1; RUN: opt < %s -indvars -enable-iv-rewrite=false -S | FileCheck %s
2;
3; Make sure that indvars isn't inserting canonical IVs.
4; This is kinda hard to do until linear function test replacement is removed.
5
6target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
7
8define i32 @sum(i32* %arr, i32 %n) nounwind {
9entry:
10  %precond = icmp slt i32 0, %n
11  br i1 %precond, label %ph, label %return
12
13ph:
14  br label %loop
15
16; CHECK: loop:
17;
18; We should only have 2 IVs.
19; CHECK: phi
20; CHECK: phi
21; CHECK-NOT: phi
22;
23; sext should be eliminated while preserving gep inboundsness.
24; CHECK-NOT: sext
25; CHECK: getelementptr inbounds
26; CHECK: exit:
27loop:
28  %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
29  %s.01 = phi i32 [ 0, %ph ], [ %sinc, %loop ]
30  %ofs = sext i32 %i.02 to i64
31  %adr = getelementptr inbounds i32* %arr, i64 %ofs
32  %val = load i32* %adr
33  %sinc = add nsw i32 %s.01, %val
34  %iinc = add nsw i32 %i.02, 1
35  %cond = icmp slt i32 %iinc, %n
36  br i1 %cond, label %loop, label %exit
37
38exit:
39  %s.lcssa = phi i32 [ %sinc, %loop ]
40  br label %return
41
42return:
43  %s.0.lcssa = phi i32 [ %s.lcssa, %exit ], [ 0, %entry ]
44  ret i32 %s.0.lcssa
45}
46
47define i64 @suml(i32* %arr, i32 %n) nounwind {
48entry:
49  %precond = icmp slt i32 0, %n
50  br i1 %precond, label %ph, label %return
51
52ph:
53  br label %loop
54
55; CHECK: loop:
56;
57; We should only have 2 IVs.
58; CHECK: phi
59; CHECK: phi
60; CHECK-NOT: phi
61;
62; %ofs sext should be eliminated while preserving gep inboundsness.
63; CHECK-NOT: sext
64; CHECK: getelementptr inbounds
65; %vall sext should obviously not be eliminated
66; CHECK: sext
67; CHECK: exit:
68loop:
69  %i.02 = phi i32 [ 0, %ph ], [ %iinc, %loop ]
70  %s.01 = phi i64 [ 0, %ph ], [ %sinc, %loop ]
71  %ofs = sext i32 %i.02 to i64
72  %adr = getelementptr inbounds i32* %arr, i64 %ofs
73  %val = load i32* %adr
74  %vall = sext i32 %val to i64
75  %sinc = add nsw i64 %s.01, %vall
76  %iinc = add nsw i32 %i.02, 1
77  %cond = icmp slt i32 %iinc, %n
78  br i1 %cond, label %loop, label %exit
79
80exit:
81  %s.lcssa = phi i64 [ %sinc, %loop ]
82  br label %return
83
84return:
85  %s.0.lcssa = phi i64 [ %s.lcssa, %exit ], [ 0, %entry ]
86  ret i64 %s.0.lcssa
87}
88
89define void @outofbounds(i32* %first, i32* %last, i32 %idx) nounwind {
90  %precond = icmp ne i32* %first, %last
91  br i1 %precond, label %ph, label %return
92
93; CHECK: ph:
94; It's not indvars' job to perform LICM on %ofs
95; CHECK-NOT: sext
96ph:
97  br label %loop
98
99; CHECK: loop:
100;
101; Preserve exactly one pointer type IV.
102; CHECK: phi i32*
103; CHECK-NOT: phi
104;
105; Don't create any extra adds.
106; CHECK-NOT: add
107;
108; Preserve gep inboundsness, and don't factor it.
109; CHECK: getelementptr inbounds i32* %ptriv, i32 1
110; CHECK-NOT: add
111; CHECK: exit:
112loop:
113  %ptriv = phi i32* [ %first, %ph ], [ %ptrpost, %loop ]
114  %ofs = sext i32 %idx to i64
115  %adr = getelementptr inbounds i32* %ptriv, i64 %ofs
116  store i32 3, i32* %adr
117  %ptrpost = getelementptr inbounds i32* %ptriv, i32 1
118  %cond = icmp ne i32* %ptrpost, %last
119  br i1 %cond, label %loop, label %exit
120
121exit:
122  br label %return
123
124return:
125  ret void
126}
127
128%structI = type { i32 }
129
130define void @bitcastiv(i32 %start, i32 %limit, i32 %step, %structI* %base)
131nounwind
132{
133entry:
134  br label %loop
135
136; CHECK: loop:
137;
138; Preserve casts
139; CHECK: phi i32
140; CHECK: bitcast
141; CHECK: getelementptr
142; CHECK: exit:
143loop:
144  %iv = phi i32 [%start, %entry], [%next, %loop]
145  %p = phi %structI* [%base, %entry], [%pinc, %loop]
146  %adr = getelementptr %structI* %p, i32 0, i32 0
147  store i32 3, i32* %adr
148  %pp = bitcast %structI* %p to i32*
149  store i32 4, i32* %pp
150  %pinc = getelementptr %structI* %p, i32 1
151  %next = add i32 %iv, 1
152  %cond = icmp ne i32 %next, %limit
153  br i1 %cond, label %loop, label %exit
154
155exit:
156  ret void
157}
158
159define void @maxvisitor(i32 %limit, i32* %base) nounwind {
160entry:
161 br label %loop
162
163; Test inserting a truncate at a phi use.
164;
165; CHECK: loop:
166; CHECK: phi i64
167; CHECK: trunc
168; CHECK: exit:
169loop:
170  %idx = phi i32 [ 0, %entry ], [ %idx.next, %loop.inc ]
171  %max = phi i32 [ 0, %entry ], [ %max.next, %loop.inc ]
172  %idxprom = sext i32 %idx to i64
173  %adr = getelementptr inbounds i32* %base, i64 %idxprom
174  %val = load i32* %adr
175  %cmp19 = icmp sgt i32 %val, %max
176  br i1 %cmp19, label %if.then, label %if.else
177
178if.then:
179  br label %loop.inc
180
181if.else:
182  br label %loop.inc
183
184loop.inc:
185  %max.next = phi i32 [ %idx, %if.then ], [ %max, %if.else ]
186  %idx.next = add nsw i32 %idx, 1
187  %cmp = icmp slt i32 %idx.next, %limit
188  br i1 %cmp, label %loop, label %exit
189
190exit:
191  ret void
192}
193
194define void @identityphi(i32 %limit) nounwind {
195entry:
196  br label %loop
197
198; Test an edge case of removing an identity phi that directly feeds
199; back to the loop iv.
200;
201; CHECK: loop:
202; CHECK: phi i32
203; CHECK-NOT: phi
204; CHECK: exit:
205loop:
206  %iv = phi i32 [ 0, %entry], [ %iv.next, %control ]
207  br i1 undef, label %if.then, label %control
208
209if.then:
210  br label %control
211
212control:
213  %iv.next = phi i32 [ %iv, %loop ], [ undef, %if.then ]
214  %cmp = icmp slt i32 %iv.next, %limit
215  br i1 %cmp, label %loop, label %exit
216
217exit:
218  ret void
219}
220
221define i64 @cloneOr(i32 %limit, i64* %base) nounwind {
222entry:
223  ; ensure that the loop can't overflow
224  %halfLim = ashr i32 %limit, 2
225  br label %loop
226
227; Test cloning an or, which is not an OverflowBinaryOperator.
228;
229; CHECK: loop:
230; CHECK: phi i64
231; CHECK-NOT: sext
232; CHECK: or i64
233; CHECK: exit:
234loop:
235  %iv = phi i32 [ 0, %entry], [ %iv.next, %loop ]
236  %t1 = sext i32 %iv to i64
237  %adr = getelementptr i64* %base, i64 %t1
238  %val = load i64* %adr
239  %t2 = or i32 %iv, 1
240  %t3 = sext i32 %t2 to i64
241  %iv.next = add i32 %iv, 2
242  %cmp = icmp slt i32 %iv.next, %halfLim
243  br i1 %cmp, label %loop, label %exit
244
245exit:
246  %result = and i64 %val, %t3
247  ret i64 %result
248}
249
250; The i induction variable looks like a wrap-around, but it really is just
251; a simple affine IV.  Make sure that indvars simplifies through.
252define i32 @indirectRecurrence() nounwind {
253entry:
254  br label %loop
255
256; ReplaceLoopExitValue should fold the return value to constant 9.
257; CHECK: loop:
258; CHECK: phi i32
259; CHECK: ret i32 9
260loop:
261  %j.0 = phi i32 [ 1, %entry ], [ %j.next, %cond_true ]
262  %i.0 = phi i32 [ 0, %entry ], [ %j.0, %cond_true ]
263  %tmp = icmp ne i32 %j.0, 10
264  br i1 %tmp, label %cond_true, label %return
265
266cond_true:
267  %j.next = add i32 %j.0, 1
268  br label %loop
269
270return:
271  ret i32 %i.0
272}
273
274; Eliminate the congruent phis j, k, and l.
275; Eliminate the redundant IV increments k.next and l.next.
276; Two phis should remain, one starting at %init, and one at %init1.
277; Two increments should remain, one by %step and one by %step1.
278; CHECK: loop:
279; CHECK: phi i32
280; CHECK: phi i32
281; CHECK-NOT: phi
282; CHECK: add i32
283; CHECK: add i32
284; CHECK: add i32
285; CHECK-NOT: add
286; CHECK: return:
287;
288; Five live-outs should remain.
289; CHECK: lcssa = phi
290; CHECK: lcssa = phi
291; CHECK: lcssa = phi
292; CHECK: lcssa = phi
293; CHECK: lcssa = phi
294; CHECK-NOT: phi
295; CHECK: ret
296define i32 @isomorphic(i32 %init, i32 %step, i32 %lim) nounwind {
297entry:
298  %step1 = add i32 %step, 1
299  %init1 = add i32 %init, %step1
300  %l.0 = sub i32 %init1, %step1
301  br label %loop
302
303loop:
304  %ii = phi i32 [ %init1, %entry ], [ %ii.next, %loop ]
305  %i = phi i32 [ %init, %entry ], [ %ii, %loop ]
306  %j = phi i32 [ %init, %entry ], [ %j.next, %loop ]
307  %k = phi i32 [ %init1, %entry ], [ %k.next, %loop ]
308  %l = phi i32 [ %l.0, %entry ], [ %l.next, %loop ]
309  %ii.next = add i32 %ii, %step1
310  %j.next = add i32 %j, %step1
311  %k.next = add i32 %k, %step1
312  %l.step = add i32 %l, %step
313  %l.next = add i32 %l.step, 1
314  %cmp = icmp ne i32 %ii.next, %lim
315  br i1 %cmp, label %loop, label %return
316
317return:
318  %sum1 = add i32 %i, %j.next
319  %sum2 = add i32 %sum1, %k.next
320  %sum3 = add i32 %sum1, %l.step
321  %sum4 = add i32 %sum1, %l.next
322  ret i32 %sum4
323}
324
325; Test a GEP IV that is derived from another GEP IV by a nop gep that
326; lowers the type without changing the expression.
327%structIF = type { i32, float }
328
329define void @congruentgepiv(%structIF* %base) nounwind uwtable ssp {
330entry:
331  %first = getelementptr inbounds %structIF* %base, i64 0, i32 0
332  br label %loop
333
334; CHECK: loop:
335; CHECK: phi %structIF*
336; CHECK: phi i32*
337; CHECK: getelementptr inbounds
338; CHECK: getelementptr inbounds
339; CHECK: exit:
340loop:
341  %ptr.iv = phi %structIF* [ %ptr.inc, %latch ], [ %base, %entry ]
342  %next = phi i32* [ %next.inc, %latch ], [ %first, %entry ]
343  store i32 4, i32* %next
344  br i1 undef, label %latch, label %exit
345
346latch:                         ; preds = %for.inc50.i
347  %ptr.inc = getelementptr inbounds %structIF* %ptr.iv, i64 1
348  %next.inc = getelementptr inbounds %structIF* %ptr.inc, i64 0, i32 0
349  br label %loop
350
351exit:
352  ret void
353}
354
355; Test a widened IV that is used by a phi on different paths within the loop.
356;
357; CHECK: for.body:
358; CHECK: phi i64
359; CHECK: trunc i64
360; CHECK: if.then:
361; CHECK: for.inc:
362; CHECK: phi i32
363; CHECK: for.end:
364define void @phiUsesTrunc() nounwind {
365entry:
366  br i1 undef, label %for.body, label %for.end
367
368for.body:
369  %iv = phi i32 [ %inc, %for.inc ], [ 1, %entry ]
370  br i1 undef, label %if.then, label %if.else
371
372if.then:
373  br i1 undef, label %if.then33, label %for.inc
374
375if.then33:
376  br label %for.inc
377
378if.else:
379  br i1 undef, label %if.then97, label %for.inc
380
381if.then97:
382  %idxprom100 = sext i32 %iv to i64
383  br label %for.inc
384
385for.inc:
386  %kmin.1 = phi i32 [ %iv, %if.then33 ], [ 0, %if.then ], [ %iv, %if.then97 ], [ 0, %if.else ]
387  %inc = add nsw i32 %iv, 1
388  br i1 undef, label %for.body, label %for.end
389
390for.end:
391  ret void
392}
393