicBlock *PredBB) {
405   PHINode *PN = dyn_cast<PHINode>(this);
406   if (PN && PN->getParent() == CurBB)
407     return PN->getIncomingValueForBlock(PredBB);
408   return this;
409 }
410 
getContext() const411 LLVMContext &Value::getContext() const { return VTy->getContext(); }
412 
413 //===----------------------------------------------------------------------===//
414 //                             ValueHandleBase Class
415 //===----------------------------------------------------------------------===//
416 
417 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
418 /// List is known to point into the existing use list.
AddToExistingUseList(ValueHandleBase ** List)419 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
420   assert(List && "Handle list is null?");
421 
422   // Splice ourselves into the list.
423   Next = *List;
424   *List = this;
425   setPrevPtr(List);
426   if (Next) {
427     Next->setPrevPtr(&Next);
428     assert(VP == Next->VP && "Added to wrong list?");
429   }
430 }
431 
AddToExistingUseListAfter(ValueHandleBase * List)432 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
433   assert(List && "Must insert after existing node");
434 
435   Next = List->Next;
436   setPrevPtr(&List->Next);
437   List->Next = this;
438   if (Next)
439     Next->setPrevPtr(&Next);
440 }
441 
442 /// AddToUseList - Add this ValueHandle to the use list for VP.
AddToUseList()443 void ValueHandleBase::AddToUseList() {
444   assert(VP && "Null pointer doesn't have a use list!");
445 
446   LLVMContextImpl *pImpl = VP->getContext().pImpl;
447 
448   if (VP->HasValueHandle) {
449     // If this value already has a ValueHandle, then it must be in the
450     // ValueHandles map already.
451     ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
452     assert(Entry != 0 && "Value doesn't have any handles?");
453     AddToExistingUseList(&Entry);
454     return;
455   }
456 
457   // Ok, it doesn't have any handles yet, so we must insert it into the
458   // DenseMap.  However, doing this insertion could cause the DenseMap to
459   // reallocate itself, which would invalidate all of the PrevP pointers that
460   // point into the old table.  Handle this by checking for reallocation and
461   // updating the stale pointers only if needed.
462   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
463   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
464 
465   ValueHandleBase *&Entry = Handles[VP];
466   assert(Entry == 0 && "Value really did already have handles?");
467   AddToExistingUseList(&Entry);
468   VP->HasValueHandle = true;
469 
470   // If reallocation didn't happen or if this was the first insertion, don't
471   // walk the table.
472   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
473       Handles.size() == 1) {
474     return;
475   }
476 
477   // Okay, reallocation did happen.  Fix the Prev Pointers.
478   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
479        E = Handles.end(); I != E; ++I) {
480     assert(I->second && I->first == I->second->VP && "List invariant broken!");
481     I->second->setPrevPtr(&I->second);
482   }
483 }
484 
485 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
RemoveFromUseList()486 void ValueHandleBase::RemoveFromUseList() {
487   assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
488 
489   // Unlink this from its use list.
490   ValueHandleBase **PrevPtr = getPrevPtr();
491   assert(*PrevPtr == this && "List invariant broken");
492 
493   *PrevPtr = Next;
494   if (Next) {
495     assert(Next->getPrevPtr() == &Next && "List invariant broken");
496     Next->setPrevPtr(PrevPtr);
497     return;
498   }
499 
500   // If the Next pointer was null, then it is possible that this was the last
501   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
502   // map.
503   LLVMContextImpl *pImpl = VP->getContext().pImpl;
504   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
505   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
506     Handles.erase(VP);
507     VP->HasValueHandle = false;
508   }
509 }
510 
511 
ValueIsDeleted(Value * V)512 void ValueHandleBase::ValueIsDeleted(Value *V) {
513   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
514 
515   // Get the linked list base, which is guaranteed to exist since the
516   // HasValueHandle flag is set.
517   LLVMContextImpl *pImpl = V->getContext().pImpl;
518   ValueHandleBase *Entry = pImpl->ValueHandles[V];
519   assert(Entry && "Value bit set but no entries exist");
520 
521   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
522   // and remove themselves from the list without breaking our iteration.  This
523   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
524   // Note that we deliberately do not the support the case when dropping a value
525   // handle results in a new value handle being permanently added to the list
526   // (as might occur in theory for CallbackVH's): the new value handle will not
527   // be processed and the checking code will mete out righteous punishment if
528   // the handle is still present once we have finished processing all the other
529   // value handles (it is fine to momentarily add then remove a value handle).
530   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
531     Iterator.RemoveFromUseList();
532     Iterator.AddToExistingUseListAfter(Entry);
533     assert(Entry->Next == &Iterator && "Loop invariant broken.");
534 
535     switch (Entry->getKind()) {
536     case Assert:
537       break;
538     case Tracking:
539       // Mark that this value has been deleted by setting it to an invalid Value
540       // pointer.
541       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
542       break;
543     case Weak:
544       // Weak just goes to null, which will unlink it from the list.
545       Entry->operator=(0);
546       break;
547     case Callback:
548       // Forward to the subclass's implementation.
549       static_cast<CallbackVH*>(Entry)->deleted();
550       break;
551     }
552   }
553 
554   // All callbacks, weak references, and assertingVHs should be dropped by now.
555   if (V->HasValueHandle) {
556 #ifndef NDEBUG      // Only in +Asserts mode...
557     dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
558            << "\n";
559     if (pImpl->ValueHandles[V]->getKind() == Assert)
560       llvm_unreachable("An asserting value handle still pointed to this"
561                        " value!");
562 
563 #endif
564     llvm_unreachable("All references to V were not removed?");
565   }
566 }
567 
568 
ValueIsRAUWd(Value * Old,Value * New)569 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
570   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
571   assert(Old != New && "Changing value into itself!");
572 
573   // Get the linked list base, which is guaranteed to exist since the
574   // HasValueHandle flag is set.
575   LLVMContextImpl *pImpl = Old->getContext().pImpl;
576   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
577 
578   assert(Entry && "Value bit set but no entries exist");
579 
580   // We use a local ValueHandleBase as an iterator so that
581   // ValueHandles can add and remove themselves from the list without
582   // breaking our iteration.  This is not really an AssertingVH; we
583   // just have to give ValueHandleBase some kind.
584   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
585     Iterator.RemoveFromUseList();
586     Iterator.AddToExistingUseListAfter(Entry);
587     assert(Entry->Next == &Iterator && "Loop invariant broken.");
588 
589     switch (Entry->getKind()) {
590     case Assert:
591       // Asserting handle does not follow RAUW implicitly.
592       break;
593     case Tracking:
594       // Tracking goes to new value like a WeakVH. Note that this may make it
595       // something incompatible with its templated type. We don't want to have a
596       // virtual (or inline) interface to handle this though, so instead we make
597       // the TrackingVH accessors guarantee that a client never sees this value.
598 
599       // FALLTHROUGH
600     case Weak:
601       // Weak goes to the new value, which will unlink it from Old's list.
602       Entry->operator=(New);
603       break;
604     case Callback:
605       // Forward to the subclass's implementation.
606       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
607       break;
608     }
609   }
610 
611 #ifndef NDEBUG
612   // If any new tracking or weak value handles were added while processing the
613   // list, then complain about it now.
614   if (Old->HasValueHandle)
615     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
616       switch (Entry->getKind()) {
617       case Tracking:
618       case Weak:
619         dbgs() << "After RAUW from " << *Old->getType() << " %"
620           << Old->getNameStr() << " to " << *New->getType() << " %"
621           << New->getNameStr() << "\n";
622         llvm_unreachable("A tracking or weak value handle still pointed to the"
623                          " old value!\n");
624       default:
625         break;
626       }
627 #endif
628 }
629 
630 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
631 /// more than once.
~CallbackVH()632 CallbackVH::~CallbackVH() {}
633