1======================================== 2Machine IR (MIR) Format Reference Manual 3======================================== 4 5.. contents:: 6 :local: 7 8.. warning:: 9 This is a work in progress. 10 11Introduction 12============ 13 14This document is a reference manual for the Machine IR (MIR) serialization 15format. MIR is a human readable serialization format that is used to represent 16LLVM's :ref:`machine specific intermediate representation 17<machine code representation>`. 18 19The MIR serialization format is designed to be used for testing the code 20generation passes in LLVM. 21 22Overview 23======== 24 25The MIR serialization format uses a YAML container. YAML is a standard 26data serialization language, and the full YAML language spec can be read at 27`yaml.org 28<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. 29 30A MIR file is split up into a series of `YAML documents`_. The first document 31can contain an optional embedded LLVM IR module, and the rest of the documents 32contain the serialized machine functions. 33 34.. _YAML documents: http://www.yaml.org/spec/1.2/spec.html#id2800132 35 36MIR Testing Guide 37================= 38 39You can use the MIR format for testing in two different ways: 40 41- You can write MIR tests that invoke a single code generation pass using the 42 ``-run-pass`` option in llc. 43 44- You can use llc's ``-stop-after`` option with existing or new LLVM assembly 45 tests and check the MIR output of a specific code generation pass. 46 47Testing Individual Code Generation Passes 48----------------------------------------- 49 50The ``-run-pass`` option in llc allows you to create MIR tests that invoke just 51a single code generation pass. When this option is used, llc will parse an 52input MIR file, run the specified code generation pass(es), and output the 53resulting MIR code. 54 55You can generate an input MIR file for the test by using the ``-stop-after`` or 56``-stop-before`` option in llc. For example, if you would like to write a test 57for the post register allocation pseudo instruction expansion pass, you can 58specify the machine copy propagation pass in the ``-stop-after`` option, as it 59runs just before the pass that we are trying to test: 60 61 ``llc -stop-after=machine-cp bug-trigger.ll > test.mir`` 62 63After generating the input MIR file, you'll have to add a run line that uses 64the ``-run-pass`` option to it. In order to test the post register allocation 65pseudo instruction expansion pass on X86-64, a run line like the one shown 66below can be used: 67 68 ``# RUN: llc -o - %s -mtriple=x86_64-- -run-pass=postrapseudos | FileCheck %s`` 69 70The MIR files are target dependent, so they have to be placed in the target 71specific test directories (``lib/CodeGen/TARGETNAME``). They also need to 72specify a target triple or a target architecture either in the run line or in 73the embedded LLVM IR module. 74 75Simplifying MIR files 76^^^^^^^^^^^^^^^^^^^^^ 77 78The MIR code coming out of ``-stop-after``/``-stop-before`` is very verbose; 79Tests are more accessible and future proof when simplified: 80 81- Use the ``-simplify-mir`` option with llc. 82 83- Machine function attributes often have default values or the test works just 84 as well with default values. Typical candidates for this are: `alignment:`, 85 `exposesReturnsTwice`, `legalized`, `regBankSelected`, `selected`. 86 The whole `frameInfo` section is often unnecessary if there is no special 87 frame usage in the function. `tracksRegLiveness` on the other hand is often 88 necessary for some passes that care about block livein lists. 89 90- The (global) `liveins:` list is typically only interesting for early 91 instruction selection passes and can be removed when testing later passes. 92 The per-block `liveins:` on the other hand are necessary if 93 `tracksRegLiveness` is true. 94 95- Branch probability data in block `successors:` lists can be dropped if the 96 test doesn't depend on it. Example: 97 `successors: %bb.1(0x40000000), %bb.2(0x40000000)` can be replaced with 98 `successors: %bb.1, %bb.2`. 99 100- MIR code contains a whole IR module. This is necessary because there are 101 no equivalents in MIR for global variables, references to external functions, 102 function attributes, metadata, debug info. Instead some MIR data references 103 the IR constructs. You can often remove them if the test doesn't depend on 104 them. 105 106- Alias Analysis is performed on IR values. These are referenced by memory 107 operands in MIR. Example: `:: (load 8 from %ir.foobar, !alias.scope !9)`. 108 If the test doesn't depend on (good) alias analysis the references can be 109 dropped: `:: (load 8)` 110 111- MIR blocks can reference IR blocks for debug printing, profile information 112 or debug locations. Example: `bb.42.myblock` in MIR references the IR block 113 `myblock`. It is usually possible to drop the `.myblock` reference and simply 114 use `bb.42`. 115 116- If there are no memory operands or blocks referencing the IR then the 117 IR function can be replaced by a parameterless dummy function like 118 `define @func() { ret void }`. 119 120- It is possible to drop the whole IR section of the MIR file if it only 121 contains dummy functions (see above). The .mir loader will create the 122 IR functions automatically in this case. 123 124.. _limitations: 125 126Limitations 127----------- 128 129Currently the MIR format has several limitations in terms of which state it 130can serialize: 131 132- The target-specific state in the target-specific ``MachineFunctionInfo`` 133 subclasses isn't serialized at the moment. 134 135- The target-specific ``MachineConstantPoolValue`` subclasses (in the ARM and 136 SystemZ backends) aren't serialized at the moment. 137 138- The ``MCSymbol`` machine operands are only printed, they can't be parsed. 139 140- A lot of the state in ``MachineModuleInfo`` isn't serialized - only the CFI 141 instructions and the variable debug information from MMI is serialized right 142 now. 143 144These limitations impose restrictions on what you can test with the MIR format. 145For now, tests that would like to test some behaviour that depends on the state 146of certain ``MCSymbol`` operands or the exception handling state in MMI, can't 147use the MIR format. As well as that, tests that test some behaviour that 148depends on the state of the target specific ``MachineFunctionInfo`` or 149``MachineConstantPoolValue`` subclasses can't use the MIR format at the moment. 150 151High Level Structure 152==================== 153 154.. _embedded-module: 155 156Embedded Module 157--------------- 158 159When the first YAML document contains a `YAML block literal string`_, the MIR 160parser will treat this string as an LLVM assembly language string that 161represents an embedded LLVM IR module. 162Here is an example of a YAML document that contains an LLVM module: 163 164.. code-block:: llvm 165 166 define i32 @inc(i32* %x) { 167 entry: 168 %0 = load i32, i32* %x 169 %1 = add i32 %0, 1 170 store i32 %1, i32* %x 171 ret i32 %1 172 } 173 174.. _YAML block literal string: http://www.yaml.org/spec/1.2/spec.html#id2795688 175 176Machine Functions 177----------------- 178 179The remaining YAML documents contain the machine functions. This is an example 180of such YAML document: 181 182.. code-block:: text 183 184 --- 185 name: inc 186 tracksRegLiveness: true 187 liveins: 188 - { reg: '$rdi' } 189 body: | 190 bb.0.entry: 191 liveins: $rdi 192 193 $eax = MOV32rm $rdi, 1, _, 0, _ 194 $eax = INC32r killed $eax, implicit-def dead $eflags 195 MOV32mr killed $rdi, 1, _, 0, _, $eax 196 RETQ $eax 197 ... 198 199The document above consists of attributes that represent the various 200properties and data structures in a machine function. 201 202The attribute ``name`` is required, and its value should be identical to the 203name of a function that this machine function is based on. 204 205The attribute ``body`` is a `YAML block literal string`_. Its value represents 206the function's machine basic blocks and their machine instructions. 207 208Machine Instructions Format Reference 209===================================== 210 211The machine basic blocks and their instructions are represented using a custom, 212human readable serialization language. This language is used in the 213`YAML block literal string`_ that corresponds to the machine function's body. 214 215A source string that uses this language contains a list of machine basic 216blocks, which are described in the section below. 217 218Machine Basic Blocks 219-------------------- 220 221A machine basic block is defined in a single block definition source construct 222that contains the block's ID. 223The example below defines two blocks that have an ID of zero and one: 224 225.. code-block:: text 226 227 bb.0: 228 <instructions> 229 bb.1: 230 <instructions> 231 232A machine basic block can also have a name. It should be specified after the ID 233in the block's definition: 234 235.. code-block:: text 236 237 bb.0.entry: ; This block's name is "entry" 238 <instructions> 239 240The block's name should be identical to the name of the IR block that this 241machine block is based on. 242 243.. _block-references: 244 245Block References 246^^^^^^^^^^^^^^^^ 247 248The machine basic blocks are identified by their ID numbers. Individual 249blocks are referenced using the following syntax: 250 251.. code-block:: text 252 253 %bb.<id> 254 255Example: 256 257.. code-block:: llvm 258 259 %bb.0 260 261The following syntax is also supported, but the former syntax is preferred for 262block references: 263 264.. code-block:: text 265 266 %bb.<id>[.<name>] 267 268Example: 269 270.. code-block:: llvm 271 272 %bb.1.then 273 274Successors 275^^^^^^^^^^ 276 277The machine basic block's successors have to be specified before any of the 278instructions: 279 280.. code-block:: text 281 282 bb.0.entry: 283 successors: %bb.1.then, %bb.2.else 284 <instructions> 285 bb.1.then: 286 <instructions> 287 bb.2.else: 288 <instructions> 289 290The branch weights can be specified in brackets after the successor blocks. 291The example below defines a block that has two successors with branch weights 292of 32 and 16: 293 294.. code-block:: text 295 296 bb.0.entry: 297 successors: %bb.1.then(32), %bb.2.else(16) 298 299.. _bb-liveins: 300 301Live In Registers 302^^^^^^^^^^^^^^^^^ 303 304The machine basic block's live in registers have to be specified before any of 305the instructions: 306 307.. code-block:: text 308 309 bb.0.entry: 310 liveins: $edi, $esi 311 312The list of live in registers and successors can be empty. The language also 313allows multiple live in register and successor lists - they are combined into 314one list by the parser. 315 316Miscellaneous Attributes 317^^^^^^^^^^^^^^^^^^^^^^^^ 318 319The attributes ``IsAddressTaken``, ``IsLandingPad`` and ``Alignment`` can be 320specified in brackets after the block's definition: 321 322.. code-block:: text 323 324 bb.0.entry (address-taken): 325 <instructions> 326 bb.2.else (align 4): 327 <instructions> 328 bb.3(landing-pad, align 4): 329 <instructions> 330 331.. TODO: Describe the way the reference to an unnamed LLVM IR block can be 332 preserved. 333 334Machine Instructions 335-------------------- 336 337A machine instruction is composed of a name, 338:ref:`machine operands <machine-operands>`, 339:ref:`instruction flags <instruction-flags>`, and machine memory operands. 340 341The instruction's name is usually specified before the operands. The example 342below shows an instance of the X86 ``RETQ`` instruction with a single machine 343operand: 344 345.. code-block:: text 346 347 RETQ $eax 348 349However, if the machine instruction has one or more explicitly defined register 350operands, the instruction's name has to be specified after them. The example 351below shows an instance of the AArch64 ``LDPXpost`` instruction with three 352defined register operands: 353 354.. code-block:: text 355 356 $sp, $fp, $lr = LDPXpost $sp, 2 357 358The instruction names are serialized using the exact definitions from the 359target's ``*InstrInfo.td`` files, and they are case sensitive. This means that 360similar instruction names like ``TSTri`` and ``tSTRi`` represent different 361machine instructions. 362 363.. _instruction-flags: 364 365Instruction Flags 366^^^^^^^^^^^^^^^^^ 367 368The flag ``frame-setup`` or ``frame-destroy`` can be specified before the 369instruction's name: 370 371.. code-block:: text 372 373 $fp = frame-setup ADDXri $sp, 0, 0 374 375.. code-block:: text 376 377 $x21, $x20 = frame-destroy LDPXi $sp 378 379.. _registers: 380 381Bundled Instructions 382^^^^^^^^^^^^^^^^^^^^ 383 384The syntax for bundled instructions is the following: 385 386.. code-block:: text 387 388 BUNDLE implicit-def $r0, implicit-def $r1, implicit $r2 { 389 $r0 = SOME_OP $r2 390 $r1 = ANOTHER_OP internal $r0 391 } 392 393The first instruction is often a bundle header. The instructions between ``{`` 394and ``}`` are bundled with the first instruction. 395 396Registers 397--------- 398 399Registers are one of the key primitives in the machine instructions 400serialization language. They are primarily used in the 401:ref:`register machine operands <register-operands>`, 402but they can also be used in a number of other places, like the 403:ref:`basic block's live in list <bb-liveins>`. 404 405The physical registers are identified by their name and by the '$' prefix sigil. 406They use the following syntax: 407 408.. code-block:: text 409 410 $<name> 411 412The example below shows three X86 physical registers: 413 414.. code-block:: text 415 416 $eax 417 $r15 418 $eflags 419 420The virtual registers are identified by their ID number and by the '%' sigil. 421They use the following syntax: 422 423.. code-block:: text 424 425 %<id> 426 427Example: 428 429.. code-block:: text 430 431 %0 432 433The null registers are represented using an underscore ('``_``'). They can also be 434represented using a '``$noreg``' named register, although the former syntax 435is preferred. 436 437.. _machine-operands: 438 439Machine Operands 440---------------- 441 442There are seventeen different kinds of machine operands, and all of them, except 443the ``MCSymbol`` operand, can be serialized. The ``MCSymbol`` operands are 444just printed out - they can't be parsed back yet. 445 446Immediate Operands 447^^^^^^^^^^^^^^^^^^ 448 449The immediate machine operands are untyped, 64-bit signed integers. The 450example below shows an instance of the X86 ``MOV32ri`` instruction that has an 451immediate machine operand ``-42``: 452 453.. code-block:: text 454 455 $eax = MOV32ri -42 456 457An immediate operand is also used to represent a subregister index when the 458machine instruction has one of the following opcodes: 459 460- ``EXTRACT_SUBREG`` 461 462- ``INSERT_SUBREG`` 463 464- ``REG_SEQUENCE`` 465 466- ``SUBREG_TO_REG`` 467 468In case this is true, the Machine Operand is printed according to the target. 469 470For example: 471 472In AArch64RegisterInfo.td: 473 474.. code-block:: text 475 476 def sub_32 : SubRegIndex<32>; 477 478If the third operand is an immediate with the value ``15`` (target-dependent 479value), based on the instruction's opcode and the operand's index the operand 480will be printed as ``%subreg.sub_32``: 481 482.. code-block:: text 483 484 %1:gpr64 = SUBREG_TO_REG 0, %0, %subreg.sub_32 485 486For integers > 64bit, we use a special machine operand, ``MO_CImmediate``, 487which stores the immediate in a ``ConstantInt`` using an ``APInt`` (LLVM's 488arbitrary precision integers). 489 490.. TODO: Describe the FPIMM immediate operands. 491 492.. _register-operands: 493 494Register Operands 495^^^^^^^^^^^^^^^^^ 496 497The :ref:`register <registers>` primitive is used to represent the register 498machine operands. The register operands can also have optional 499:ref:`register flags <register-flags>`, 500:ref:`a subregister index <subregister-indices>`, 501and a reference to the tied register operand. 502The full syntax of a register operand is shown below: 503 504.. code-block:: text 505 506 [<flags>] <register> [ :<subregister-idx-name> ] [ (tied-def <tied-op>) ] 507 508This example shows an instance of the X86 ``XOR32rr`` instruction that has 5095 register operands with different register flags: 510 511.. code-block:: text 512 513 dead $eax = XOR32rr undef $eax, undef $eax, implicit-def dead $eflags, implicit-def $al 514 515.. _register-flags: 516 517Register Flags 518~~~~~~~~~~~~~~ 519 520The table below shows all of the possible register flags along with the 521corresponding internal ``llvm::RegState`` representation: 522 523.. list-table:: 524 :header-rows: 1 525 526 * - Flag 527 - Internal Value 528 529 * - ``implicit`` 530 - ``RegState::Implicit`` 531 532 * - ``implicit-def`` 533 - ``RegState::ImplicitDefine`` 534 535 * - ``def`` 536 - ``RegState::Define`` 537 538 * - ``dead`` 539 - ``RegState::Dead`` 540 541 * - ``killed`` 542 - ``RegState::Kill`` 543 544 * - ``undef`` 545 - ``RegState::Undef`` 546 547 * - ``internal`` 548 - ``RegState::InternalRead`` 549 550 * - ``early-clobber`` 551 - ``RegState::EarlyClobber`` 552 553 * - ``debug-use`` 554 - ``RegState::Debug`` 555 556 * - ``renamable`` 557 - ``RegState::Renamable`` 558 559.. _subregister-indices: 560 561Subregister Indices 562~~~~~~~~~~~~~~~~~~~ 563 564The register machine operands can reference a portion of a register by using 565the subregister indices. The example below shows an instance of the ``COPY`` 566pseudo instruction that uses the X86 ``sub_8bit`` subregister index to copy 8 567lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1: 568 569.. code-block:: text 570 571 %1 = COPY %0:sub_8bit 572 573The names of the subregister indices are target specific, and are typically 574defined in the target's ``*RegisterInfo.td`` file. 575 576Constant Pool Indices 577^^^^^^^^^^^^^^^^^^^^^ 578 579A constant pool index (CPI) operand is printed using its index in the 580function's ``MachineConstantPool`` and an offset. 581 582For example, a CPI with the index 1 and offset 8: 583 584.. code-block:: text 585 586 %1:gr64 = MOV64ri %const.1 + 8 587 588For a CPI with the index 0 and offset -12: 589 590.. code-block:: text 591 592 %1:gr64 = MOV64ri %const.0 - 12 593 594A constant pool entry is bound to a LLVM IR ``Constant`` or a target-specific 595``MachineConstantPoolValue``. When serializing all the function's constants the 596following format is used: 597 598.. code-block:: text 599 600 constants: 601 - id: <index> 602 value: <value> 603 alignment: <alignment> 604 isTargetSpecific: <target-specific> 605 606where ``<index>`` is a 32-bit unsigned integer, ``<value>`` is a `LLVM IR Constant 607<https://www.llvm.org/docs/LangRef.html#constants>`_, alignment is a 32-bit 608unsigned integer, and ``<target-specific>`` is either true or false. 609 610Example: 611 612.. code-block:: text 613 614 constants: 615 - id: 0 616 value: 'double 3.250000e+00' 617 alignment: 8 618 - id: 1 619 value: 'g-(LPC0+8)' 620 alignment: 4 621 isTargetSpecific: true 622 623Global Value Operands 624^^^^^^^^^^^^^^^^^^^^^ 625 626The global value machine operands reference the global values from the 627:ref:`embedded LLVM IR module <embedded-module>`. 628The example below shows an instance of the X86 ``MOV64rm`` instruction that has 629a global value operand named ``G``: 630 631.. code-block:: text 632 633 $rax = MOV64rm $rip, 1, _, @G, _ 634 635The named global values are represented using an identifier with the '@' prefix. 636If the identifier doesn't match the regular expression 637`[-a-zA-Z$._][-a-zA-Z$._0-9]*`, then this identifier must be quoted. 638 639The unnamed global values are represented using an unsigned numeric value with 640the '@' prefix, like in the following examples: ``@0``, ``@989``. 641 642Target-dependent Index Operands 643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 644 645A target index operand is a target-specific index and an offset. The 646target-specific index is printed using target-specific names and a positive or 647negative offset. 648 649For example, the ``amdgpu-constdata-start`` is associated with the index ``0`` 650in the AMDGPU backend. So if we have a target index operand with the index 0 651and the offset 8: 652 653.. code-block:: text 654 655 $sgpr2 = S_ADD_U32 _, target-index(amdgpu-constdata-start) + 8, implicit-def _, implicit-def _ 656 657Jump-table Index Operands 658^^^^^^^^^^^^^^^^^^^^^^^^^ 659 660A jump-table index operand with the index 0 is printed as following: 661 662.. code-block:: text 663 664 tBR_JTr killed $r0, %jump-table.0 665 666A machine jump-table entry contains a list of ``MachineBasicBlocks``. When serializing all the function's jump-table entries, the following format is used: 667 668.. code-block:: text 669 670 jumpTable: 671 kind: <kind> 672 entries: 673 - id: <index> 674 blocks: [ <bbreference>, <bbreference>, ... ] 675 676where ``<kind>`` is describing how the jump table is represented and emitted (plain address, relocations, PIC, etc.), and each ``<index>`` is a 32-bit unsigned integer and ``blocks`` contains a list of :ref:`machine basic block references <block-references>`. 677 678Example: 679 680.. code-block:: text 681 682 jumpTable: 683 kind: inline 684 entries: 685 - id: 0 686 blocks: [ '%bb.3', '%bb.9', '%bb.4.d3' ] 687 - id: 1 688 blocks: [ '%bb.7', '%bb.7', '%bb.4.d3', '%bb.5' ] 689 690External Symbol Operands 691^^^^^^^^^^^^^^^^^^^^^^^^^ 692 693An external symbol operand is represented using an identifier with the ``&`` 694prefix. The identifier is surrounded with ""'s and escaped if it has any 695special non-printable characters in it. 696 697Example: 698 699.. code-block:: text 700 701 CALL64pcrel32 &__stack_chk_fail, csr_64, implicit $rsp, implicit-def $rsp 702 703MCSymbol Operands 704^^^^^^^^^^^^^^^^^ 705 706A MCSymbol operand is holding a pointer to a ``MCSymbol``. For the limitations 707of this operand in MIR, see :ref:`limitations <limitations>`. 708 709The syntax is: 710 711.. code-block:: text 712 713 EH_LABEL <mcsymbol Ltmp1> 714 715CFIIndex Operands 716^^^^^^^^^^^^^^^^^ 717 718A CFI Index operand is holding an index into a per-function side-table, 719``MachineFunction::getFrameInstructions()``, which references all the frame 720instructions in a ``MachineFunction``. A ``CFI_INSTRUCTION`` may look like it 721contains multiple operands, but the only operand it contains is the CFI Index. 722The other operands are tracked by the ``MCCFIInstruction`` object. 723 724The syntax is: 725 726.. code-block:: text 727 728 CFI_INSTRUCTION offset $w30, -16 729 730which may be emitted later in the MC layer as: 731 732.. code-block:: text 733 734 .cfi_offset w30, -16 735 736IntrinsicID Operands 737^^^^^^^^^^^^^^^^^^^^ 738 739An Intrinsic ID operand contains a generic intrinsic ID or a target-specific ID. 740 741The syntax for the ``returnaddress`` intrinsic is: 742 743.. code-block:: text 744 745 $x0 = COPY intrinsic(@llvm.returnaddress) 746 747Predicate Operands 748^^^^^^^^^^^^^^^^^^ 749 750A Predicate operand contains an IR predicate from ``CmpInst::Predicate``, like 751``ICMP_EQ``, etc. 752 753For an int eq predicate ``ICMP_EQ``, the syntax is: 754 755.. code-block:: text 756 757 %2:gpr(s32) = G_ICMP intpred(eq), %0, %1 758 759.. TODO: Describe the parsers default behaviour when optional YAML attributes 760 are missing. 761.. TODO: Describe the syntax for virtual register YAML definitions. 762.. TODO: Describe the machine function's YAML flag attributes. 763.. TODO: Describe the syntax for the register mask machine operands. 764.. TODO: Describe the frame information YAML mapping. 765.. TODO: Describe the syntax of the stack object machine operands and their 766 YAML definitions. 767.. TODO: Describe the syntax of the block address machine operands. 768.. TODO: Describe the syntax of the metadata machine operands, and the 769 instructions debug location attribute. 770.. TODO: Describe the syntax of the register live out machine operands. 771.. TODO: Describe the syntax of the machine memory operands. 772