1======================= 2Writing an LLVM Backend 3======================= 4 5.. toctree:: 6 :hidden: 7 8 HowToUseInstrMappings 9 10.. contents:: 11 :local: 12 13Introduction 14============ 15 16This document describes techniques for writing compiler backends that convert 17the LLVM Intermediate Representation (IR) to code for a specified machine or 18other languages. Code intended for a specific machine can take the form of 19either assembly code or binary code (usable for a JIT compiler). 20 21The backend of LLVM features a target-independent code generator that may 22create output for several types of target CPUs --- including X86, PowerPC, 23ARM, and SPARC. The backend may also be used to generate code targeted at SPUs 24of the Cell processor or GPUs to support the execution of compute kernels. 25 26The document focuses on existing examples found in subdirectories of 27``llvm/lib/Target`` in a downloaded LLVM release. In particular, this document 28focuses on the example of creating a static compiler (one that emits text 29assembly) for a SPARC target, because SPARC has fairly standard 30characteristics, such as a RISC instruction set and straightforward calling 31conventions. 32 33Audience 34-------- 35 36The audience for this document is anyone who needs to write an LLVM backend to 37generate code for a specific hardware or software target. 38 39Prerequisite Reading 40-------------------- 41 42These essential documents must be read before reading this document: 43 44* `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for 45 the LLVM assembly language. 46 47* :doc:`CodeGenerator` --- a guide to the components (classes and code 48 generation algorithms) for translating the LLVM internal representation into 49 machine code for a specified target. Pay particular attention to the 50 descriptions of code generation stages: Instruction Selection, Scheduling and 51 Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code 52 Insertion, Late Machine Code Optimizations, and Code Emission. 53 54* :doc:`TableGen/index` --- a document that describes the TableGen 55 (``tblgen``) application that manages domain-specific information to support 56 LLVM code generation. TableGen processes input from a target description 57 file (``.td`` suffix) and generates C++ code that can be used for code 58 generation. 59 60* :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as 61 are several ``SelectionDAG`` processing steps. 62 63To follow the SPARC examples in this document, have a copy of `The SPARC 64Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for 65reference. For details about the ARM instruction set, refer to the `ARM 66Architecture Reference Manual <http://infocenter.arm.com/>`_. For more about 67the GNU Assembler format (``GAS``), see `Using As 68<http://sourceware.org/binutils/docs/as/index.html>`_, especially for the 69assembly printer. "Using As" contains a list of target machine dependent 70features. 71 72Basic Steps 73----------- 74 75To write a compiler backend for LLVM that converts the LLVM IR to code for a 76specified target (machine or other language), follow these steps: 77 78* Create a subclass of the ``TargetMachine`` class that describes 79 characteristics of your target machine. Copy existing examples of specific 80 ``TargetMachine`` class and header files; for example, start with 81 ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file 82 names for your target. Similarly, change code that references "``Sparc``" to 83 reference your target. 84 85* Describe the register set of the target. Use TableGen to generate code for 86 register definition, register aliases, and register classes from a 87 target-specific ``RegisterInfo.td`` input file. You should also write 88 additional code for a subclass of the ``TargetRegisterInfo`` class that 89 represents the class register file data used for register allocation and also 90 describes the interactions between registers. 91 92* Describe the instruction set of the target. Use TableGen to generate code 93 for target-specific instructions from target-specific versions of 94 ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``. You should write 95 additional code for a subclass of the ``TargetInstrInfo`` class to represent 96 machine instructions supported by the target machine. 97 98* Describe the selection and conversion of the LLVM IR from a Directed Acyclic 99 Graph (DAG) representation of instructions to native target-specific 100 instructions. Use TableGen to generate code that matches patterns and 101 selects instructions based on additional information in a target-specific 102 version of ``TargetInstrInfo.td``. Write code for ``XXXISelDAGToDAG.cpp``, 103 where ``XXX`` identifies the specific target, to perform pattern matching and 104 DAG-to-DAG instruction selection. Also write code in ``XXXISelLowering.cpp`` 105 to replace or remove operations and data types that are not supported 106 natively in a SelectionDAG. 107 108* Write code for an assembly printer that converts LLVM IR to a GAS format for 109 your target machine. You should add assembly strings to the instructions 110 defined in your target-specific version of ``TargetInstrInfo.td``. You 111 should also write code for a subclass of ``AsmPrinter`` that performs the 112 LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``. 113 114* Optionally, add support for subtargets (i.e., variants with different 115 capabilities). You should also write code for a subclass of the 116 ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and 117 ``-mattr=`` command-line options. 118 119* Optionally, add JIT support and create a machine code emitter (subclass of 120 ``TargetJITInfo``) that is used to emit binary code directly into memory. 121 122In the ``.cpp`` and ``.h``. files, initially stub up these methods and then 123implement them later. Initially, you may not know which private members that 124the class will need and which components will need to be subclassed. 125 126Preliminaries 127------------- 128 129To actually create your compiler backend, you need to create and modify a few 130files. The absolute minimum is discussed here. But to actually use the LLVM 131target-independent code generator, you must perform the steps described in the 132:doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document. 133 134First, you should create a subdirectory under ``lib/Target`` to hold all the 135files related to your target. If your target is called "Dummy", create the 136directory ``lib/Target/Dummy``. 137 138In this new directory, create a ``CMakeLists.txt``. It is easiest to copy a 139``CMakeLists.txt`` of another target and modify it. It should at least contain 140the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy`` 141(for example, see the MIPS target). Alternatively, you can split the library 142into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which 143should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example, 144see the PowerPC target). 145 146Note that these two naming schemes are hardcoded into ``llvm-config``. Using 147any other naming scheme will confuse ``llvm-config`` and produce a lot of 148(seemingly unrelated) linker errors when linking ``llc``. 149 150To make your target actually do something, you need to implement a subclass of 151``TargetMachine``. This implementation should typically be in the file 152``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target`` 153directory will be built and should work. To use LLVM's target independent code 154generator, you should do what all current machine backends do: create a 155subclass of ``LLVMTargetMachine``. (To create a target from scratch, create a 156subclass of ``TargetMachine``.) 157 158To get LLVM to actually build and link your target, you need to run ``cmake`` 159with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your 160target without needing to add it to the list of all the targets. 161 162Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable 163located in the main ``CMakeLists.txt``. 164 165Target Machine 166============== 167 168``LLVMTargetMachine`` is designed as a base class for targets implemented with 169the LLVM target-independent code generator. The ``LLVMTargetMachine`` class 170should be specialized by a concrete target class that implements the various 171virtual methods. ``LLVMTargetMachine`` is defined as a subclass of 172``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``. The 173``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes 174numerous command-line options. 175 176To create a concrete target-specific subclass of ``LLVMTargetMachine``, start 177by copying an existing ``TargetMachine`` class and header. You should name the 178files that you create to reflect your specific target. For instance, for the 179SPARC target, name the files ``SparcTargetMachine.h`` and 180``SparcTargetMachine.cpp``. 181 182For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must 183have access methods to obtain objects that represent target components. These 184methods are named ``get*Info``, and are intended to obtain the instruction set 185(``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout 186(``getFrameInfo``), and similar information. ``XXXTargetMachine`` must also 187implement the ``getDataLayout`` method to access an object with target-specific 188data characteristics, such as data type size and alignment requirements. 189 190For instance, for the SPARC target, the header file ``SparcTargetMachine.h`` 191declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that 192simply return a class member. 193 194.. code-block:: c++ 195 196 namespace llvm { 197 198 class Module; 199 200 class SparcTargetMachine : public LLVMTargetMachine { 201 const DataLayout DataLayout; // Calculates type size & alignment 202 SparcSubtarget Subtarget; 203 SparcInstrInfo InstrInfo; 204 TargetFrameInfo FrameInfo; 205 206 protected: 207 virtual const TargetAsmInfo *createTargetAsmInfo() const; 208 209 public: 210 SparcTargetMachine(const Module &M, const std::string &FS); 211 212 virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } 213 virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } 214 virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } 215 virtual const TargetRegisterInfo *getRegisterInfo() const { 216 return &InstrInfo.getRegisterInfo(); 217 } 218 virtual const DataLayout *getDataLayout() const { return &DataLayout; } 219 static unsigned getModuleMatchQuality(const Module &M); 220 221 // Pass Pipeline Configuration 222 virtual bool addInstSelector(PassManagerBase &PM, bool Fast); 223 virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); 224 }; 225 226 } // end namespace llvm 227 228* ``getInstrInfo()`` 229* ``getRegisterInfo()`` 230* ``getFrameInfo()`` 231* ``getDataLayout()`` 232* ``getSubtargetImpl()`` 233 234For some targets, you also need to support the following methods: 235 236* ``getTargetLowering()`` 237* ``getJITInfo()`` 238 239Some architectures, such as GPUs, do not support jumping to an arbitrary 240program location and implement branching using masked execution and loop using 241special instructions around the loop body. In order to avoid CFG modifications 242that introduce irreducible control flow not handled by such hardware, a target 243must call `setRequiresStructuredCFG(true)` when being initialized. 244 245In addition, the ``XXXTargetMachine`` constructor should specify a 246``TargetDescription`` string that determines the data layout for the target 247machine, including characteristics such as pointer size, alignment, and 248endianness. For example, the constructor for ``SparcTargetMachine`` contains 249the following: 250 251.. code-block:: c++ 252 253 SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) 254 : DataLayout("E-p:32:32-f128:128:128"), 255 Subtarget(M, FS), InstrInfo(Subtarget), 256 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { 257 } 258 259Hyphens separate portions of the ``TargetDescription`` string. 260 261* An upper-case "``E``" in the string indicates a big-endian target data model. 262 A lower-case "``e``" indicates little-endian. 263 264* "``p:``" is followed by pointer information: size, ABI alignment, and 265 preferred alignment. If only two figures follow "``p:``", then the first 266 value is pointer size, and the second value is both ABI and preferred 267 alignment. 268 269* Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or 270 "``a``" (corresponding to integer, floating point, vector, or aggregate). 271 "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred 272 alignment. "``f``" is followed by three values: the first indicates the size 273 of a long double, then ABI alignment, and then ABI preferred alignment. 274 275Target Registration 276=================== 277 278You must also register your target with the ``TargetRegistry``, which is what 279other LLVM tools use to be able to lookup and use your target at runtime. The 280``TargetRegistry`` can be used directly, but for most targets there are helper 281templates which should take care of the work for you. 282 283All targets should declare a global ``Target`` object which is used to 284represent the target during registration. Then, in the target's ``TargetInfo`` 285library, the target should define that object and use the ``RegisterTarget`` 286template to register the target. For example, the Sparc registration code 287looks like this: 288 289.. code-block:: c++ 290 291 Target llvm::getTheSparcTarget(); 292 293 extern "C" void LLVMInitializeSparcTargetInfo() { 294 RegisterTarget<Triple::sparc, /*HasJIT=*/false> 295 X(getTheSparcTarget(), "sparc", "Sparc"); 296 } 297 298This allows the ``TargetRegistry`` to look up the target by name or by target 299triple. In addition, most targets will also register additional features which 300are available in separate libraries. These registration steps are separate, 301because some clients may wish to only link in some parts of the target --- the 302JIT code generator does not require the use of the assembler printer, for 303example. Here is an example of registering the Sparc assembly printer: 304 305.. code-block:: c++ 306 307 extern "C" void LLVMInitializeSparcAsmPrinter() { 308 RegisterAsmPrinter<SparcAsmPrinter> X(getTheSparcTarget()); 309 } 310 311For more information, see "`llvm/Target/TargetRegistry.h 312</doxygen/TargetRegistry_8h-source.html>`_". 313 314Register Set and Register Classes 315================================= 316 317You should describe a concrete target-specific class that represents the 318register file of a target machine. This class is called ``XXXRegisterInfo`` 319(where ``XXX`` identifies the target) and represents the class register file 320data that is used for register allocation. It also describes the interactions 321between registers. 322 323You also need to define register classes to categorize related registers. A 324register class should be added for groups of registers that are all treated the 325same way for some instruction. Typical examples are register classes for 326integer, floating-point, or vector registers. A register allocator allows an 327instruction to use any register in a specified register class to perform the 328instruction in a similar manner. Register classes allocate virtual registers 329to instructions from these sets, and register classes let the 330target-independent register allocator automatically choose the actual 331registers. 332 333Much of the code for registers, including register definition, register 334aliases, and register classes, is generated by TableGen from 335``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc`` 336and ``XXXGenRegisterInfo.inc`` output files. Some of the code in the 337implementation of ``XXXRegisterInfo`` requires hand-coding. 338 339Defining a Register 340------------------- 341 342The ``XXXRegisterInfo.td`` file typically starts with register definitions for 343a target machine. The ``Register`` class (specified in ``Target.td``) is used 344to define an object for each register. The specified string ``n`` becomes the 345``Name`` of the register. The basic ``Register`` object does not have any 346subregisters and does not specify any aliases. 347 348.. code-block:: text 349 350 class Register<string n> { 351 string Namespace = ""; 352 string AsmName = n; 353 string Name = n; 354 int SpillSize = 0; 355 int SpillAlignment = 0; 356 list<Register> Aliases = []; 357 list<Register> SubRegs = []; 358 list<int> DwarfNumbers = []; 359 } 360 361For example, in the ``X86RegisterInfo.td`` file, there are register definitions 362that utilize the ``Register`` class, such as: 363 364.. code-block:: text 365 366 def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; 367 368This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``) 369that are used by ``gcc``, ``gdb``, or a debug information writer to identify a 370register. For register ``AL``, ``DwarfRegNum`` takes an array of 3 values 371representing 3 different modes: the first element is for X86-64, the second for 372exception handling (EH) on X86-32, and the third is generic. -1 is a special 373Dwarf number that indicates the gcc number is undefined, and -2 indicates the 374register number is invalid for this mode. 375 376From the previously described line in the ``X86RegisterInfo.td`` file, TableGen 377generates this code in the ``X86GenRegisterInfo.inc`` file: 378 379.. code-block:: c++ 380 381 static const unsigned GR8[] = { X86::AL, ... }; 382 383 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; 384 385 const TargetRegisterDesc RegisterDescriptors[] = { 386 ... 387 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... 388 389From the register info file, TableGen generates a ``TargetRegisterDesc`` object 390for each register. ``TargetRegisterDesc`` is defined in 391``include/llvm/Target/TargetRegisterInfo.h`` with the following fields: 392 393.. code-block:: c++ 394 395 struct TargetRegisterDesc { 396 const char *AsmName; // Assembly language name for the register 397 const char *Name; // Printable name for the reg (for debugging) 398 const unsigned *AliasSet; // Register Alias Set 399 const unsigned *SubRegs; // Sub-register set 400 const unsigned *ImmSubRegs; // Immediate sub-register set 401 const unsigned *SuperRegs; // Super-register set 402 }; 403 404TableGen uses the entire target description file (``.td``) to determine text 405names for the register (in the ``AsmName`` and ``Name`` fields of 406``TargetRegisterDesc``) and the relationships of other registers to the defined 407register (in the other ``TargetRegisterDesc`` fields). In this example, other 408definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as 409aliases for one another, so TableGen generates a null-terminated array 410(``AL_AliasSet``) for this register alias set. 411 412The ``Register`` class is commonly used as a base class for more complex 413classes. In ``Target.td``, the ``Register`` class is the base for the 414``RegisterWithSubRegs`` class that is used to define registers that need to 415specify subregisters in the ``SubRegs`` list, as shown here: 416 417.. code-block:: text 418 419 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { 420 let SubRegs = subregs; 421 } 422 423In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC: 424a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``, 425and ``Rd``. SPARC registers are identified by 5-bit ID numbers, which is a 426feature common to these subclasses. Note the use of "``let``" expressions to 427override values that are initially defined in a superclass (such as ``SubRegs`` 428field in the ``Rd`` class). 429 430.. code-block:: text 431 432 class SparcReg<string n> : Register<n> { 433 field bits<5> Num; 434 let Namespace = "SP"; 435 } 436 // Ri - 32-bit integer registers 437 class Ri<bits<5> num, string n> : 438 SparcReg<n> { 439 let Num = num; 440 } 441 // Rf - 32-bit floating-point registers 442 class Rf<bits<5> num, string n> : 443 SparcReg<n> { 444 let Num = num; 445 } 446 // Rd - Slots in the FP register file for 64-bit floating-point values. 447 class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> { 448 let Num = num; 449 let SubRegs = subregs; 450 } 451 452In the ``SparcRegisterInfo.td`` file, there are register definitions that 453utilize these subclasses of ``Register``, such as: 454 455.. code-block:: text 456 457 def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>; 458 def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; 459 ... 460 def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>; 461 def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>; 462 ... 463 def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>; 464 def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>; 465 466The last two registers shown above (``D0`` and ``D1``) are double-precision 467floating-point registers that are aliases for pairs of single-precision 468floating-point sub-registers. In addition to aliases, the sub-register and 469super-register relationships of the defined register are in fields of a 470register's ``TargetRegisterDesc``. 471 472Defining a Register Class 473------------------------- 474 475The ``RegisterClass`` class (specified in ``Target.td``) is used to define an 476object that represents a group of related registers and also defines the 477default allocation order of the registers. A target description file 478``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes 479using the following class: 480 481.. code-block:: text 482 483 class RegisterClass<string namespace, 484 list<ValueType> regTypes, int alignment, dag regList> { 485 string Namespace = namespace; 486 list<ValueType> RegTypes = regTypes; 487 int Size = 0; // spill size, in bits; zero lets tblgen pick the size 488 int Alignment = alignment; 489 490 // CopyCost is the cost of copying a value between two registers 491 // default value 1 means a single instruction 492 // A negative value means copying is extremely expensive or impossible 493 int CopyCost = 1; 494 dag MemberList = regList; 495 496 // for register classes that are subregisters of this class 497 list<RegisterClass> SubRegClassList = []; 498 499 code MethodProtos = [{}]; // to insert arbitrary code 500 code MethodBodies = [{}]; 501 } 502 503To define a ``RegisterClass``, use the following 4 arguments: 504 505* The first argument of the definition is the name of the namespace. 506 507* The second argument is a list of ``ValueType`` register type values that are 508 defined in ``include/llvm/CodeGen/ValueTypes.td``. Defined values include 509 integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean), 510 floating-point types (``f32``, ``f64``), and vector types (for example, 511 ``v8i16`` for an ``8 x i16`` vector). All registers in a ``RegisterClass`` 512 must have the same ``ValueType``, but some registers may store vector data in 513 different configurations. For example a register that can process a 128-bit 514 vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4 515 32-bit integers, and so on. 516 517* The third argument of the ``RegisterClass`` definition specifies the 518 alignment required of the registers when they are stored or loaded to 519 memory. 520 521* The final argument, ``regList``, specifies which registers are in this class. 522 If an alternative allocation order method is not specified, then ``regList`` 523 also defines the order of allocation used by the register allocator. Besides 524 simply listing registers with ``(add R0, R1, ...)``, more advanced set 525 operators are available. See ``include/llvm/Target/Target.td`` for more 526 information. 527 528In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined: 529``FPRegs``, ``DFPRegs``, and ``IntRegs``. For all three register classes, the 530first argument defines the namespace with the string "``SP``". ``FPRegs`` 531defines a group of 32 single-precision floating-point registers (``F0`` to 532``F31``); ``DFPRegs`` defines a group of 16 double-precision registers 533(``D0-D15``). 534 535.. code-block:: text 536 537 // F0, F1, F2, ..., F31 538 def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>; 539 540 def DFPRegs : RegisterClass<"SP", [f64], 64, 541 (add D0, D1, D2, D3, D4, D5, D6, D7, D8, 542 D9, D10, D11, D12, D13, D14, D15)>; 543 544 def IntRegs : RegisterClass<"SP", [i32], 32, 545 (add L0, L1, L2, L3, L4, L5, L6, L7, 546 I0, I1, I2, I3, I4, I5, 547 O0, O1, O2, O3, O4, O5, O7, 548 G1, 549 // Non-allocatable regs: 550 G2, G3, G4, 551 O6, // stack ptr 552 I6, // frame ptr 553 I7, // return address 554 G0, // constant zero 555 G5, G6, G7 // reserved for kernel 556 )>; 557 558Using ``SparcRegisterInfo.td`` with TableGen generates several output files 559that are intended for inclusion in other source code that you write. 560``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should 561be included in the header file for the implementation of the SPARC register 562implementation that you write (``SparcRegisterInfo.h``). In 563``SparcGenRegisterInfo.h.inc`` a new structure is defined called 564``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base. It also 565specifies types, based upon the defined register classes: ``DFPRegsClass``, 566``FPRegsClass``, and ``IntRegsClass``. 567 568``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is 569included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register 570implementation. The code below shows only the generated integer registers and 571associated register classes. The order of registers in ``IntRegs`` reflects 572the order in the definition of ``IntRegs`` in the target description file. 573 574.. code-block:: c++ 575 576 // IntRegs Register Class... 577 static const unsigned IntRegs[] = { 578 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, 579 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, 580 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, 581 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, 582 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, 583 SP::G6, SP::G7, 584 }; 585 586 // IntRegsVTs Register Class Value Types... 587 static const MVT::ValueType IntRegsVTs[] = { 588 MVT::i32, MVT::Other 589 }; 590 591 namespace SP { // Register class instances 592 DFPRegsClass DFPRegsRegClass; 593 FPRegsClass FPRegsRegClass; 594 IntRegsClass IntRegsRegClass; 595 ... 596 // IntRegs Sub-register Classes... 597 static const TargetRegisterClass* const IntRegsSubRegClasses [] = { 598 NULL 599 }; 600 ... 601 // IntRegs Super-register Classes.. 602 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { 603 NULL 604 }; 605 ... 606 // IntRegs Register Class sub-classes... 607 static const TargetRegisterClass* const IntRegsSubclasses [] = { 608 NULL 609 }; 610 ... 611 // IntRegs Register Class super-classes... 612 static const TargetRegisterClass* const IntRegsSuperclasses [] = { 613 NULL 614 }; 615 616 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, 617 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, 618 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} 619 } 620 621The register allocators will avoid using reserved registers, and callee saved 622registers are not used until all the volatile registers have been used. That 623is usually good enough, but in some cases it may be necessary to provide custom 624allocation orders. 625 626Implement a subclass of ``TargetRegisterInfo`` 627---------------------------------------------- 628 629The final step is to hand code portions of ``XXXRegisterInfo``, which 630implements the interface described in ``TargetRegisterInfo.h`` (see 631:ref:`TargetRegisterInfo`). These functions return ``0``, ``NULL``, or 632``false``, unless overridden. Here is a list of functions that are overridden 633for the SPARC implementation in ``SparcRegisterInfo.cpp``: 634 635* ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the 636 order of the desired callee-save stack frame offset. 637 638* ``getReservedRegs`` --- Returns a bitset indexed by physical register 639 numbers, indicating if a particular register is unavailable. 640 641* ``hasFP`` --- Return a Boolean indicating if a function should have a 642 dedicated frame pointer register. 643 644* ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo 645 instructions are used, this can be called to eliminate them. 646 647* ``eliminateFrameIndex`` --- Eliminate abstract frame indices from 648 instructions that may use them. 649 650* ``emitPrologue`` --- Insert prologue code into the function. 651 652* ``emitEpilogue`` --- Insert epilogue code into the function. 653 654.. _instruction-set: 655 656Instruction Set 657=============== 658 659During the early stages of code generation, the LLVM IR code is converted to a 660``SelectionDAG`` with nodes that are instances of the ``SDNode`` class 661containing target instructions. An ``SDNode`` has an opcode, operands, type 662requirements, and operation properties. For example, is an operation 663commutative, does an operation load from memory. The various operation node 664types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file 665(values of the ``NodeType`` enum in the ``ISD`` namespace). 666 667TableGen uses the following target description (``.td``) input files to 668generate much of the code for instruction definition: 669 670* ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and 671 other fundamental classes are defined. 672 673* ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection 674 generators, contains ``SDTC*`` classes (selection DAG type constraint), 675 definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``, 676 ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``, 677 ``PatFrag``, ``PatLeaf``, ``ComplexPattern``. 678 679* ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific 680 instructions. 681 682* ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates, 683 condition codes, and instructions of an instruction set. For architecture 684 modifications, a different file name may be used. For example, for Pentium 685 with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with 686 MMX, this file is ``X86InstrMMX.td``. 687 688There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of 689the target. The ``XXX.td`` file includes the other ``.td`` input files, but 690its contents are only directly important for subtargets. 691 692You should describe a concrete target-specific class ``XXXInstrInfo`` that 693represents machine instructions supported by a target machine. 694``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of 695which describes one instruction. An instruction descriptor defines: 696 697* Opcode mnemonic 698* Number of operands 699* List of implicit register definitions and uses 700* Target-independent properties (such as memory access, is commutable) 701* Target-specific flags 702 703The Instruction class (defined in ``Target.td``) is mostly used as a base for 704more complex instruction classes. 705 706.. code-block:: text 707 708 class Instruction { 709 string Namespace = ""; 710 dag OutOperandList; // A dag containing the MI def operand list. 711 dag InOperandList; // A dag containing the MI use operand list. 712 string AsmString = ""; // The .s format to print the instruction with. 713 list<dag> Pattern; // Set to the DAG pattern for this instruction. 714 list<Register> Uses = []; 715 list<Register> Defs = []; 716 list<Predicate> Predicates = []; // predicates turned into isel match code 717 ... remainder not shown for space ... 718 } 719 720A ``SelectionDAG`` node (``SDNode``) should contain an object representing a 721target-specific instruction that is defined in ``XXXInstrInfo.td``. The 722instruction objects should represent instructions from the architecture manual 723of the target machine (such as the SPARC Architecture Manual for the SPARC 724target). 725 726A single instruction from the architecture manual is often modeled as multiple 727target instructions, depending upon its operands. For example, a manual might 728describe an add instruction that takes a register or an immediate operand. An 729LLVM target could model this with two instructions named ``ADDri`` and 730``ADDrr``. 731 732You should define a class for each instruction category and define each opcode 733as a subclass of the category with appropriate parameters such as the fixed 734binary encoding of opcodes and extended opcodes. You should map the register 735bits to the bits of the instruction in which they are encoded (for the JIT). 736Also you should specify how the instruction should be printed when the 737automatic assembly printer is used. 738 739As is described in the SPARC Architecture Manual, Version 8, there are three 740major 32-bit formats for instructions. Format 1 is only for the ``CALL`` 741instruction. Format 2 is for branch on condition codes and ``SETHI`` (set high 742bits of a register) instructions. Format 3 is for other instructions. 743 744Each of these formats has corresponding classes in ``SparcInstrFormat.td``. 745``InstSP`` is a base class for other instruction classes. Additional base 746classes are specified for more precise formats: for example in 747``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for 748branches. There are three other base classes: ``F3_1`` for register/register 749operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for 750floating-point operations. ``SparcInstrInfo.td`` also adds the base class 751``Pseudo`` for synthetic SPARC instructions. 752 753``SparcInstrInfo.td`` largely consists of operand and instruction definitions 754for the SPARC target. In ``SparcInstrInfo.td``, the following target 755description file entry, ``LDrr``, defines the Load Integer instruction for a 756Word (the ``LD`` SPARC opcode) from a memory address to a register. The first 757parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this 758category of operation. The second parameter (``000000``\ :sub:`2`) is the 759specific operation value for ``LD``/Load Word. The third parameter is the 760output destination, which is a register operand and defined in the ``Register`` 761target description file (``IntRegs``). 762 763.. code-block:: text 764 765 def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), 766 "ld [$addr], $dst", 767 [(set i32:$dst, (load ADDRrr:$addr))]>; 768 769The fourth parameter is the input source, which uses the address operand 770``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``: 771 772.. code-block:: text 773 774 def MEMrr : Operand<i32> { 775 let PrintMethod = "printMemOperand"; 776 let MIOperandInfo = (ops IntRegs, IntRegs); 777 } 778 779The fifth parameter is a string that is used by the assembly printer and can be 780left as an empty string until the assembly printer interface is implemented. 781The sixth and final parameter is the pattern used to match the instruction 782during the SelectionDAG Select Phase described in :doc:`CodeGenerator`. 783This parameter is detailed in the next section, :ref:`instruction-selector`. 784 785Instruction class definitions are not overloaded for different operand types, 786so separate versions of instructions are needed for register, memory, or 787immediate value operands. For example, to perform a Load Integer instruction 788for a Word from an immediate operand to a register, the following instruction 789class is defined: 790 791.. code-block:: text 792 793 def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), 794 "ld [$addr], $dst", 795 [(set i32:$dst, (load ADDRri:$addr))]>; 796 797Writing these definitions for so many similar instructions can involve a lot of 798cut and paste. In ``.td`` files, the ``multiclass`` directive enables the 799creation of templates to define several instruction classes at once (using the 800``defm`` directive). For example in ``SparcInstrInfo.td``, the ``multiclass`` 801pattern ``F3_12`` is defined to create 2 instruction classes each time 802``F3_12`` is invoked: 803 804.. code-block:: text 805 806 multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { 807 def rr : F3_1 <2, Op3Val, 808 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 809 !strconcat(OpcStr, " $b, $c, $dst"), 810 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>; 811 def ri : F3_2 <2, Op3Val, 812 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), 813 !strconcat(OpcStr, " $b, $c, $dst"), 814 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>; 815 } 816 817So when the ``defm`` directive is used for the ``XOR`` and ``ADD`` 818instructions, as seen below, it creates four instruction objects: ``XORrr``, 819``XORri``, ``ADDrr``, and ``ADDri``. 820 821.. code-block:: text 822 823 defm XOR : F3_12<"xor", 0b000011, xor>; 824 defm ADD : F3_12<"add", 0b000000, add>; 825 826``SparcInstrInfo.td`` also includes definitions for condition codes that are 827referenced by branch instructions. The following definitions in 828``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code. 829For example, the 10\ :sup:`th` bit represents the "greater than" condition for 830integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for 831floats. 832 833.. code-block:: text 834 835 def ICC_NE : ICC_VAL< 9>; // Not Equal 836 def ICC_E : ICC_VAL< 1>; // Equal 837 def ICC_G : ICC_VAL<10>; // Greater 838 ... 839 def FCC_U : FCC_VAL<23>; // Unordered 840 def FCC_G : FCC_VAL<22>; // Greater 841 def FCC_UG : FCC_VAL<21>; // Unordered or Greater 842 ... 843 844(Note that ``Sparc.h`` also defines enums that correspond to the same SPARC 845condition codes. Care must be taken to ensure the values in ``Sparc.h`` 846correspond to the values in ``SparcInstrInfo.td``. I.e., ``SPCC::ICC_NE = 9``, 847``SPCC::FCC_U = 23`` and so on.) 848 849Instruction Operand Mapping 850--------------------------- 851 852The code generator backend maps instruction operands to fields in the 853instruction. Operands are assigned to unbound fields in the instruction in the 854order they are defined. Fields are bound when they are assigned a value. For 855example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1`` 856format instruction having three operands. 857 858.. code-block:: text 859 860 def XNORrr : F3_1<2, 0b000111, 861 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), 862 "xnor $b, $c, $dst", 863 [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>; 864 865The instruction templates in ``SparcInstrFormats.td`` show the base class for 866``F3_1`` is ``InstSP``. 867 868.. code-block:: text 869 870 class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { 871 field bits<32> Inst; 872 let Namespace = "SP"; 873 bits<2> op; 874 let Inst{31-30} = op; 875 dag OutOperandList = outs; 876 dag InOperandList = ins; 877 let AsmString = asmstr; 878 let Pattern = pattern; 879 } 880 881``InstSP`` leaves the ``op`` field unbound. 882 883.. code-block:: text 884 885 class F3<dag outs, dag ins, string asmstr, list<dag> pattern> 886 : InstSP<outs, ins, asmstr, pattern> { 887 bits<5> rd; 888 bits<6> op3; 889 bits<5> rs1; 890 let op{1} = 1; // Op = 2 or 3 891 let Inst{29-25} = rd; 892 let Inst{24-19} = op3; 893 let Inst{18-14} = rs1; 894 } 895 896``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1`` 897fields. ``F3`` format instructions will bind the operands ``rd``, ``op3``, and 898``rs1`` fields. 899 900.. code-block:: text 901 902 class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, 903 string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { 904 bits<8> asi = 0; // asi not currently used 905 bits<5> rs2; 906 let op = opVal; 907 let op3 = op3val; 908 let Inst{13} = 0; // i field = 0 909 let Inst{12-5} = asi; // address space identifier 910 let Inst{4-0} = rs2; 911 } 912 913``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields. ``F3_1`` 914format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2`` 915fields. This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``, 916and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively. 917 918Instruction Operand Name Mapping 919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 920 921TableGen will also generate a function called getNamedOperandIdx() which 922can be used to look up an operand's index in a MachineInstr based on its 923TableGen name. Setting the UseNamedOperandTable bit in an instruction's 924TableGen definition will add all of its operands to an enumeration in the 925llvm::XXX:OpName namespace and also add an entry for it into the OperandMap 926table, which can be queried using getNamedOperandIdx() 927 928.. code-block:: text 929 930 int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0 931 int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b); // => 1 932 int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c); // => 2 933 int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d); // => -1 934 935 ... 936 937The entries in the OpName enum are taken verbatim from the TableGen definitions, 938so operands with lowercase names will have lower case entries in the enum. 939 940To include the getNamedOperandIdx() function in your backend, you will need 941to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h. 942For example: 943 944XXXInstrInfo.cpp: 945 946.. code-block:: c++ 947 948 #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function 949 #include "XXXGenInstrInfo.inc" 950 951XXXInstrInfo.h: 952 953.. code-block:: c++ 954 955 #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum 956 #include "XXXGenInstrInfo.inc" 957 958 namespace XXX { 959 int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex); 960 } // End namespace XXX 961 962Instruction Operand Types 963^^^^^^^^^^^^^^^^^^^^^^^^^ 964 965TableGen will also generate an enumeration consisting of all named Operand 966types defined in the backend, in the llvm::XXX::OpTypes namespace. 967Some common immediate Operand types (for instance i8, i32, i64, f32, f64) 968are defined for all targets in ``include/llvm/Target/Target.td``, and are 969available in each Target's OpTypes enum. Also, only named Operand types appear 970in the enumeration: anonymous types are ignored. 971For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both 972instances of the TableGen ``Operand`` class, which represent branch target 973operands: 974 975.. code-block:: text 976 977 def brtarget : Operand<OtherVT>; 978 def brtarget8 : Operand<OtherVT>; 979 980This results in: 981 982.. code-block:: c++ 983 984 namespace X86 { 985 namespace OpTypes { 986 enum OperandType { 987 ... 988 brtarget, 989 brtarget8, 990 ... 991 i32imm, 992 i64imm, 993 ... 994 OPERAND_TYPE_LIST_END 995 } // End namespace OpTypes 996 } // End namespace X86 997 998In typical TableGen fashion, to use the enum, you will need to define a 999preprocessor macro: 1000 1001.. code-block:: c++ 1002 1003 #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum 1004 #include "XXXGenInstrInfo.inc" 1005 1006 1007Instruction Scheduling 1008---------------------- 1009 1010Instruction itineraries can be queried using MCDesc::getSchedClass(). The 1011value can be named by an enumeration in llvm::XXX::Sched namespace generated 1012by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are 1013the same as provided in XXXSchedule.td plus a default NoItinerary class. 1014 1015The schedule models are generated by TableGen by the SubtargetEmitter, 1016using the ``CodeGenSchedModels`` class. This is distinct from the itinerary 1017method of specifying machine resource use. The tool ``utils/schedcover.py`` 1018can be used to determine which instructions have been covered by the 1019schedule model description and which haven't. The first step is to use the 1020instructions below to create an output file. Then run ``schedcover.py`` on the 1021output file: 1022 1023.. code-block:: shell 1024 1025 $ <src>/utils/schedcover.py <build>/lib/Target/AArch64/tblGenSubtarget.with 1026 instruction, default, CortexA53Model, CortexA57Model, CycloneModel, ExynosM1Model, FalkorModel, KryoModel, ThunderX2T99Model, ThunderXT8XModel 1027 ABSv16i8, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_2VXVY_2cyc, KryoWrite_2cyc_XY_XY_150ln, , 1028 ABSv1i64, WriteV, , , CyWriteV3, M1WriteNMISC1, FalkorWr_1VXVY_2cyc, KryoWrite_2cyc_XY_noRSV_67ln, , 1029 ... 1030 1031To capture the debug output from generating a schedule model, change to the 1032appropriate target directory and use the following command: 1033command with the ``subtarget-emitter`` debug option: 1034 1035.. code-block:: shell 1036 1037 $ <build>/bin/llvm-tblgen -debug-only=subtarget-emitter -gen-subtarget \ 1038 -I <src>/lib/Target/<target> -I <src>/include \ 1039 -I <src>/lib/Target <src>/lib/Target/<target>/<target>.td \ 1040 -o <build>/lib/Target/<target>/<target>GenSubtargetInfo.inc.tmp \ 1041 > tblGenSubtarget.dbg 2>&1 1042 1043Where ``<build>`` is the build directory, ``src`` is the source directory, 1044and ``<target>`` is the name of the target. 1045To double check that the above command is what is needed, one can capture the 1046exact TableGen command from a build by using: 1047 1048.. code-block:: shell 1049 1050 $ VERBOSE=1 make ... 1051 1052and search for ``llvm-tblgen`` commands in the output. 1053 1054 1055Instruction Relation Mapping 1056---------------------------- 1057 1058This TableGen feature is used to relate instructions with each other. It is 1059particularly useful when you have multiple instruction formats and need to 1060switch between them after instruction selection. This entire feature is driven 1061by relation models which can be defined in ``XXXInstrInfo.td`` files 1062according to the target-specific instruction set. Relation models are defined 1063using ``InstrMapping`` class as a base. TableGen parses all the models 1064and generates instruction relation maps using the specified information. 1065Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file 1066along with the functions to query them. For the detailed information on how to 1067use this feature, please refer to :doc:`HowToUseInstrMappings`. 1068 1069Implement a subclass of ``TargetInstrInfo`` 1070------------------------------------------- 1071 1072The final step is to hand code portions of ``XXXInstrInfo``, which implements 1073the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`). 1074These functions return ``0`` or a Boolean or they assert, unless overridden. 1075Here's a list of functions that are overridden for the SPARC implementation in 1076``SparcInstrInfo.cpp``: 1077 1078* ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct 1079 load from a stack slot, return the register number of the destination and the 1080 ``FrameIndex`` of the stack slot. 1081 1082* ``isStoreToStackSlot`` --- If the specified machine instruction is a direct 1083 store to a stack slot, return the register number of the destination and the 1084 ``FrameIndex`` of the stack slot. 1085 1086* ``copyPhysReg`` --- Copy values between a pair of physical registers. 1087 1088* ``storeRegToStackSlot`` --- Store a register value to a stack slot. 1089 1090* ``loadRegFromStackSlot`` --- Load a register value from a stack slot. 1091 1092* ``storeRegToAddr`` --- Store a register value to memory. 1093 1094* ``loadRegFromAddr`` --- Load a register value from memory. 1095 1096* ``foldMemoryOperand`` --- Attempt to combine instructions of any load or 1097 store instruction for the specified operand(s). 1098 1099Branch Folding and If Conversion 1100-------------------------------- 1101 1102Performance can be improved by combining instructions or by eliminating 1103instructions that are never reached. The ``AnalyzeBranch`` method in 1104``XXXInstrInfo`` may be implemented to examine conditional instructions and 1105remove unnecessary instructions. ``AnalyzeBranch`` looks at the end of a 1106machine basic block (MBB) for opportunities for improvement, such as branch 1107folding and if conversion. The ``BranchFolder`` and ``IfConverter`` machine 1108function passes (see the source files ``BranchFolding.cpp`` and 1109``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch`` 1110to improve the control flow graph that represents the instructions. 1111 1112Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be 1113examined as models for your own ``AnalyzeBranch`` implementation. Since SPARC 1114does not implement a useful ``AnalyzeBranch``, the ARM target implementation is 1115shown below. 1116 1117``AnalyzeBranch`` returns a Boolean value and takes four parameters: 1118 1119* ``MachineBasicBlock &MBB`` --- The incoming block to be examined. 1120 1121* ``MachineBasicBlock *&TBB`` --- A destination block that is returned. For a 1122 conditional branch that evaluates to true, ``TBB`` is the destination. 1123 1124* ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to 1125 false, ``FBB`` is returned as the destination. 1126 1127* ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a 1128 condition for a conditional branch. 1129 1130In the simplest case, if a block ends without a branch, then it falls through 1131to the successor block. No destination blocks are specified for either ``TBB`` 1132or ``FBB``, so both parameters return ``NULL``. The start of the 1133``AnalyzeBranch`` (see code below for the ARM target) shows the function 1134parameters and the code for the simplest case. 1135 1136.. code-block:: c++ 1137 1138 bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1139 MachineBasicBlock *&TBB, 1140 MachineBasicBlock *&FBB, 1141 std::vector<MachineOperand> &Cond) const 1142 { 1143 MachineBasicBlock::iterator I = MBB.end(); 1144 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) 1145 return false; 1146 1147If a block ends with a single unconditional branch instruction, then 1148``AnalyzeBranch`` (shown below) should return the destination of that branch in 1149the ``TBB`` parameter. 1150 1151.. code-block:: c++ 1152 1153 if (LastOpc == ARM::B || LastOpc == ARM::tB) { 1154 TBB = LastInst->getOperand(0).getMBB(); 1155 return false; 1156 } 1157 1158If a block ends with two unconditional branches, then the second branch is 1159never reached. In that situation, as shown below, remove the last branch 1160instruction and return the penultimate branch in the ``TBB`` parameter. 1161 1162.. code-block:: c++ 1163 1164 if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) && 1165 (LastOpc == ARM::B || LastOpc == ARM::tB)) { 1166 TBB = SecondLastInst->getOperand(0).getMBB(); 1167 I = LastInst; 1168 I->eraseFromParent(); 1169 return false; 1170 } 1171 1172A block may end with a single conditional branch instruction that falls through 1173to successor block if the condition evaluates to false. In that case, 1174``AnalyzeBranch`` (shown below) should return the destination of that 1175conditional branch in the ``TBB`` parameter and a list of operands in the 1176``Cond`` parameter to evaluate the condition. 1177 1178.. code-block:: c++ 1179 1180 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { 1181 // Block ends with fall-through condbranch. 1182 TBB = LastInst->getOperand(0).getMBB(); 1183 Cond.push_back(LastInst->getOperand(1)); 1184 Cond.push_back(LastInst->getOperand(2)); 1185 return false; 1186 } 1187 1188If a block ends with both a conditional branch and an ensuing unconditional 1189branch, then ``AnalyzeBranch`` (shown below) should return the conditional 1190branch destination (assuming it corresponds to a conditional evaluation of 1191"``true``") in the ``TBB`` parameter and the unconditional branch destination 1192in the ``FBB`` (corresponding to a conditional evaluation of "``false``"). A 1193list of operands to evaluate the condition should be returned in the ``Cond`` 1194parameter. 1195 1196.. code-block:: c++ 1197 1198 unsigned SecondLastOpc = SecondLastInst->getOpcode(); 1199 1200 if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || 1201 (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { 1202 TBB = SecondLastInst->getOperand(0).getMBB(); 1203 Cond.push_back(SecondLastInst->getOperand(1)); 1204 Cond.push_back(SecondLastInst->getOperand(2)); 1205 FBB = LastInst->getOperand(0).getMBB(); 1206 return false; 1207 } 1208 1209For the last two cases (ending with a single conditional branch or ending with 1210one conditional and one unconditional branch), the operands returned in the 1211``Cond`` parameter can be passed to methods of other instructions to create new 1212branches or perform other operations. An implementation of ``AnalyzeBranch`` 1213requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage 1214subsequent operations. 1215 1216``AnalyzeBranch`` should return false indicating success in most circumstances. 1217``AnalyzeBranch`` should only return true when the method is stumped about what 1218to do, for example, if a block has three terminating branches. 1219``AnalyzeBranch`` may return true if it encounters a terminator it cannot 1220handle, such as an indirect branch. 1221 1222.. _instruction-selector: 1223 1224Instruction Selector 1225==================== 1226 1227LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of 1228the ``SelectionDAG`` ideally represent native target instructions. During code 1229generation, instruction selection passes are performed to convert non-native 1230DAG instructions into native target-specific instructions. The pass described 1231in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG 1232instruction selection. Optionally, a pass may be defined (in 1233``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch 1234instructions. Later, the code in ``XXXISelLowering.cpp`` replaces or removes 1235operations and data types not supported natively (legalizes) in a 1236``SelectionDAG``. 1237 1238TableGen generates code for instruction selection using the following target 1239description input files: 1240 1241* ``XXXInstrInfo.td`` --- Contains definitions of instructions in a 1242 target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is 1243 included in ``XXXISelDAGToDAG.cpp``. 1244 1245* ``XXXCallingConv.td`` --- Contains the calling and return value conventions 1246 for the target architecture, and it generates ``XXXGenCallingConv.inc``, 1247 which is included in ``XXXISelLowering.cpp``. 1248 1249The implementation of an instruction selection pass must include a header that 1250declares the ``FunctionPass`` class or a subclass of ``FunctionPass``. In 1251``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction 1252selection pass into the queue of passes to run. 1253 1254The LLVM static compiler (``llc``) is an excellent tool for visualizing the 1255contents of DAGs. To display the ``SelectionDAG`` before or after specific 1256processing phases, use the command line options for ``llc``, described at 1257:ref:`SelectionDAG-Process`. 1258 1259To describe instruction selector behavior, you should add patterns for lowering 1260LLVM code into a ``SelectionDAG`` as the last parameter of the instruction 1261definitions in ``XXXInstrInfo.td``. For example, in ``SparcInstrInfo.td``, 1262this entry defines a register store operation, and the last parameter describes 1263a pattern with the store DAG operator. 1264 1265.. code-block:: text 1266 1267 def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), 1268 "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>; 1269 1270``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``: 1271 1272.. code-block:: text 1273 1274 def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; 1275 1276The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function 1277defined in an implementation of the Instructor Selector (such as 1278``SparcISelDAGToDAG.cpp``). 1279 1280In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined 1281below: 1282 1283.. code-block:: text 1284 1285 def store : PatFrag<(ops node:$val, node:$ptr), 1286 (st node:$val, node:$ptr), [{ 1287 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) 1288 return !ST->isTruncatingStore() && 1289 ST->getAddressingMode() == ISD::UNINDEXED; 1290 return false; 1291 }]>; 1292 1293``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the 1294``SelectCode`` method that is used to call the appropriate processing method 1295for an instruction. In this example, ``SelectCode`` calls ``Select_ISD_STORE`` 1296for the ``ISD::STORE`` opcode. 1297 1298.. code-block:: c++ 1299 1300 SDNode *SelectCode(SDValue N) { 1301 ... 1302 MVT::ValueType NVT = N.getNode()->getValueType(0); 1303 switch (N.getOpcode()) { 1304 case ISD::STORE: { 1305 switch (NVT) { 1306 default: 1307 return Select_ISD_STORE(N); 1308 break; 1309 } 1310 break; 1311 } 1312 ... 1313 1314The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``, 1315code for ``STrr`` is created for ``Select_ISD_STORE``. The ``Emit_22`` method 1316is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this 1317instruction. 1318 1319.. code-block:: c++ 1320 1321 SDNode *Select_ISD_STORE(const SDValue &N) { 1322 SDValue Chain = N.getOperand(0); 1323 if (Predicate_store(N.getNode())) { 1324 SDValue N1 = N.getOperand(1); 1325 SDValue N2 = N.getOperand(2); 1326 SDValue CPTmp0; 1327 SDValue CPTmp1; 1328 1329 // Pattern: (st:void i32:i32:$src, 1330 // ADDRrr:i32:$addr)<<P:Predicate_store>> 1331 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) 1332 // Pattern complexity = 13 cost = 1 size = 0 1333 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && 1334 N1.getNode()->getValueType(0) == MVT::i32 && 1335 N2.getNode()->getValueType(0) == MVT::i32) { 1336 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); 1337 } 1338 ... 1339 1340The SelectionDAG Legalize Phase 1341------------------------------- 1342 1343The Legalize phase converts a DAG to use types and operations that are natively 1344supported by the target. For natively unsupported types and operations, you 1345need to add code to the target-specific ``XXXTargetLowering`` implementation to 1346convert unsupported types and operations to supported ones. 1347 1348In the constructor for the ``XXXTargetLowering`` class, first use the 1349``addRegisterClass`` method to specify which types are supported and which 1350register classes are associated with them. The code for the register classes 1351are generated by TableGen from ``XXXRegisterInfo.td`` and placed in 1352``XXXGenRegisterInfo.h.inc``. For example, the implementation of the 1353constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``) 1354starts with the following code: 1355 1356.. code-block:: c++ 1357 1358 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); 1359 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); 1360 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); 1361 1362You should examine the node types in the ``ISD`` namespace 1363(``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations 1364the target natively supports. For operations that do **not** have native 1365support, add a callback to the constructor for the ``XXXTargetLowering`` class, 1366so the instruction selection process knows what to do. The ``TargetLowering`` 1367class callback methods (declared in ``llvm/Target/TargetLowering.h``) are: 1368 1369* ``setOperationAction`` --- General operation. 1370* ``setLoadExtAction`` --- Load with extension. 1371* ``setTruncStoreAction`` --- Truncating store. 1372* ``setIndexedLoadAction`` --- Indexed load. 1373* ``setIndexedStoreAction`` --- Indexed store. 1374* ``setConvertAction`` --- Type conversion. 1375* ``setCondCodeAction`` --- Support for a given condition code. 1376 1377Note: on older releases, ``setLoadXAction`` is used instead of 1378``setLoadExtAction``. Also, on older releases, ``setCondCodeAction`` may not 1379be supported. Examine your release to see what methods are specifically 1380supported. 1381 1382These callbacks are used to determine that an operation does or does not work 1383with a specified type (or types). And in all cases, the third parameter is a 1384``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or 1385``Legal``. ``SparcISelLowering.cpp`` contains examples of all four 1386``LegalAction`` values. 1387 1388Promote 1389^^^^^^^ 1390 1391For an operation without native support for a given type, the specified type 1392may be promoted to a larger type that is supported. For example, SPARC does 1393not support a sign-extending load for Boolean values (``i1`` type), so in 1394``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes 1395``i1`` type values to a large type before loading. 1396 1397.. code-block:: c++ 1398 1399 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 1400 1401Expand 1402^^^^^^ 1403 1404For a type without native support, a value may need to be broken down further, 1405rather than promoted. For an operation without native support, a combination 1406of other operations may be used to similar effect. In SPARC, the 1407floating-point sine and cosine trig operations are supported by expansion to 1408other operations, as indicated by the third parameter, ``Expand``, to 1409``setOperationAction``: 1410 1411.. code-block:: c++ 1412 1413 setOperationAction(ISD::FSIN, MVT::f32, Expand); 1414 setOperationAction(ISD::FCOS, MVT::f32, Expand); 1415 1416Custom 1417^^^^^^ 1418 1419For some operations, simple type promotion or operation expansion may be 1420insufficient. In some cases, a special intrinsic function must be implemented. 1421 1422For example, a constant value may require special treatment, or an operation 1423may require spilling and restoring registers in the stack and working with 1424register allocators. 1425 1426As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion 1427from a floating point value to a signed integer, first the 1428``setOperationAction`` should be called with ``Custom`` as the third parameter: 1429 1430.. code-block:: c++ 1431 1432 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 1433 1434In the ``LowerOperation`` method, for each ``Custom`` operation, a case 1435statement should be added to indicate what function to call. In the following 1436code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method: 1437 1438.. code-block:: c++ 1439 1440 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 1441 switch (Op.getOpcode()) { 1442 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 1443 ... 1444 } 1445 } 1446 1447Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to 1448convert the floating-point value to an integer. 1449 1450.. code-block:: c++ 1451 1452 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { 1453 assert(Op.getValueType() == MVT::i32); 1454 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); 1455 return DAG.getNode(ISD::BITCAST, MVT::i32, Op); 1456 } 1457 1458Legal 1459^^^^^ 1460 1461The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation 1462**is** natively supported. ``Legal`` represents the default condition, so it 1463is rarely used. In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an 1464operation to count the bits set in an integer) is natively supported only for 1465SPARC v9. The following code enables the ``Expand`` conversion technique for 1466non-v9 SPARC implementations. 1467 1468.. code-block:: c++ 1469 1470 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 1471 ... 1472 if (TM.getSubtarget<SparcSubtarget>().isV9()) 1473 setOperationAction(ISD::CTPOP, MVT::i32, Legal); 1474 1475Calling Conventions 1476------------------- 1477 1478To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses 1479interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in 1480``lib/Target/TargetCallingConv.td``. TableGen can take the target descriptor 1481file ``XXXGenCallingConv.td`` and generate the header file 1482``XXXGenCallingConv.inc``, which is typically included in 1483``XXXISelLowering.cpp``. You can use the interfaces in 1484``TargetCallingConv.td`` to specify: 1485 1486* The order of parameter allocation. 1487 1488* Where parameters and return values are placed (that is, on the stack or in 1489 registers). 1490 1491* Which registers may be used. 1492 1493* Whether the caller or callee unwinds the stack. 1494 1495The following example demonstrates the use of the ``CCIfType`` and 1496``CCAssignToReg`` interfaces. If the ``CCIfType`` predicate is true (that is, 1497if the current argument is of type ``f32`` or ``f64``), then the action is 1498performed. In this case, the ``CCAssignToReg`` action assigns the argument 1499value to the first available register: either ``R0`` or ``R1``. 1500 1501.. code-block:: text 1502 1503 CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> 1504 1505``SparcCallingConv.td`` contains definitions for a target-specific return-value 1506calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention 1507(``CC_Sparc32``). The definition of ``RetCC_Sparc32`` (shown below) indicates 1508which registers are used for specified scalar return types. A single-precision 1509float is returned to register ``F0``, and a double-precision float goes to 1510register ``D0``. A 32-bit integer is returned in register ``I0`` or ``I1``. 1511 1512.. code-block:: text 1513 1514 def RetCC_Sparc32 : CallingConv<[ 1515 CCIfType<[i32], CCAssignToReg<[I0, I1]>>, 1516 CCIfType<[f32], CCAssignToReg<[F0]>>, 1517 CCIfType<[f64], CCAssignToReg<[D0]>> 1518 ]>; 1519 1520The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces 1521``CCAssignToStack``, which assigns the value to a stack slot with the specified 1522size and alignment. In the example below, the first parameter, 4, indicates 1523the size of the slot, and the second parameter, also 4, indicates the stack 1524alignment along 4-byte units. (Special cases: if size is zero, then the ABI 1525size is used; if alignment is zero, then the ABI alignment is used.) 1526 1527.. code-block:: text 1528 1529 def CC_Sparc32 : CallingConv<[ 1530 // All arguments get passed in integer registers if there is space. 1531 CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, 1532 CCAssignToStack<4, 4> 1533 ]>; 1534 1535``CCDelegateTo`` is another commonly used interface, which tries to find a 1536specified sub-calling convention, and, if a match is found, it is invoked. In 1537the following example (in ``X86CallingConv.td``), the definition of 1538``RetCC_X86_32_C`` ends with ``CCDelegateTo``. After the current value is 1539assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is 1540invoked. 1541 1542.. code-block:: text 1543 1544 def RetCC_X86_32_C : CallingConv<[ 1545 CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, 1546 CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, 1547 CCDelegateTo<RetCC_X86Common> 1548 ]>; 1549 1550``CCIfCC`` is an interface that attempts to match the given name to the current 1551calling convention. If the name identifies the current calling convention, 1552then a specified action is invoked. In the following example (in 1553``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then 1554``RetCC_X86_32_Fast`` is invoked. If the ``SSECall`` calling convention is in 1555use, then ``RetCC_X86_32_SSE`` is invoked. 1556 1557.. code-block:: text 1558 1559 def RetCC_X86_32 : CallingConv<[ 1560 CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, 1561 CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, 1562 CCDelegateTo<RetCC_X86_32_C> 1563 ]>; 1564 1565Other calling convention interfaces include: 1566 1567* ``CCIf <predicate, action>`` --- If the predicate matches, apply the action. 1568 1569* ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``" 1570 attribute, then apply the action. 1571 1572* ``CCIfNest <action>`` --- If the argument is marked with the "``nest``" 1573 attribute, then apply the action. 1574 1575* ``CCIfNotVarArg <action>`` --- If the current function does not take a 1576 variable number of arguments, apply the action. 1577 1578* ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to 1579 ``CCAssignToReg``, but with a shadow list of registers. 1580 1581* ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the 1582 minimum specified size and alignment. 1583 1584* ``CCPromoteToType <type>`` --- Promote the current value to the specified 1585 type. 1586 1587* ``CallingConv <[actions]>`` --- Define each calling convention that is 1588 supported. 1589 1590Assembly Printer 1591================ 1592 1593During the code emission stage, the code generator may utilize an LLVM pass to 1594produce assembly output. To do this, you want to implement the code for a 1595printer that converts LLVM IR to a GAS-format assembly language for your target 1596machine, using the following steps: 1597 1598* Define all the assembly strings for your target, adding them to the 1599 instructions defined in the ``XXXInstrInfo.td`` file. (See 1600 :ref:`instruction-set`.) TableGen will produce an output file 1601 (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction`` 1602 method for the ``XXXAsmPrinter`` class. 1603 1604* Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of 1605 the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``). 1606 1607* Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for 1608 ``TargetAsmInfo`` properties and sometimes new implementations for methods. 1609 1610* Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that 1611 performs the LLVM-to-assembly conversion. 1612 1613The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the 1614``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``. Similarly, 1615``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo`` 1616replacement values that override the default values in ``TargetAsmInfo.cpp``. 1617For example in ``SparcTargetAsmInfo.cpp``: 1618 1619.. code-block:: c++ 1620 1621 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { 1622 Data16bitsDirective = "\t.half\t"; 1623 Data32bitsDirective = "\t.word\t"; 1624 Data64bitsDirective = 0; // .xword is only supported by V9. 1625 ZeroDirective = "\t.skip\t"; 1626 CommentString = "!"; 1627 ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; 1628 } 1629 1630The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example 1631where the target specific ``TargetAsmInfo`` class uses an overridden methods: 1632``ExpandInlineAsm``. 1633 1634A target-specific implementation of ``AsmPrinter`` is written in 1635``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts 1636the LLVM to printable assembly. The implementation must include the following 1637headers that have declarations for the ``AsmPrinter`` and 1638``MachineFunctionPass`` classes. The ``MachineFunctionPass`` is a subclass of 1639``FunctionPass``. 1640 1641.. code-block:: c++ 1642 1643 #include "llvm/CodeGen/AsmPrinter.h" 1644 #include "llvm/CodeGen/MachineFunctionPass.h" 1645 1646As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set 1647up the ``AsmPrinter``. In ``SparcAsmPrinter``, a ``Mangler`` object is 1648instantiated to process variable names. 1649 1650In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in 1651``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``. In 1652``MachineFunctionPass``, the ``runOnFunction`` method invokes 1653``runOnMachineFunction``. Target-specific implementations of 1654``runOnMachineFunction`` differ, but generally do the following to process each 1655machine function: 1656 1657* Call ``SetupMachineFunction`` to perform initialization. 1658 1659* Call ``EmitConstantPool`` to print out (to the output stream) constants which 1660 have been spilled to memory. 1661 1662* Call ``EmitJumpTableInfo`` to print out jump tables used by the current 1663 function. 1664 1665* Print out the label for the current function. 1666 1667* Print out the code for the function, including basic block labels and the 1668 assembly for the instruction (using ``printInstruction``) 1669 1670The ``XXXAsmPrinter`` implementation must also include the code generated by 1671TableGen that is output in the ``XXXGenAsmWriter.inc`` file. The code in 1672``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction`` 1673method that may call these methods: 1674 1675* ``printOperand`` 1676* ``printMemOperand`` 1677* ``printCCOperand`` (for conditional statements) 1678* ``printDataDirective`` 1679* ``printDeclare`` 1680* ``printImplicitDef`` 1681* ``printInlineAsm`` 1682 1683The implementations of ``printDeclare``, ``printImplicitDef``, 1684``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally 1685adequate for printing assembly and do not need to be overridden. 1686 1687The ``printOperand`` method is implemented with a long ``switch``/``case`` 1688statement for the type of operand: register, immediate, basic block, external 1689symbol, global address, constant pool index, or jump table index. For an 1690instruction with a memory address operand, the ``printMemOperand`` method 1691should be implemented to generate the proper output. Similarly, 1692``printCCOperand`` should be used to print a conditional operand. 1693 1694``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be 1695called to shut down the assembly printer. During ``doFinalization``, global 1696variables and constants are printed to output. 1697 1698Subtarget Support 1699================= 1700 1701Subtarget support is used to inform the code generation process of instruction 1702set variations for a given chip set. For example, the LLVM SPARC 1703implementation provided covers three major versions of the SPARC microprocessor 1704architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 170564-bit architecture), and the UltraSPARC architecture. V8 has 16 1706double-precision floating-point registers that are also usable as either 32 1707single-precision or 8 quad-precision registers. V8 is also purely big-endian. 1708V9 has 32 double-precision floating-point registers that are also usable as 16 1709quad-precision registers, but cannot be used as single-precision registers. 1710The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set 1711extensions. 1712 1713If subtarget support is needed, you should implement a target-specific 1714``XXXSubtarget`` class for your architecture. This class should process the 1715command-line options ``-mcpu=`` and ``-mattr=``. 1716 1717TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to 1718generate code in ``SparcGenSubtarget.inc``. In ``Target.td``, shown below, the 1719``SubtargetFeature`` interface is defined. The first 4 string parameters of 1720the ``SubtargetFeature`` interface are a feature name, an attribute set by the 1721feature, the value of the attribute, and a description of the feature. (The 1722fifth parameter is a list of features whose presence is implied, and its 1723default value is an empty array.) 1724 1725.. code-block:: text 1726 1727 class SubtargetFeature<string n, string a, string v, string d, 1728 list<SubtargetFeature> i = []> { 1729 string Name = n; 1730 string Attribute = a; 1731 string Value = v; 1732 string Desc = d; 1733 list<SubtargetFeature> Implies = i; 1734 } 1735 1736In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the 1737following features. 1738 1739.. code-block:: text 1740 1741 def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", 1742 "Enable SPARC-V9 instructions">; 1743 def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", 1744 "V8DeprecatedInsts", "true", 1745 "Enable deprecated V8 instructions in V9 mode">; 1746 def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", 1747 "Enable UltraSPARC Visual Instruction Set extensions">; 1748 1749Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to 1750define particular SPARC processor subtypes that may have the previously 1751described features. 1752 1753.. code-block:: text 1754 1755 class Proc<string Name, list<SubtargetFeature> Features> 1756 : Processor<Name, NoItineraries, Features>; 1757 1758 def : Proc<"generic", []>; 1759 def : Proc<"v8", []>; 1760 def : Proc<"supersparc", []>; 1761 def : Proc<"sparclite", []>; 1762 def : Proc<"f934", []>; 1763 def : Proc<"hypersparc", []>; 1764 def : Proc<"sparclite86x", []>; 1765 def : Proc<"sparclet", []>; 1766 def : Proc<"tsc701", []>; 1767 def : Proc<"v9", [FeatureV9]>; 1768 def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; 1769 def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; 1770 def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; 1771 1772From ``Target.td`` and ``Sparc.td`` files, the resulting 1773``SparcGenSubtarget.inc`` specifies enum values to identify the features, 1774arrays of constants to represent the CPU features and CPU subtypes, and the 1775``ParseSubtargetFeatures`` method that parses the features string that sets 1776specified subtarget options. The generated ``SparcGenSubtarget.inc`` file 1777should be included in the ``SparcSubtarget.cpp``. The target-specific 1778implementation of the ``XXXSubtarget`` method should follow this pseudocode: 1779 1780.. code-block:: c++ 1781 1782 XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { 1783 // Set the default features 1784 // Determine default and user specified characteristics of the CPU 1785 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string 1786 // Perform any additional operations 1787 } 1788 1789JIT Support 1790=========== 1791 1792The implementation of a target machine optionally includes a Just-In-Time (JIT) 1793code generator that emits machine code and auxiliary structures as binary 1794output that can be written directly to memory. To do this, implement JIT code 1795generation by performing the following steps: 1796 1797* Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass 1798 that transforms target-machine instructions into relocatable machine 1799 code. 1800 1801* Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for 1802 target-specific code-generation activities, such as emitting machine code and 1803 stubs. 1804 1805* Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object 1806 through its ``getJITInfo`` method. 1807 1808There are several different approaches to writing the JIT support code. For 1809instance, TableGen and target descriptor files may be used for creating a JIT 1810code generator, but are not mandatory. For the Alpha and PowerPC target 1811machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which 1812contains the binary coding of machine instructions and the 1813``getBinaryCodeForInstr`` method to access those codes. Other JIT 1814implementations do not. 1815 1816Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the 1817``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the 1818``MachineCodeEmitter`` class containing code for several callback functions 1819that write data (in bytes, words, strings, etc.) to the output stream. 1820 1821Machine Code Emitter 1822-------------------- 1823 1824In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is 1825implemented as a function pass (subclass of ``MachineFunctionPass``). The 1826target-specific implementation of ``runOnMachineFunction`` (invoked by 1827``runOnFunction`` in ``MachineFunctionPass``) iterates through the 1828``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and 1829emit binary code. ``emitInstruction`` is largely implemented with case 1830statements on the instruction types defined in ``XXXInstrInfo.h``. For 1831example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built 1832around the following ``switch``/``case`` statements: 1833 1834.. code-block:: c++ 1835 1836 switch (Desc->TSFlags & X86::FormMask) { 1837 case X86II::Pseudo: // for not yet implemented instructions 1838 ... // or pseudo-instructions 1839 break; 1840 case X86II::RawFrm: // for instructions with a fixed opcode value 1841 ... 1842 break; 1843 case X86II::AddRegFrm: // for instructions that have one register operand 1844 ... // added to their opcode 1845 break; 1846 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte 1847 ... // to specify a destination (register) 1848 break; 1849 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte 1850 ... // to specify a destination (memory) 1851 break; 1852 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte 1853 ... // to specify a source (register) 1854 break; 1855 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte 1856 ... // to specify a source (memory) 1857 break; 1858 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on 1859 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and 1860 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field 1861 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data 1862 ... 1863 break; 1864 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on 1865 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and 1866 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field 1867 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data 1868 ... 1869 break; 1870 case X86II::MRMInitReg: // for instructions whose source and 1871 ... // destination are the same register 1872 break; 1873 } 1874 1875The implementations of these case statements often first emit the opcode and 1876then get the operand(s). Then depending upon the operand, helper methods may 1877be called to process the operand(s). For example, in ``X86CodeEmitter.cpp``, 1878for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is 1879the opcode added to the register operand. Then an object representing the 1880machine operand, ``MO1``, is extracted. The helper methods such as 1881``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``, 1882``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type. 1883(``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``, 1884``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``, 1885and ``emitJumpTableAddress`` that emit the data into the output stream.) 1886 1887.. code-block:: c++ 1888 1889 case X86II::AddRegFrm: 1890 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); 1891 1892 if (CurOp != NumOps) { 1893 const MachineOperand &MO1 = MI.getOperand(CurOp++); 1894 unsigned Size = X86InstrInfo::sizeOfImm(Desc); 1895 if (MO1.isImmediate()) 1896 emitConstant(MO1.getImm(), Size); 1897 else { 1898 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word 1899 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); 1900 if (Opcode == X86::MOV64ri) 1901 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? 1902 if (MO1.isGlobalAddress()) { 1903 bool NeedStub = isa<Function>(MO1.getGlobal()); 1904 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); 1905 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, 1906 NeedStub, isLazy); 1907 } else if (MO1.isExternalSymbol()) 1908 emitExternalSymbolAddress(MO1.getSymbolName(), rt); 1909 else if (MO1.isConstantPoolIndex()) 1910 emitConstPoolAddress(MO1.getIndex(), rt); 1911 else if (MO1.isJumpTableIndex()) 1912 emitJumpTableAddress(MO1.getIndex(), rt); 1913 } 1914 } 1915 break; 1916 1917In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which 1918is a ``RelocationType`` enum that may be used to relocate addresses (for 1919example, a global address with a PIC base offset). The ``RelocationType`` enum 1920for that target is defined in the short target-specific ``XXXRelocations.h`` 1921file. The ``RelocationType`` is used by the ``relocate`` method defined in 1922``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols. 1923 1924For example, ``X86Relocations.h`` specifies the following relocation types for 1925the X86 addresses. In all four cases, the relocated value is added to the 1926value already in memory. For ``reloc_pcrel_word`` and ``reloc_picrel_word``, 1927there is an additional initial adjustment. 1928 1929.. code-block:: c++ 1930 1931 enum RelocationType { 1932 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc 1933 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base 1934 reloc_absolute_word = 2, // absolute relocation; no additional adjustment 1935 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment 1936 }; 1937 1938Target JIT Info 1939--------------- 1940 1941``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific 1942code-generation activities, such as emitting machine code and stubs. At 1943minimum, a target-specific version of ``XXXJITInfo`` implements the following: 1944 1945* ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a 1946 function that is used for compilation. 1947 1948* ``emitFunctionStub`` --- Returns a native function with a specified address 1949 for a callback function. 1950 1951* ``relocate`` --- Changes the addresses of referenced globals, based on 1952 relocation types. 1953 1954* Callback function that are wrappers to a function stub that is used when the 1955 real target is not initially known. 1956 1957``getLazyResolverFunction`` is generally trivial to implement. It makes the 1958incoming parameter as the global ``JITCompilerFunction`` and returns the 1959callback function that will be used a function wrapper. For the Alpha target 1960(in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is 1961simply: 1962 1963.. code-block:: c++ 1964 1965 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( 1966 JITCompilerFn F) { 1967 JITCompilerFunction = F; 1968 return AlphaCompilationCallback; 1969 } 1970 1971For the X86 target, the ``getLazyResolverFunction`` implementation is a little 1972more complicated, because it returns a different callback function for 1973processors with SSE instructions and XMM registers. 1974 1975The callback function initially saves and later restores the callee register 1976values, incoming arguments, and frame and return address. The callback 1977function needs low-level access to the registers or stack, so it is typically 1978implemented with assembler. 1979 1980