1========================================
2Machine IR (MIR) Format Reference Manual
3========================================
4
5.. contents::
6   :local:
7
8.. warning::
9  This is a work in progress.
10
11Introduction
12============
13
14This document is a reference manual for the Machine IR (MIR) serialization
15format. MIR is a human readable serialization format that is used to represent
16LLVM's :ref:`machine specific intermediate representation
17<machine code representation>`.
18
19The MIR serialization format is designed to be used for testing the code
20generation passes in LLVM.
21
22Overview
23========
24
25The MIR serialization format uses a YAML container. YAML is a standard
26data serialization language, and the full YAML language spec can be read at
27`yaml.org
28<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_.
29
30A MIR file is split up into a series of `YAML documents`_. The first document
31can contain an optional embedded LLVM IR module, and the rest of the documents
32contain the serialized machine functions.
33
34.. _YAML documents: http://www.yaml.org/spec/1.2/spec.html#id2800132
35
36MIR Testing Guide
37=================
38
39You can use the MIR format for testing in two different ways:
40
41- You can write MIR tests that invoke a single code generation pass using the
42  ``-run-pass`` option in llc.
43
44- You can use llc's ``-stop-after`` option with existing or new LLVM assembly
45  tests and check the MIR output of a specific code generation pass.
46
47Testing Individual Code Generation Passes
48-----------------------------------------
49
50The ``-run-pass`` option in llc allows you to create MIR tests that invoke just
51a single code generation pass. When this option is used, llc will parse an
52input MIR file, run the specified code generation pass(es), and output the
53resulting MIR code.
54
55You can generate an input MIR file for the test by using the ``-stop-after`` or
56``-stop-before`` option in llc. For example, if you would like to write a test
57for the post register allocation pseudo instruction expansion pass, you can
58specify the machine copy propagation pass in the ``-stop-after`` option, as it
59runs just before the pass that we are trying to test:
60
61   ``llc -stop-after=machine-cp bug-trigger.ll > test.mir``
62
63After generating the input MIR file, you'll have to add a run line that uses
64the ``-run-pass`` option to it. In order to test the post register allocation
65pseudo instruction expansion pass on X86-64, a run line like the one shown
66below can be used:
67
68    ``# RUN: llc -o - %s -mtriple=x86_64-- -run-pass=postrapseudos | FileCheck %s``
69
70The MIR files are target dependent, so they have to be placed in the target
71specific test directories (``lib/CodeGen/TARGETNAME``). They also need to
72specify a target triple or a target architecture either in the run line or in
73the embedded LLVM IR module.
74
75Simplifying MIR files
76^^^^^^^^^^^^^^^^^^^^^
77
78The MIR code coming out of ``-stop-after``/``-stop-before`` is very verbose;
79Tests are more accessible and future proof when simplified:
80
81- Use the ``-simplify-mir`` option with llc.
82
83- Machine function attributes often have default values or the test works just
84  as well with default values. Typical candidates for this are: `alignment:`,
85  `exposesReturnsTwice`, `legalized`, `regBankSelected`, `selected`.
86  The whole `frameInfo` section is often unnecessary if there is no special
87  frame usage in the function. `tracksRegLiveness` on the other hand is often
88  necessary for some passes that care about block livein lists.
89
90- The (global) `liveins:` list is typically only interesting for early
91  instruction selection passes and can be removed when testing later passes.
92  The per-block `liveins:` on the other hand are necessary if
93  `tracksRegLiveness` is true.
94
95- Branch probability data in block `successors:` lists can be dropped if the
96  test doesn't depend on it. Example:
97  `successors: %bb.1(0x40000000), %bb.2(0x40000000)` can be replaced with
98  `successors: %bb.1, %bb.2`.
99
100- MIR code contains a whole IR module. This is necessary because there are
101  no equivalents in MIR for global variables, references to external functions,
102  function attributes, metadata, debug info. Instead some MIR data references
103  the IR constructs. You can often remove them if the test doesn't depend on
104  them.
105
106- Alias Analysis is performed on IR values. These are referenced by memory
107  operands in MIR. Example: `:: (load 8 from %ir.foobar, !alias.scope !9)`.
108  If the test doesn't depend on (good) alias analysis the references can be
109  dropped: `:: (load 8)`
110
111- MIR blocks can reference IR blocks for debug printing, profile information
112  or debug locations. Example: `bb.42.myblock` in MIR references the IR block
113  `myblock`. It is usually possible to drop the `.myblock` reference and simply
114  use `bb.42`.
115
116- If there are no memory operands or blocks referencing the IR then the
117  IR function can be replaced by a parameterless dummy function like
118  `define @func() { ret void }`.
119
120- It is possible to drop the whole IR section of the MIR file if it only
121  contains dummy functions (see above). The .mir loader will create the
122  IR functions automatically in this case.
123
124.. _limitations:
125
126Limitations
127-----------
128
129Currently the MIR format has several limitations in terms of which state it
130can serialize:
131
132- The target-specific state in the target-specific ``MachineFunctionInfo``
133  subclasses isn't serialized at the moment.
134
135- The target-specific ``MachineConstantPoolValue`` subclasses (in the ARM and
136  SystemZ backends) aren't serialized at the moment.
137
138- The ``MCSymbol`` machine operands are only printed, they can't be parsed.
139
140- A lot of the state in ``MachineModuleInfo`` isn't serialized - only the CFI
141  instructions and the variable debug information from MMI is serialized right
142  now.
143
144These limitations impose restrictions on what you can test with the MIR format.
145For now, tests that would like to test some behaviour that depends on the state
146of certain ``MCSymbol``  operands or the exception handling state in MMI, can't
147use the MIR format. As well as that, tests that test some behaviour that
148depends on the state of the target specific ``MachineFunctionInfo`` or
149``MachineConstantPoolValue`` subclasses can't use the MIR format at the moment.
150
151High Level Structure
152====================
153
154.. _embedded-module:
155
156Embedded Module
157---------------
158
159When the first YAML document contains a `YAML block literal string`_, the MIR
160parser will treat this string as an LLVM assembly language string that
161represents an embedded LLVM IR module.
162Here is an example of a YAML document that contains an LLVM module:
163
164.. code-block:: llvm
165
166       define i32 @inc(i32* %x) {
167       entry:
168         %0 = load i32, i32* %x
169         %1 = add i32 %0, 1
170         store i32 %1, i32* %x
171         ret i32 %1
172       }
173
174.. _YAML block literal string: http://www.yaml.org/spec/1.2/spec.html#id2795688
175
176Machine Functions
177-----------------
178
179The remaining YAML documents contain the machine functions. This is an example
180of such YAML document:
181
182.. code-block:: text
183
184     ---
185     name:            inc
186     tracksRegLiveness: true
187     liveins:
188       - { reg: '$rdi' }
189     body: |
190       bb.0.entry:
191         liveins: $rdi
192
193         $eax = MOV32rm $rdi, 1, _, 0, _
194         $eax = INC32r killed $eax, implicit-def dead $eflags
195         MOV32mr killed $rdi, 1, _, 0, _, $eax
196         RETQ $eax
197     ...
198
199The document above consists of attributes that represent the various
200properties and data structures in a machine function.
201
202The attribute ``name`` is required, and its value should be identical to the
203name of a function that this machine function is based on.
204
205The attribute ``body`` is a `YAML block literal string`_. Its value represents
206the function's machine basic blocks and their machine instructions.
207
208Machine Instructions Format Reference
209=====================================
210
211The machine basic blocks and their instructions are represented using a custom,
212human readable serialization language. This language is used in the
213`YAML block literal string`_ that corresponds to the machine function's body.
214
215A source string that uses this language contains a list of machine basic
216blocks, which are described in the section below.
217
218Machine Basic Blocks
219--------------------
220
221A machine basic block is defined in a single block definition source construct
222that contains the block's ID.
223The example below defines two blocks that have an ID of zero and one:
224
225.. code-block:: text
226
227    bb.0:
228      <instructions>
229    bb.1:
230      <instructions>
231
232A machine basic block can also have a name. It should be specified after the ID
233in the block's definition:
234
235.. code-block:: text
236
237    bb.0.entry:       ; This block's name is "entry"
238       <instructions>
239
240The block's name should be identical to the name of the IR block that this
241machine block is based on.
242
243.. _block-references:
244
245Block References
246^^^^^^^^^^^^^^^^
247
248The machine basic blocks are identified by their ID numbers. Individual
249blocks are referenced using the following syntax:
250
251.. code-block:: text
252
253    %bb.<id>
254
255Example:
256
257.. code-block:: llvm
258
259    %bb.0
260
261The following syntax is also supported, but the former syntax is preferred for
262block references:
263
264.. code-block:: text
265
266    %bb.<id>[.<name>]
267
268Example:
269
270.. code-block:: llvm
271
272    %bb.1.then
273
274Successors
275^^^^^^^^^^
276
277The machine basic block's successors have to be specified before any of the
278instructions:
279
280.. code-block:: text
281
282    bb.0.entry:
283      successors: %bb.1.then, %bb.2.else
284      <instructions>
285    bb.1.then:
286      <instructions>
287    bb.2.else:
288      <instructions>
289
290The branch weights can be specified in brackets after the successor blocks.
291The example below defines a block that has two successors with branch weights
292of 32 and 16:
293
294.. code-block:: text
295
296    bb.0.entry:
297      successors: %bb.1.then(32), %bb.2.else(16)
298
299.. _bb-liveins:
300
301Live In Registers
302^^^^^^^^^^^^^^^^^
303
304The machine basic block's live in registers have to be specified before any of
305the instructions:
306
307.. code-block:: text
308
309    bb.0.entry:
310      liveins: $edi, $esi
311
312The list of live in registers and successors can be empty. The language also
313allows multiple live in register and successor lists - they are combined into
314one list by the parser.
315
316Miscellaneous Attributes
317^^^^^^^^^^^^^^^^^^^^^^^^
318
319The attributes ``IsAddressTaken``, ``IsLandingPad`` and ``Alignment`` can be
320specified in brackets after the block's definition:
321
322.. code-block:: text
323
324    bb.0.entry (address-taken):
325      <instructions>
326    bb.2.else (align 4):
327      <instructions>
328    bb.3(landing-pad, align 4):
329      <instructions>
330
331.. TODO: Describe the way the reference to an unnamed LLVM IR block can be
332   preserved.
333
334Machine Instructions
335--------------------
336
337A machine instruction is composed of a name,
338:ref:`machine operands <machine-operands>`,
339:ref:`instruction flags <instruction-flags>`, and machine memory operands.
340
341The instruction's name is usually specified before the operands. The example
342below shows an instance of the X86 ``RETQ`` instruction with a single machine
343operand:
344
345.. code-block:: text
346
347    RETQ $eax
348
349However, if the machine instruction has one or more explicitly defined register
350operands, the instruction's name has to be specified after them. The example
351below shows an instance of the AArch64 ``LDPXpost`` instruction with three
352defined register operands:
353
354.. code-block:: text
355
356    $sp, $fp, $lr = LDPXpost $sp, 2
357
358The instruction names are serialized using the exact definitions from the
359target's ``*InstrInfo.td`` files, and they are case sensitive. This means that
360similar instruction names like ``TSTri`` and ``tSTRi`` represent different
361machine instructions.
362
363.. _instruction-flags:
364
365Instruction Flags
366^^^^^^^^^^^^^^^^^
367
368The flag ``frame-setup`` or ``frame-destroy`` can be specified before the
369instruction's name:
370
371.. code-block:: text
372
373    $fp = frame-setup ADDXri $sp, 0, 0
374
375.. code-block:: text
376
377    $x21, $x20 = frame-destroy LDPXi $sp
378
379.. _registers:
380
381Bundled Instructions
382^^^^^^^^^^^^^^^^^^^^
383
384The syntax for bundled instructions is the following:
385
386.. code-block:: text
387
388    BUNDLE implicit-def $r0, implicit-def $r1, implicit $r2 {
389      $r0 = SOME_OP $r2
390      $r1 = ANOTHER_OP internal $r0
391    }
392
393The first instruction is often a bundle header. The instructions between ``{``
394and ``}`` are bundled with the first instruction.
395
396Registers
397---------
398
399Registers are one of the key primitives in the machine instructions
400serialization language. They are primarily used in the
401:ref:`register machine operands <register-operands>`,
402but they can also be used in a number of other places, like the
403:ref:`basic block's live in list <bb-liveins>`.
404
405The physical registers are identified by their name and by the '$' prefix sigil.
406They use the following syntax:
407
408.. code-block:: text
409
410    $<name>
411
412The example below shows three X86 physical registers:
413
414.. code-block:: text
415
416    $eax
417    $r15
418    $eflags
419
420The virtual registers are identified by their ID number and by the '%' sigil.
421They use the following syntax:
422
423.. code-block:: text
424
425    %<id>
426
427Example:
428
429.. code-block:: text
430
431    %0
432
433The null registers are represented using an underscore ('``_``'). They can also be
434represented using a '``$noreg``' named register, although the former syntax
435is preferred.
436
437.. _machine-operands:
438
439Machine Operands
440----------------
441
442There are seventeen different kinds of machine operands, and all of them, except
443the ``MCSymbol`` operand, can be serialized. The ``MCSymbol`` operands are
444just printed out - they can't be parsed back yet.
445
446Immediate Operands
447^^^^^^^^^^^^^^^^^^
448
449The immediate machine operands are untyped, 64-bit signed integers. The
450example below shows an instance of the X86 ``MOV32ri`` instruction that has an
451immediate machine operand ``-42``:
452
453.. code-block:: text
454
455    $eax = MOV32ri -42
456
457An immediate operand is also used to represent a subregister index when the
458machine instruction has one of the following opcodes:
459
460- ``EXTRACT_SUBREG``
461
462- ``INSERT_SUBREG``
463
464- ``REG_SEQUENCE``
465
466- ``SUBREG_TO_REG``
467
468In case this is true, the Machine Operand is printed according to the target.
469
470For example:
471
472In AArch64RegisterInfo.td:
473
474.. code-block:: text
475
476  def sub_32 : SubRegIndex<32>;
477
478If the third operand is an immediate with the value ``15`` (target-dependent
479value), based on the instruction's opcode and the operand's index the operand
480will be printed as ``%subreg.sub_32``:
481
482.. code-block:: text
483
484    %1:gpr64 = SUBREG_TO_REG 0, %0, %subreg.sub_32
485
486For integers > 64bit, we use a special machine operand, ``MO_CImmediate``,
487which stores the immediate in a ``ConstantInt`` using an ``APInt`` (LLVM's
488arbitrary precision integers).
489
490.. TODO: Describe the FPIMM immediate operands.
491
492.. _register-operands:
493
494Register Operands
495^^^^^^^^^^^^^^^^^
496
497The :ref:`register <registers>` primitive is used to represent the register
498machine operands. The register operands can also have optional
499:ref:`register flags <register-flags>`,
500:ref:`a subregister index <subregister-indices>`,
501and a reference to the tied register operand.
502The full syntax of a register operand is shown below:
503
504.. code-block:: text
505
506    [<flags>] <register> [ :<subregister-idx-name> ] [ (tied-def <tied-op>) ]
507
508This example shows an instance of the X86 ``XOR32rr`` instruction that has
5095 register operands with different register flags:
510
511.. code-block:: text
512
513  dead $eax = XOR32rr undef $eax, undef $eax, implicit-def dead $eflags, implicit-def $al
514
515.. _register-flags:
516
517Register Flags
518~~~~~~~~~~~~~~
519
520The table below shows all of the possible register flags along with the
521corresponding internal ``llvm::RegState`` representation:
522
523.. list-table::
524   :header-rows: 1
525
526   * - Flag
527     - Internal Value
528
529   * - ``implicit``
530     - ``RegState::Implicit``
531
532   * - ``implicit-def``
533     - ``RegState::ImplicitDefine``
534
535   * - ``def``
536     - ``RegState::Define``
537
538   * - ``dead``
539     - ``RegState::Dead``
540
541   * - ``killed``
542     - ``RegState::Kill``
543
544   * - ``undef``
545     - ``RegState::Undef``
546
547   * - ``internal``
548     - ``RegState::InternalRead``
549
550   * - ``early-clobber``
551     - ``RegState::EarlyClobber``
552
553   * - ``debug-use``
554     - ``RegState::Debug``
555
556   * - ``renamable``
557     - ``RegState::Renamable``
558
559.. _subregister-indices:
560
561Subregister Indices
562~~~~~~~~~~~~~~~~~~~
563
564The register machine operands can reference a portion of a register by using
565the subregister indices. The example below shows an instance of the ``COPY``
566pseudo instruction that uses the X86 ``sub_8bit`` subregister index to copy 8
567lower bits from the 32-bit virtual register 0 to the 8-bit virtual register 1:
568
569.. code-block:: text
570
571    %1 = COPY %0:sub_8bit
572
573The names of the subregister indices are target specific, and are typically
574defined in the target's ``*RegisterInfo.td`` file.
575
576Constant Pool Indices
577^^^^^^^^^^^^^^^^^^^^^
578
579A constant pool index (CPI) operand is printed using its index in the
580function's ``MachineConstantPool`` and an offset.
581
582For example, a CPI with the index 1 and offset 8:
583
584.. code-block:: text
585
586    %1:gr64 = MOV64ri %const.1 + 8
587
588For a CPI with the index 0 and offset -12:
589
590.. code-block:: text
591
592    %1:gr64 = MOV64ri %const.0 - 12
593
594A constant pool entry is bound to a LLVM IR ``Constant`` or a target-specific
595``MachineConstantPoolValue``. When serializing all the function's constants the
596following format is used:
597
598.. code-block:: text
599
600    constants:
601      - id:               <index>
602        value:            <value>
603        alignment:        <alignment>
604        isTargetSpecific: <target-specific>
605
606where ``<index>`` is a 32-bit unsigned integer, ``<value>`` is a `LLVM IR Constant
607<https://www.llvm.org/docs/LangRef.html#constants>`_, alignment is a 32-bit
608unsigned integer, and ``<target-specific>`` is either true or false.
609
610Example:
611
612.. code-block:: text
613
614    constants:
615      - id:               0
616        value:            'double 3.250000e+00'
617        alignment:        8
618      - id:               1
619        value:            'g-(LPC0+8)'
620        alignment:        4
621        isTargetSpecific: true
622
623Global Value Operands
624^^^^^^^^^^^^^^^^^^^^^
625
626The global value machine operands reference the global values from the
627:ref:`embedded LLVM IR module <embedded-module>`.
628The example below shows an instance of the X86 ``MOV64rm`` instruction that has
629a global value operand named ``G``:
630
631.. code-block:: text
632
633    $rax = MOV64rm $rip, 1, _, @G, _
634
635The named global values are represented using an identifier with the '@' prefix.
636If the identifier doesn't match the regular expression
637`[-a-zA-Z$._][-a-zA-Z$._0-9]*`, then this identifier must be quoted.
638
639The unnamed global values are represented using an unsigned numeric value with
640the '@' prefix, like in the following examples: ``@0``, ``@989``.
641
642Target-dependent Index Operands
643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
644
645A target index operand is a target-specific index and an offset. The
646target-specific index is printed using target-specific names and a positive or
647negative offset.
648
649For example, the ``amdgpu-constdata-start`` is associated with the index ``0``
650in the AMDGPU backend. So if we have a target index operand with the index 0
651and the offset 8:
652
653.. code-block:: text
654
655    $sgpr2 = S_ADD_U32 _, target-index(amdgpu-constdata-start) + 8, implicit-def _, implicit-def _
656
657Jump-table Index Operands
658^^^^^^^^^^^^^^^^^^^^^^^^^
659
660A jump-table index operand with the index 0 is printed as following:
661
662.. code-block:: text
663
664    tBR_JTr killed $r0, %jump-table.0
665
666A machine jump-table entry contains a list of ``MachineBasicBlocks``. When serializing all the function's jump-table entries, the following format is used:
667
668.. code-block:: text
669
670    jumpTable:
671      kind:             <kind>
672      entries:
673        - id:             <index>
674          blocks:         [ <bbreference>, <bbreference>, ... ]
675
676where ``<kind>`` is describing how the jump table is represented and emitted (plain address, relocations, PIC, etc.), and each ``<index>`` is a 32-bit unsigned integer and ``blocks`` contains a list of :ref:`machine basic block references <block-references>`.
677
678Example:
679
680.. code-block:: text
681
682    jumpTable:
683      kind:             inline
684      entries:
685        - id:             0
686          blocks:         [ '%bb.3', '%bb.9', '%bb.4.d3' ]
687        - id:             1
688          blocks:         [ '%bb.7', '%bb.7', '%bb.4.d3', '%bb.5' ]
689
690External Symbol Operands
691^^^^^^^^^^^^^^^^^^^^^^^^^
692
693An external symbol operand is represented using an identifier with the ``&``
694prefix. The identifier is surrounded with ""'s and escaped if it has any
695special non-printable characters in it.
696
697Example:
698
699.. code-block:: text
700
701    CALL64pcrel32 &__stack_chk_fail, csr_64, implicit $rsp, implicit-def $rsp
702
703MCSymbol Operands
704^^^^^^^^^^^^^^^^^
705
706A MCSymbol operand is holding a pointer to a ``MCSymbol``. For the limitations
707of this operand in MIR, see :ref:`limitations <limitations>`.
708
709The syntax is:
710
711.. code-block:: text
712
713    EH_LABEL <mcsymbol Ltmp1>
714
715CFIIndex Operands
716^^^^^^^^^^^^^^^^^
717
718A CFI Index operand is holding an index into a per-function side-table,
719``MachineFunction::getFrameInstructions()``, which references all the frame
720instructions in a ``MachineFunction``. A ``CFI_INSTRUCTION`` may look like it
721contains multiple operands, but the only operand it contains is the CFI Index.
722The other operands are tracked by the ``MCCFIInstruction`` object.
723
724The syntax is:
725
726.. code-block:: text
727
728    CFI_INSTRUCTION offset $w30, -16
729
730which may be emitted later in the MC layer as:
731
732.. code-block:: text
733
734    .cfi_offset w30, -16
735
736IntrinsicID Operands
737^^^^^^^^^^^^^^^^^^^^
738
739An Intrinsic ID operand contains a generic intrinsic ID or a target-specific ID.
740
741The syntax for the ``returnaddress`` intrinsic is:
742
743.. code-block:: text
744
745   $x0 = COPY intrinsic(@llvm.returnaddress)
746
747Predicate Operands
748^^^^^^^^^^^^^^^^^^
749
750A Predicate operand contains an IR predicate from ``CmpInst::Predicate``, like
751``ICMP_EQ``, etc.
752
753For an int eq predicate ``ICMP_EQ``, the syntax is:
754
755.. code-block:: text
756
757   %2:gpr(s32) = G_ICMP intpred(eq), %0, %1
758
759.. TODO: Describe the parsers default behaviour when optional YAML attributes
760   are missing.
761.. TODO: Describe the syntax for virtual register YAML definitions.
762.. TODO: Describe the machine function's YAML flag attributes.
763.. TODO: Describe the syntax for the register mask machine operands.
764.. TODO: Describe the frame information YAML mapping.
765.. TODO: Describe the syntax of the stack object machine operands and their
766   YAML definitions.
767.. TODO: Describe the syntax of the block address machine operands.
768.. TODO: Describe the syntax of the metadata machine operands, and the
769   instructions debug location attribute.
770.. TODO: Describe the syntax of the register live out machine operands.
771.. TODO: Describe the syntax of the machine memory operands.
772