1 // Copyright (c) 2015-2016 The Khronos Group Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "source/val/function.h"
16 
17 #include <cassert>
18 
19 #include <algorithm>
20 #include <sstream>
21 #include <unordered_map>
22 #include <unordered_set>
23 #include <utility>
24 
25 #include "source/cfa.h"
26 #include "source/val/basic_block.h"
27 #include "source/val/construct.h"
28 #include "source/val/validate.h"
29 
30 namespace spvtools {
31 namespace val {
32 
33 // Universal Limit of ResultID + 1
34 static const uint32_t kInvalidId = 0x400000;
35 
Function(uint32_t function_id,uint32_t result_type_id,SpvFunctionControlMask function_control,uint32_t function_type_id)36 Function::Function(uint32_t function_id, uint32_t result_type_id,
37                    SpvFunctionControlMask function_control,
38                    uint32_t function_type_id)
39     : id_(function_id),
40       function_type_id_(function_type_id),
41       result_type_id_(result_type_id),
42       function_control_(function_control),
43       declaration_type_(FunctionDecl::kFunctionDeclUnknown),
44       end_has_been_registered_(false),
45       blocks_(),
46       current_block_(nullptr),
47       pseudo_entry_block_(0),
48       pseudo_exit_block_(kInvalidId),
49       cfg_constructs_(),
50       variable_ids_(),
51       parameter_ids_() {}
52 
IsFirstBlock(uint32_t block_id) const53 bool Function::IsFirstBlock(uint32_t block_id) const {
54   return !ordered_blocks_.empty() && *first_block() == block_id;
55 }
56 
RegisterFunctionParameter(uint32_t parameter_id,uint32_t type_id)57 spv_result_t Function::RegisterFunctionParameter(uint32_t parameter_id,
58                                                  uint32_t type_id) {
59   assert(current_block_ == nullptr &&
60          "RegisterFunctionParameter can only be called when parsing the binary "
61          "ouside of a block");
62   // TODO(umar): Validate function parameter type order and count
63   // TODO(umar): Use these variables to validate parameter type
64   (void)parameter_id;
65   (void)type_id;
66   return SPV_SUCCESS;
67 }
68 
RegisterLoopMerge(uint32_t merge_id,uint32_t continue_id)69 spv_result_t Function::RegisterLoopMerge(uint32_t merge_id,
70                                          uint32_t continue_id) {
71   RegisterBlock(merge_id, false);
72   RegisterBlock(continue_id, false);
73   BasicBlock& merge_block = blocks_.at(merge_id);
74   BasicBlock& continue_target_block = blocks_.at(continue_id);
75   assert(current_block_ &&
76          "RegisterLoopMerge must be called when called within a block");
77 
78   current_block_->set_type(kBlockTypeLoop);
79   merge_block.set_type(kBlockTypeMerge);
80   continue_target_block.set_type(kBlockTypeContinue);
81   Construct& loop_construct =
82       AddConstruct({ConstructType::kLoop, current_block_, &merge_block});
83   Construct& continue_construct =
84       AddConstruct({ConstructType::kContinue, &continue_target_block});
85 
86   continue_construct.set_corresponding_constructs({&loop_construct});
87   loop_construct.set_corresponding_constructs({&continue_construct});
88   merge_block_header_[&merge_block] = current_block_;
89 
90   return SPV_SUCCESS;
91 }
92 
RegisterSelectionMerge(uint32_t merge_id)93 spv_result_t Function::RegisterSelectionMerge(uint32_t merge_id) {
94   RegisterBlock(merge_id, false);
95   BasicBlock& merge_block = blocks_.at(merge_id);
96   current_block_->set_type(kBlockTypeHeader);
97   merge_block.set_type(kBlockTypeMerge);
98   merge_block_header_[&merge_block] = current_block_;
99 
100   AddConstruct({ConstructType::kSelection, current_block(), &merge_block});
101 
102   return SPV_SUCCESS;
103 }
104 
RegisterSetFunctionDeclType(FunctionDecl type)105 spv_result_t Function::RegisterSetFunctionDeclType(FunctionDecl type) {
106   assert(declaration_type_ == FunctionDecl::kFunctionDeclUnknown);
107   declaration_type_ = type;
108   return SPV_SUCCESS;
109 }
110 
RegisterBlock(uint32_t block_id,bool is_definition)111 spv_result_t Function::RegisterBlock(uint32_t block_id, bool is_definition) {
112   assert(
113       declaration_type_ == FunctionDecl::kFunctionDeclDefinition &&
114       "RegisterBlocks can only be called after declaration_type_ is defined");
115 
116   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
117   bool success = false;
118   tie(inserted_block, success) =
119       blocks_.insert({block_id, BasicBlock(block_id)});
120   if (is_definition) {  // new block definition
121     assert(current_block_ == nullptr &&
122            "Register Block can only be called when parsing a binary outside of "
123            "a BasicBlock");
124 
125     undefined_blocks_.erase(block_id);
126     current_block_ = &inserted_block->second;
127     ordered_blocks_.push_back(current_block_);
128     if (IsFirstBlock(block_id)) current_block_->set_reachable(true);
129   } else if (success) {  // Block doesn't exsist but this is not a definition
130     undefined_blocks_.insert(block_id);
131   }
132 
133   return SPV_SUCCESS;
134 }
135 
RegisterBlockEnd(std::vector<uint32_t> next_list,SpvOp branch_instruction)136 void Function::RegisterBlockEnd(std::vector<uint32_t> next_list,
137                                 SpvOp branch_instruction) {
138   assert(
139       current_block_ &&
140       "RegisterBlockEnd can only be called when parsing a binary in a block");
141   std::vector<BasicBlock*> next_blocks;
142   next_blocks.reserve(next_list.size());
143 
144   std::unordered_map<uint32_t, BasicBlock>::iterator inserted_block;
145   bool success;
146   for (uint32_t successor_id : next_list) {
147     tie(inserted_block, success) =
148         blocks_.insert({successor_id, BasicBlock(successor_id)});
149     if (success) {
150       undefined_blocks_.insert(successor_id);
151     }
152     next_blocks.push_back(&inserted_block->second);
153   }
154 
155   if (current_block_->is_type(kBlockTypeLoop)) {
156     // For each loop header, record the set of its successors, and include
157     // its continue target if the continue target is not the loop header
158     // itself.
159     std::vector<BasicBlock*>& next_blocks_plus_continue_target =
160         loop_header_successors_plus_continue_target_map_[current_block_];
161     next_blocks_plus_continue_target = next_blocks;
162     auto continue_target =
163         FindConstructForEntryBlock(current_block_, ConstructType::kLoop)
164             .corresponding_constructs()
165             .back()
166             ->entry_block();
167     if (continue_target != current_block_) {
168       next_blocks_plus_continue_target.push_back(continue_target);
169     }
170   }
171 
172   current_block_->RegisterBranchInstruction(branch_instruction);
173   current_block_->RegisterSuccessors(next_blocks);
174   current_block_ = nullptr;
175   return;
176 }
177 
RegisterFunctionEnd()178 void Function::RegisterFunctionEnd() {
179   if (!end_has_been_registered_) {
180     end_has_been_registered_ = true;
181 
182     ComputeAugmentedCFG();
183   }
184 }
185 
block_count() const186 size_t Function::block_count() const { return blocks_.size(); }
187 
undefined_block_count() const188 size_t Function::undefined_block_count() const {
189   return undefined_blocks_.size();
190 }
191 
ordered_blocks() const192 const std::vector<BasicBlock*>& Function::ordered_blocks() const {
193   return ordered_blocks_;
194 }
ordered_blocks()195 std::vector<BasicBlock*>& Function::ordered_blocks() { return ordered_blocks_; }
196 
current_block() const197 const BasicBlock* Function::current_block() const { return current_block_; }
current_block()198 BasicBlock* Function::current_block() { return current_block_; }
199 
constructs() const200 const std::list<Construct>& Function::constructs() const {
201   return cfg_constructs_;
202 }
constructs()203 std::list<Construct>& Function::constructs() { return cfg_constructs_; }
204 
first_block() const205 const BasicBlock* Function::first_block() const {
206   if (ordered_blocks_.empty()) return nullptr;
207   return ordered_blocks_[0];
208 }
first_block()209 BasicBlock* Function::first_block() {
210   if (ordered_blocks_.empty()) return nullptr;
211   return ordered_blocks_[0];
212 }
213 
IsBlockType(uint32_t merge_block_id,BlockType type) const214 bool Function::IsBlockType(uint32_t merge_block_id, BlockType type) const {
215   bool ret = false;
216   const BasicBlock* block;
217   std::tie(block, std::ignore) = GetBlock(merge_block_id);
218   if (block) {
219     ret = block->is_type(type);
220   }
221   return ret;
222 }
223 
GetBlock(uint32_t block_id) const224 std::pair<const BasicBlock*, bool> Function::GetBlock(uint32_t block_id) const {
225   const auto b = blocks_.find(block_id);
226   if (b != end(blocks_)) {
227     const BasicBlock* block = &(b->second);
228     bool defined =
229         undefined_blocks_.find(block->id()) == std::end(undefined_blocks_);
230     return std::make_pair(block, defined);
231   } else {
232     return std::make_pair(nullptr, false);
233   }
234 }
235 
GetBlock(uint32_t block_id)236 std::pair<BasicBlock*, bool> Function::GetBlock(uint32_t block_id) {
237   const BasicBlock* out;
238   bool defined;
239   std::tie(out, defined) =
240       const_cast<const Function*>(this)->GetBlock(block_id);
241   return std::make_pair(const_cast<BasicBlock*>(out), defined);
242 }
243 
AugmentedCFGSuccessorsFunction() const244 Function::GetBlocksFunction Function::AugmentedCFGSuccessorsFunction() const {
245   return [this](const BasicBlock* block) {
246     auto where = augmented_successors_map_.find(block);
247     return where == augmented_successors_map_.end() ? block->successors()
248                                                     : &(*where).second;
249   };
250 }
251 
252 Function::GetBlocksFunction
AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const253 Function::AugmentedCFGSuccessorsFunctionIncludingHeaderToContinueEdge() const {
254   return [this](const BasicBlock* block) {
255     auto where = loop_header_successors_plus_continue_target_map_.find(block);
256     return where == loop_header_successors_plus_continue_target_map_.end()
257                ? AugmentedCFGSuccessorsFunction()(block)
258                : &(*where).second;
259   };
260 }
261 
AugmentedCFGPredecessorsFunction() const262 Function::GetBlocksFunction Function::AugmentedCFGPredecessorsFunction() const {
263   return [this](const BasicBlock* block) {
264     auto where = augmented_predecessors_map_.find(block);
265     return where == augmented_predecessors_map_.end() ? block->predecessors()
266                                                       : &(*where).second;
267   };
268 }
269 
ComputeAugmentedCFG()270 void Function::ComputeAugmentedCFG() {
271   // Compute the successors of the pseudo-entry block, and
272   // the predecessors of the pseudo exit block.
273   auto succ_func = [](const BasicBlock* b) { return b->successors(); };
274   auto pred_func = [](const BasicBlock* b) { return b->predecessors(); };
275   CFA<BasicBlock>::ComputeAugmentedCFG(
276       ordered_blocks_, &pseudo_entry_block_, &pseudo_exit_block_,
277       &augmented_successors_map_, &augmented_predecessors_map_, succ_func,
278       pred_func);
279 }
280 
AddConstruct(const Construct & new_construct)281 Construct& Function::AddConstruct(const Construct& new_construct) {
282   cfg_constructs_.push_back(new_construct);
283   auto& result = cfg_constructs_.back();
284   entry_block_to_construct_[std::make_pair(new_construct.entry_block(),
285                                            new_construct.type())] = &result;
286   return result;
287 }
288 
FindConstructForEntryBlock(const BasicBlock * entry_block,ConstructType type)289 Construct& Function::FindConstructForEntryBlock(const BasicBlock* entry_block,
290                                                 ConstructType type) {
291   auto where =
292       entry_block_to_construct_.find(std::make_pair(entry_block, type));
293   assert(where != entry_block_to_construct_.end());
294   auto construct_ptr = (*where).second;
295   assert(construct_ptr);
296   return *construct_ptr;
297 }
298 
GetBlockDepth(BasicBlock * bb)299 int Function::GetBlockDepth(BasicBlock* bb) {
300   // Guard against nullptr.
301   if (!bb) {
302     return 0;
303   }
304   // Only calculate the depth if it's not already calculated.
305   // This function uses memoization to avoid duplicate CFG depth calculations.
306   if (block_depth_.find(bb) != block_depth_.end()) {
307     return block_depth_[bb];
308   }
309 
310   BasicBlock* bb_dom = bb->immediate_dominator();
311   if (!bb_dom || bb == bb_dom) {
312     // This block has no dominator, so it's at depth 0.
313     block_depth_[bb] = 0;
314   } else if (bb->is_type(kBlockTypeMerge)) {
315     // If this is a merge block, its depth is equal to the block before
316     // branching.
317     BasicBlock* header = merge_block_header_[bb];
318     assert(header);
319     block_depth_[bb] = GetBlockDepth(header);
320   } else if (bb->is_type(kBlockTypeContinue)) {
321     // The depth of the continue block entry point is 1 + loop header depth.
322     Construct* continue_construct =
323         entry_block_to_construct_[std::make_pair(bb, ConstructType::kContinue)];
324     assert(continue_construct);
325     // Continue construct has only 1 corresponding construct (loop header).
326     Construct* loop_construct =
327         continue_construct->corresponding_constructs()[0];
328     assert(loop_construct);
329     BasicBlock* loop_header = loop_construct->entry_block();
330     // The continue target may be the loop itself (while 1).
331     // In such cases, the depth of the continue block is: 1 + depth of the
332     // loop's dominator block.
333     if (loop_header == bb) {
334       block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
335     } else {
336       block_depth_[bb] = 1 + GetBlockDepth(loop_header);
337     }
338   } else if (bb_dom->is_type(kBlockTypeHeader) ||
339              bb_dom->is_type(kBlockTypeLoop)) {
340     // The dominator of the given block is a header block. So, the nesting
341     // depth of this block is: 1 + nesting depth of the header.
342     block_depth_[bb] = 1 + GetBlockDepth(bb_dom);
343   } else {
344     block_depth_[bb] = GetBlockDepth(bb_dom);
345   }
346   return block_depth_[bb];
347 }
348 
RegisterExecutionModelLimitation(SpvExecutionModel model,const std::string & message)349 void Function::RegisterExecutionModelLimitation(SpvExecutionModel model,
350                                                 const std::string& message) {
351   execution_model_limitations_.push_back(
352       [model, message](SpvExecutionModel in_model, std::string* out_message) {
353         if (model != in_model) {
354           if (out_message) {
355             *out_message = message;
356           }
357           return false;
358         }
359         return true;
360       });
361 }
362 
IsCompatibleWithExecutionModel(SpvExecutionModel model,std::string * reason) const363 bool Function::IsCompatibleWithExecutionModel(SpvExecutionModel model,
364                                               std::string* reason) const {
365   bool return_value = true;
366   std::stringstream ss_reason;
367 
368   for (const auto& is_compatible : execution_model_limitations_) {
369     std::string message;
370     if (!is_compatible(model, &message)) {
371       if (!reason) return false;
372       return_value = false;
373       if (!message.empty()) {
374         ss_reason << message << "\n";
375       }
376     }
377   }
378 
379   if (!return_value && reason) {
380     *reason = ss_reason.str();
381   }
382 
383   return return_value;
384 }
385 
386 }  // namespace val
387 }  // namespace spvtools
388